
Supplementary Material: The Blessings of Multiple Causes

A Connections to genome-wide association studies

Many methods from the research literature, especially around genome-wide association studies,
can be reinterpreted as instances of the deconfounder algorithm. Each can be seen as positing a
factor model of assigned causes (Section 4.1) and a conditional outcome model (Section 4.2).

The deconfounder justifies each of these methods as forms of multiple causal inference and, though
predictive checks, points to how a researcher can usefully compare and assess them. Most of
these methods were motivated by imagining true unobserved confounding structure. However, the
theory around the deconfounder shows that a well-fitted factor model will capture confounders
independent of a researcher imagining what they may be; see the question in Section 5.

Below we describe many methods from the GWAS literature and show how they can be viewed
as deconfounder algorithms. The GWAS problem is described in Section 4.3.

Linear mixed models. The LMM is one the most popular classes of methods for analyzing
GWAS (Yu et al., 2006; Kang et al., 2008; Yang et al., 2014; Lippert et al., 2011; Loh et al., 2015;
Darnell et al., 2017). Seen through the lens of the deconfounder, an LMM posits a linear outcome
model that depends on both the SNPs and a scalar latent factor Zi.

In the LMM literature, Zi is not explicitly drawn from a factor model; rather, Z1:n are from a
multivariate Gaussian whose covariance matrix, called the “kinship matrix,” is calculated from
the observed SNPs a1:n. However, this is mathematically equivalent to posterior latent factors
from a one-dimensional principal component analysis (PCA) model. Subject to its capturing the
distribution of SNPs, the LMM is performing multiple causal inference with a deconfounder.

Principal component analysis. A related approach is to first perform (multi-dimensional) PCA
on the SNP matrix and then to estimate an outcome model from the corresponding residuals (Price
et al., 2006). This too is an instance of the deconfounder. As a factor model, PCA is described in
Eq. 9. Fitting an outcome model to its residuals is equivalent to conditioning on the reconstructed
assignments, Eq. 21.

Logistic factor analysis. Closely related to PCA is LFA (Song et al., 2015; Hao et al., 2015).
LFA can be seen as the following factor model,

Zi ªN (0, I)

ºi j |Zi ªN (z>i µ j,æ2), j = 1, . . . ,m,

Ai j |ºi j ªBinomial(2, logit°1(ºi j)), j = 1, . . . ,m.

If it captures the SNP matrix well, then Zi can be viewed as a substitute confounder.

With LFA in hand, Song et al. (2015) use inverse regression to perform association tests. Their ap-
proach is equivalent to assuming an outcome model conditional on the reconstructed assignments
a(ẑi), again Eq. 21, and subsequently testing for non-zero coefficients.
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In a variant of LFA, Tran and Blei (2017) use a neural-network based model of the unobserved
confounder, connecting this model to a causal inference with a nonparametric structural equation
model (Pearl, 2009). They take an explicitly causal view of the testing problem.

Mixed-membership models. Finally, many statistical geneticists use mixed-membership mod-
els (Airoldi et al., 2014) to capture the latent population structure of SNPs, and then condition on
that structure in downstream analyses (Pritchard et al., 2000a,b; Falush et al., 2003, 2007). In ge-
netics, a mixed-membership model is a factor model that captures latent ancestral populations. The
latent variable Zi is on the K °1 simplex; it represents how much individual i reflects each ances-
tral population. The observed SNP Ai j comes from a mixture of Binomials, where Zi determines
its mixture proportions.

Using these models, researchers use a linear outcome model conditional on zi and devise tests
for significant associations (Pritchard et al., 2000b; Song et al., 2015; Tran and Blei, 2017). The
deconfounder justifies this practice from a causal perspective, and underlines the importance of
finding a model of population structure that captures the per-individual distribution of SNPs.

B Can the causes be causally dependent among themselves?

When the causes are causally dependent, the deconfounder can still provide unbiased estimates of
the potential outcomes. Its success relies on a valid substitute confounder.

Note there are cases where a valid substitute confounder cannot exist. For example, consider a
cause A1 that causally affects A2 according to A1 ªN (0,1), A2 = A1+≤,≤ªN (0,1). In this case,
a substitute confounder Z must satisfy Z a.s.= A1 or Z a.s.= A2, because it needs to render the two
causes conditionally independent. But such a Z does not satisfy overlap.

On the other hand, causal dependence among the causes does not necessarily imply the nonexis-
tence of a valid substitute confounder. Consider a different mechanism for the causal relationship
between A1 and A2,

A1 ªN (0,1),
A2 = |A1|+≤, ≤ªN (0,1).

Here Z a.s= |A1| is a valid substitute confounder; it satisfies overlap and renders A1 conditionally
independent of A2.

Empirically, it is hard to detect the nonexistence of a valid substitute confounder without knowing
the functional form of how the causes are structurally dependent. Insisting on using the decon-
founder in this case results in limited overlap and high variance causal estimates downstream.

To illustrate this phenomenon, we repeat the experiments in Section 6.1 with the same confounder
aage but three causes: amar,aexp and an additional cause amar+. We assume amar+ causally depend
on amar, where

amar+ = amar +"i,mar+, "i,mar+ ªN (0,0.12). (43)
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Check Bias2 £10°2 Variance £10°2 MSE £10°2

No control – 41.89 0.01 41.90
Control for age (oracle) – 22.57 0.01 22.57

Control for 1-dim zline 3 29.98 16.97 46.96
Control for 1-dim a(zline) 3 28.01 18.49 46.50

Control for 1-dim zquad 3 25.10 16.70 41.80
Control for 1-dim a(zquad) 3 27.46 15.77 43.23

Table 5: Total bias and variance of the estimated causal coefficients Øexp and Ømar when there is a
third cause dependent on amar. The nonlinear factor model outperforms linear factor model. The
deconfounder estimate has much higher variance than usual (e.g., Table 4) when two of the causes
are dependent.

It implies that theoretically there exists no substitute confounders that can both satisfy overlap and
render the causes conditionally independent.

We simulate the outcome from

yi =Ømar amar,i +Øexp aexp,i +Øage aage,i +Ømar+ amar+,i +"i, (44)

where "i ªN (0,1). We generate the true causal coefficients from

Ømar ªN (0,1) Øexp ªN (0,1) Øage ªN (0,1) Ømar+ ªN (0,1). (45)

Nevertheless, we apply the deconfounder to this data. We model the three causes with one-
dimensional linear and quadratic factor model; both pass the predictive check, with a predictive
score of 0.28 and 0.20. Table 5 shows the bias and variance of the deconfounder estimate of Ømar
and Øexp. With causally dependent causes (Table 5), the deconfounder estimates have much larger
variance than usual (Table 4); it signals that the substitute confounder we constructed is close to
breaking overlap. That said, the deconfounder is still able to correct for a substantial portion of
confounding bias.

Finally, we recommend applying the deconfounder to non-causally dependent causes. A valid
substitute confounder is guaranteed to exist in this case; it will both satisfy overlap and render the
causes conditionally independent of each other.

C Causal identification with a quadratic factor model and a
linear outcome model

We establish causal identification when the true causal model is composed of a quadratic factor
model and a linear outcome model.
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We first write down the causal model:

Z = ≤Z , (46)

A1 =Æ10 +Æ11Z+Æ12Z2 +≤A1, (47)

A2 =Æ20 +Æ21Z+Æ22Z2 +≤A2, (48)
Y =Ø0 +Ø1A1 +Ø2A2 +∞Z+≤Y , (49)

where all the errors ≤Z ,≤A1,≤A2,≤Y are independent zero-mean Gaussian with a fixed but unknown
variance.

We note that all variables Z, A1, A2,Y are scalars in this example; only A1, A2,Y are observable;
Z is unobserved.

To prove identification, we show that the causal parameters Ø1 and Ø2 are both functions of the
moment generating function of (A1, A2,Y ).

we first rewrite Y :

Y = (Ø0 +Ø1Æ10 +Ø2Æ20)+ (Ø1Æ11 +Ø2Æ21 +∞) ·Z+ (Ø1Æ12 +Ø2Æ22) ·Z2 +Ø1≤A1 +Ø2≤A2 +≤Y ,

= (Ø1Æ12 +Ø2Æ22) ·
µ
Z+ Ø1Æ11 +Ø2Æ21 +∞

2 · (Ø1Æ12 +Ø2Æ22)

∂2
+Ø1≤A1 +Ø2≤A2 +≤Y

+
µ
Ø0 +Ø1Æ10 +Ø2Æ20 °

µ
Ø1Æ11 +Ø2Æ21 +∞
2 · (Ø1Æ12 +Ø2Æ22)

∂2∂

In other words, the observed random variable Y is a sum of a constant, a non-central ¬2 random
variable and a zero mean Gaussian random variable Ø1≤A1 +Ø2≤A2 +≤Y .

For notation simplicity, we denote the constants with separate symbols:

B0 ,Ø0 +Ø1Æ10 +Ø2Æ20, (50)

B1 ,Ø1Æ11 +Ø2Æ21 +∞, (51)

B2 ,Ø1Æ12 +Ø2Æ22. (52)

Therefore, we have

Y = B0 +B1 ·Z+B2 ·Z2 +≤Y , (53)

where ( Z
æZ

+ B1
2B2æZ

)2 is a non-central ¬2 random variable with the non-centrality parameter ∏ =
≥

B1
2B2æZ

¥2
and degree of freedom k = 1. (æ2

Z is the variance of Z.)

We leverage this property to identify the distribution ≤Y . Notice the moment generating function
of A1, A2,Y is

MA1,A2,Y (t1, t2, t3) (54)
=E [exp(t1A1 + t2A2 + t3Y )] (55)
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=exp(B0t3 +Æ10t1 +Æ20t2) (56)

·E
£
exp

°
(Æ11t1 +Æ21t2 +B1t3) ·Z+ (Æ12t1 +Æ22t2 +B2t3) ·Z2¢§ (57)

·E
£
t1≤A1 + t2≤A2 + t3(Ø1≤A1 +Ø2≤A2 +≤Y )

§
(58)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3)

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(59)

·E
∑
exp

µ
(Æ12t1 +Æ22t2 +B2t3)æ2

Z ·
µ

Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)æZ
+ Z
æZ

∂2∂∏
(60)

·E
£
t1≤A1 + t2≤A2 + t3(Ø1≤A1 +Ø2≤A2 +≤Y )

§
(61)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(62)

·
exp( ∏t

1°2t )
(1°2t)1/2 (63)

·exp(
1
2

(t1 + t3Ø1)2æ2
A1

)exp(
1
2

(t2 + t3Ø2)2æ2
A2

)exp(
1
2

t3æ
2
Y ) (64)

=exp
µ
B0t3 +Æ10t1 +Æ20t2 ° (Æ12t1 +Æ22t2 +B2t3) ·

µ
Æ11t1 +Æ21t2 +B1t3

2(Æ12t1 +Æ22t2 +B2t3)

∂2∂
(65)

·
exp( ∏t

1°2t )
(1°2t)1/2 (66)

·exp(
1
2

(t1æ
2
A1

+Ø2
1æ

2
A1

t2
3 +2Ø1æ

2
A1

t1t3 + t2æ
2
A2

+Ø2
2æ

2
A2

t2
3 +2Ø2æ

2
A2

t2t3 +æ2
Y t3), (67)

where t = (Æ12t1 +Æ22t2 +B2t3)æ2
Z and ∏=

≥
Æ11t1+Æ21t2+B1t3

2(Æ12t1+Æ22t2+B2t3)æZ

¥2
.

Notice that the ratio of the coefficients in front of t2
3 and t1t3 is Ø1. Hence we can identify Ø1 from

the moment generating function of the unobserved random variables A1, A2,Y . The reason is the
incongruence between exponential functions, polynomial functions, and square root functions, i.e.
exponential functions can not be written as polynomials and others. The other components of the
moment generating functions Eqs. 65 and 66 do not contain the terms t2

3 and t1t3.

The high-level intuition behind the above calculation is the incongruence between the nonlinear
(quadratic) factor model and the linear outcome model. More specifically, the variance due to
≤Y in the linear outcome model cannot be attributed wrongfully to the causes and the confounder
Ø1A1 +Ø2A2 +∞Z; the former is Gaussian while the latter is non-Gaussian except when Æ12 =
Æ22 = 0. (This incongruence does not hold for the linear factor model and the linear outcome
model.)

For the same reason, we can identify the other causal parameter Ø2.

This result can be extended to other nonlinear factor models and linear outcome models.
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D Detailed Results of the GWAS Study

In this section, we present tables of results from the GWAS study in Section 6.2.

Tables 6 to 10 contain the result under the high SNR setting.

Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 49.66 39.39
Control for confounders§ — 40.27 31.09

(G)LMM — 46.22 37.81
PPCA 0.13 46.05 36.01
PF 0.15 44.58 36.30
LFA 0.14 43.02 36.65
GMM 0.01 47.33 40.24
DEF 0.18 41.05 33.88

Table 6: GWAS high-SNR simulation I: Balding-Nichols Model. (“Control for all confounders”
means including the unobserved confounders as covariates.) The deconfounder outperforms
(G)LMM; DEF performs the best among the five factor models. Predictive checking offers a good
indication of when the deconfounder fails.

Tables 11 to 15 contain the result under the low SNR setting.

E Detailed Results of the Movie Study

In this section, we present tables of results from the movies study in Section 6.3.

F Proof of Lemma 1

Proof sketch. First assume the Kallenberg construction in Eq. 37. This form shows that the as-
signed causes (Ai1, . . . , Aim) are captured by functions of Zi and randomization variables Ui j.
This fact, in turn, implies that the randomness in (Ai1, . . . , Aim) |Zi comes from the randomization
variables which are (by definition) independent of Yi(a). Therefore (Ai1, . . . , Aim) is conditionally
independent of Yi given Zi, i.e., unconfoundedness holds. Now assume that unconfoundedness
holds. We prove that this assumption implies a Kallenberg construction by building on the ran-
domization variable construction of conditional distributions (Kallenberg, 1997).

Proof. For notation simplicity, we suppress the i subscript in this proof.

We assume Z is a measurable space and A j, j = 1, . . . ,m are Borel spaces.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 68.78 38.16
Control for confounders§ — 60.29 32.76

(G)LMM — 65.25 35.41
PPCA 0.15 65.98 36.11
PF 0.17 64.25 34.79
LFA 0.17 64.00 37.08
GMM 0.02 67.23 35.40
DEF 0.20 63.73 33.71

Table 7: GWAS high-SNR simulation II: 1000 Genomes Project (TGP). (“Control for all con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms (G)LMM; DEF performs the best among the five factor models. Predictive checking offers
a good indication of when the deconfounder fails.

We first prove the necessity. Assume that A j = f j(Z,Uj), j = 1, . . . ,m, where f j, j = 1, . . . ,m are
measurable and

(U1, . . . ,Um)?? (Z,Y (a1, . . . ,am)) (68)

for all (a1, . . . ,am). By Proposition 5.18 in Kallenberg (1997), Eq. 68 implies

(U1, . . . ,Um)?? ZY (a1, . . . ,am),

and so
(Z,U1, . . . ,Um)?? ZY (a1, . . . ,am)

by Corollary 5.7 in Kallenberg (1997). It implies

(A1, . . . , Am)?? ZY (a1, . . . ,am)

for all (a1, . . . ,am) 2 A1 ≠ · · ·≠Am. The last step is because A j’s are measurable functions of
(Z,U1, . . . ,Um).

Now we prove the sufficiency. Assume that Y (a1, . . . ,am) ?? Z(A1, . . . , Am). Marginalizing out all
but one A j gives

Y (a1, . . . ,am)?? Z A j, j = 1, . . . ,m.

By Theorem 5.10 in Kallenberg (1997), there exists a measurable function f j : Z £ [0,1] ! A j
and a Uniform[0,1] random variable Ũ j satisfying Ũ j ?? (Z,Y (a1, . . . ,am)) such that the random
variable Ã j = f j(Z,Ũ j) satisfies

Ã j
d= A j and (Ã j, Z) d= (A j, Z).

Moreover, we have
Ã j ?? ZY (a1, . . . ,am)

with the same argument as the above necessity part.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 77.35 45.93
Control for confounders§ — 67.53 39.43

(G)LMM — 74.38 42.79
PPCA 0.14 74.45 43.27
PF 0.14 71.40 42.75
LFA 0.13 72.11 42.34
GMM 0.03 76.27 46.88
DEF 0.16 69.86 41.61

Table 8: GWAS high-SNR simulation III: Human Genome Diversity Project (HGDP). (“Control
for confounders” means including the unobserved confounders as covariates.) The deconfounder
outperforms (G)LMM; DEF performs the best among the five factor models. Predictive checking
offers a good indication of when the deconfounder fails.

Hence, by Proposition 5.6 in Kallenberg (1997),

P(Ã j 2 · | Z,Y (a1, . . . ,am))= P(Ã j 2 · | Z)= P(A j 2 · | Z)= P(A j 2 · | Z,Y (a1, . . . ,am)),

and so
(Ã j, Z,Y (a1, . . . ,am)) d= (A j, Z,Y (a1, . . . ,am)).

By Theorem 5.10 in Kallenberg (1997), we may choose some random variable Uj such that

Uj
d= Ũ j and (Ã j, Z,Y (a1, . . . ,am),Uj)

d= (A j, Z,Y (a1, . . . ,am),Ũ j).

In particular, we have
Uj ?? (Z,Y (a1, . . . ,am))

and
(A j, f j(Z,Uj))

d= (Ã j, f j(Z,Ũ j).

Since
Ã j = f j(Z,Ũ j)

and the diagonal in S2 is measurable, we have

A j
a.s.= f j(Z,Uj).

We then show (U1, . . . ,Um) ?? (Z,Y (a1, . . . ,am)). By Theorem 5.10 in Kallenberg (1997), there
exists a measurable function g1 : Y £Z £ [0,1] ! [0,1] and a Uniform[0,1] random variable Û1
satisfying Û1 ?? (Y (a1, . . . ,am), Z) and

(Y (a1, . . . ,am), Z,U1) d= (Y (a1, . . . ,am), Z, g1(Y (a1, . . . ,am), Z,Û1)).

Moreover, by
U1 ?? ZY (a1, . . . ,am),
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we have
g1(Y (a1, . . . ,am), Z,Û1)?? ZY (a1, . . . ,am)

there exists some measurable function g0
1 : Z £ [0,1]! [0,1] such that

g1(Y (a1, . . . ,am), Z,Û1)= g0
1(Z,Û1)

and
Û1 ?? (Z,Y (a1, . . . ,am)).

In other words, we have

(Y (a1, . . . ,am), Z,U1) d= (Y (a1, . . . ,am), Z, g0
1(Z,Û1)).

Repeating these steps, we again have from Theorem 5.10 in Kallenberg (1997) that there exists a
measurable function g2 : Y £Z £[0,1]2 ! [0,1] and a Uniform[0,1] random variable Û2 satisfying

(Y (a1, . . . ,am), Z,U1,U2)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g2(Y (a1, . . . ,am), Z,Û1,Û2))

and
Û2 ?? (Z,Y (a1, . . . ,am),Û1).

Again by
U1 ?? ZY (a1, . . . ,am),

we have a measurable function g0
2 : Z £ [0,1]2 ! [0,1] that satisfies

(Y (a1, . . . ,am), Z,U1,U2)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g0
2(Z,Û1,Û2)).

Repeating these steps m times, we have

(Y (a1, . . . ,am), Z,U1,U2, . . . ,Um)
d= (Y (a1, . . . ,am), Z, g0

1(Z,Û1), g0
2(Z,Û1,Û2), . . . , g0

m(Z,Û1,Û2, . . . ,Ûm))

with
Û j ?? (Z,Y (a1, . . . ,am),Û1, . . . ,Û j°1), j = 1, . . . ,m.

We notice that the right side of the equation have conditional independence property

(g0
1(Z,Û1), g0

2(Z,Û1,Û2), . . . , g0
m(Z,Û1,Û2, . . . ,Ûm))?? ZY (a1, . . . ,am).

This implies the same property holds for the left side of the equation, that is

(U1, . . . ,Um)?? ZY (a1, . . . ,am).
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G Proof of Lemma 2

Proof sketch. The lemma is an immediate consequence of Lemma 2.22 in Kallenberg (1997) and
“no unobserved single-cause confounders”. We also rely p(µ1:m) and p(zi |ai) are point masses,
so they are a priori independent of the potential outcomes and the other latent variables.

Proof. For simplicity, we consider continuous random variables Ai j, Zi,µ j. Also, we assume there
are no single-cause confounders. The proof can be easily extended to accommodate discrete ran-
dom variables and observed single-cause confounders.

We first state the regularity condition: The domains of the causes, A j, j = 1, . . . ,m are Borel
subsets of compact intervals. Without loss of generality, we could assume A j = [0,1], j = 1, . . . ,m.

By Lemma 2.22 in Kallenberg (1997), there exists some measurable function f j : Z £[0,1]! [0,1]
such that ∞i j ?? Zi and

Ai j = f j(Zi,∞i j).

Furthermore, there exists some measurable function hi j :££ [0,1]! [0,1] such that

∞i j = hi j(µ j,!i j),

where !i j ?? (Zi,µ j) and !i j ªUniform[0,1]. Lastly, we write

Ui j = F°1
i j (∞i j)ªUniform[0,1],

where Fi j is the cumulative distribution function of ∞i j.

Eq. 35 implies that !i j, i = 1, . . . ,n, j = 1, . . . ,m are jointly independent: if they were not, then
Ai j = f j(Zi,hi j(µ j,!i j)) would not have been conditionally independent given Zi,µ j.

We thus have
Ai j = f j(Zi,Ui j),

where Ui j := F°1
i j (hi j(µi,!i j)).

Below we will prove that Ui j satisfies

(Ui1, . . . ,Uim)?? (Zi,Yi(a1, . . . ,am)). (69)

We will rely on the “no single-cause confounders” assumption and the consistency of substitute
confounder assumption p(zi |ai)= ± fµ(ai).

First, we notice that µ1:m are point masses; they satisfy (µ1, . . . ,µm)?? (Zi,Yi(a1, . . . ,am)).

Next, we notice that the “no single-cause confounders” assumption implies that there exists a
random variable Z̃i such that

p(ai1, . . . ,aim | z̃i)=
mY

j=1
p(ai j | z̃i) (70)
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and

Ai1, . . . , Aim ?Yi(a1, . . . ,am) | Z̃i. (71)

Moreover, no sigma algebra smaller than Z̃i satisfies Eq. 70. Further, the consistency of substitute
confounder assumption Zi = fµ(A i) required for the factor model implies that the Z̃i that satis-
fies Eq. 70 is unique, i.e. Z̃i

a.s.= Zi. The reason is that the consistency of substitute confounder
assumption implies

p(ai, zi)= p(ai)p(zi |ai)= p(ai) ·± fµ(ai),

which is a function of p(ai) by construction. This is a key step that illustrates how the consistency
of substitute confounder assumption interacts with the no single-cause confounder assumption to
provide causal identification. Hence, Zi also satisfies the unconfoundedness condition Eq. 71,
which implies Eq. 69 and also

(!i1, . . . ,!im)?? (Yi(a1, . . . ,am), Zi)

or equivalently, (!i1, . . . ,!im)??Yi(a1, . . . ,am) |Zi. In particular, for m = 2, we have

p(Yi(a1, . . . ,am),!i1,!i2 |Zi)
=p(!i1 |Zi) · p(Yi(a1, . . . ,am) |!i1, Zi) · p(!i2 |!i1,Yi(a1, . . . ,am), Zi)
=p(!i1 |Zi) · p(Yi(a1, . . . ,am) |Zi) · p(!i2 |Zi)

Finally, this argument illustrates how the “no single-cause confounders” assumption interacts with
the consistency of substitute confounder assumption.

If all pre-treatment single-cause confounders Wi are observed, we can simply expand Zi; we con-
sider Z0

i := (Zi,Wi) in the place of Zi. The same argument applies.

H Proof of Lemma 3

We first define multi-cause confounders. A multi-cause confounder is a confounder that confounds
two or more causes. The following definition formalizes this idea. This definition stems from
Definition 4 of VanderWeele and Shpitser (2013).

Definition 6. (Multi-cause confounder) A pretreatment covariate Ci is a multi-cause confounder
if there exists a set of pre-treatment covariates Vi (possibly empty) and a set J Ω {1, . . . ,m} with
|J| ∏ 2 such that (Ai j) j2J ?? Yi(ai1, . . . ,aim) |æ(Vi,Ci). Moreover, there is no proper subset Si of
æ(Vi,Ci) and no proper subset J0 of J such that (Ai j) j2J0 ??Yi(ai1, . . . ,aim) |Si.

Proof sketch. This proposition is a consequence of Lemma 1, Lemma 2, and a proof by contradic-
tion. The intuition is that if a confounder affects two or more causes then the substitute confounder
Zi must have captured it. Why? Obtain the substitute confounder Zi from a factor model; Lemma 1
ensures that it satisfies unconfoundedness. Now suppose we omitted a multi-cause confounder Ci.
Then the substitute confounder Zi could not have satisfied unconfoundedness: the omitted con-
founder Ci renders the causes and potential outcomes conditionally dependent, even given Zi.
Figure 1 gives the intuition with a graphical model and Appendix H gives a detailed proof.
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Proof. Without loss of generality, we work with two-cause confounders. The proof is directly
applicable to general multi-cause confounders.

We prove the proposition by contradiction. Suppose there exists such a multi-cause confounder
Wi,bad that is not measurable with respect to æ(Zi); we show that Zi could not have satisfied the
factor model Eq. 36.

By Lemma 2.22 in Kallenberg (1997), there exist some function f j such that Ai j = f j(Zi,Ui j),
where Ui j ?? Zi. ( f j is non-constant in Zi.)

Then Wi,bad being a multi-cause confounder has two implications:

1. There exist j1, j2 and nontrivial functions g1, g2 such that Ui j1 = g1(Wi,bad,∞i j1) and Ui j2 =
g2(Wi,bad,∞i j2), where (∞i j1,∞i j2)??Wi,bad;

2. There exists a nontrivial function h such that Yi(ai1, . . . ,aim) = h(Wi,bad,≤), where ≤ ??
Wi,bad.

These two statements implies that

(Ui j1,Ui j2) 6??Yi(ai1, . . . ,aim) |Zi,

because Wi,bad is not measurable with respect to æ(Zi). This implies

(Ui1, . . . ,Uim) 6??Yi(ai1, . . . ,aim) |Zi.

It contradicts the fact that Zi comes from the factor model (Eq. 35) with (Ui1, . . . ,Uim) ??
Yi(ai1, . . . ,aim) |Zi. Therefore, there does not exist such a multi-cause confounder.

Corollary 9. Under “no unobserved single-cause confounders”, any confounder must be mea-
surable with respect to the æ-algebra generated by the substitute confounder Zi and the observed
covariates Xi.

Proof. Because of “no unobserved single-cause confounders”, a single-cause confounder must be
measurable with respect to the observed covariates Xi. Because of Lemma 3, a multi-cause con-
founder must be measurable with respect to the substitute confounder Zi. Thus all confounders
must be measurable with respect to the union of the substitute confounders and the observed co-
variates (Zi, Xi).

Corollary 9 shows how the “no unobserved single-cause confounder” assumption is necessary for
the deconfounder; the substitute confounder Zi can only handle multi-cause confounders.

I Proof of Lemma 4

Proof sketch. The deconfounder separates inference of the substitute confounder from estimation
of causal effects; see Algorithm 1. This two-stage procedure guarantees that the substitute con-
founder is “pre-treatment”; it does not contain a mediator. The reason is that a mediator is, by

12



definition, a post-treatment variable that affects the potential outcome. Thus it (almost surely) can-
not be identified with only the assigned causes and it is not measurable with respect to the observed
(pre-treatment) covariates Xi. Appendix I provides a detailed proof.

Proof. We prove the proposition by contradiction.

Consider a mediator M. We denote Mi(a) as the potential value of the mediator M for unit i when
the assigned cause is a. We show that Mi(ai) is almost surely not measurable with respect to Zi.

The deconfounder operating in two stages. Inferring the substitute confounder Zi is separated from
estimating the potential outcome. It implies that the substitute confounder is independent of the
outcomes conditional on the causes A i: Zi ?? Yi(A i) |A i. The intuition is that, without looking at
Yi(·), the only dependence between Zi and Yi must come from A i.

However, a mediator must satisfy Mi(A i) 6?? Yi(A i) |A i; otherwise, it has no mediation effect
(Imai et al., 2010). If a mediator is measurable with Zi, then Zi 6??Yi(A i) |A i. This contradicts the
conditional independence of Zi and Yi(A i) given A i. We ensured this conditional independence
by inferring the substitute confounder Zi based only on the causes A i.

As a consequence of “no unobserved single-cause confounders”, the substitute confounder, to-
gether with the observed covariates, captures all confounders.

J Proof of Proposition 5

The first part is a direct consequence of Lemmas 1 and 2.

We now prove the second part. We provide two constructions.

We start with the first trivial one. For any assigned causes A i, we consider a special case when
A i

a.s.= Zi. We have

p(ai1, . . . ,aim | zi)= ±zi =
mY

j=1
±zi j =

mY

j=1
p(ai j | zi) (72)

This step is due to point masses are factorizable. Therefore, we can write the distribution of A i in
the form of a factor model; we set µ j

a.s.= 0, j = 1, . . . ,m and Zi
a.s.= A i:

p(µ1:m, z1:n,a1:n)= p(µ1:m)p(z1:n |µ1:m)p(a1:n | z1:n,µ1:m) (73)
= p(µ1:m)p(z1:n)p(a1:n | z1:n) (74)

= p(µ1:m)p(z1:n)
nY

i=1

mY

j=1
p(ai j | zi) (75)

The second equality is due to Zi ?? µ1:m and A i ?? µ1:m |Zi. They are because µ j’s are point masses.
The third equality is due to the SUTVA assumption and Eq. 72.
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Choosing Zi
a.s.= A i, that is letting the substitute confounder Zi be the same as the assigned causes

A i, does not help with causal inference; see a related discussion on overlap around Eq. 6.

This result is only meant to exemplify the large capacity of factor models. Finally, this Zi
a.s.= A i

example also illustrates the fact that a factor model capturing p(ai) is not necessarily the true
assignment model.

We now present the second construction. It relies on copulas and the Sklar’s theorem. We follow
the modified distribution function from Rüschendorf (2009). Let X be a real random variable with
distribution function F and let V ª U(0,1) be uniformly distributed on (0,1) and independent of
X . The modified distribution function F(x,∏) is defined by

F(x,∏) := P(X < x)+∏P(X = x). (76)

Then if we construct U variables as

U := F(X ,V ), (77)

then we have

U = F(X°)+V (F(X )°F(X°)), (78)

U d=Uni f orm(0,1), (79)

X a.s.= F°1(U). (80)

Now we set Zi j = F°1
i j (Ai j), where Fi j is the modified distribution function of Ai j. We also set

µ j, j = 1, . . . ,m as point masses. The Sklar’s theorem then implies

p(µ1:m, z1:n,a1:n)= p(µ1:m)p(z1:n |µ1:m)p(a1:n | z1:n,µ1:m) (81)
= p(µ1:m)p(z1:n)p(a1:n | z1:n,µ1:m) (82)

= p(µ1:m)p(z1:n)
nY

i=1

mY

j=1
p(ai j | zi,µ j) (83)

The second equality is due to µ1:m being point masses; µ j, j = 1, . . . ,m can be considered as pa-
rameters of the marginal distribution of Ai j. The third equality is due to the SUTVA assumption
and the Sklar’s theorem.

This construction aligns more closely with the idea of the deconfounder; it aims to capture multi-
causes confounders that induces the dependence structure, i.e. the copula. However, the decon-
founder is different from directly estimating the copula; the latter is a more general (and harder)
problem.

K Proof of Theorem 6

Proof sketch. Theorem 6 rely on two results: (1) “no unobserved single-cause confounders” and
Lemma 3 ensure (Xi, Zi) capture all confounders; (2) the pre-treatment nature of Xi and Lemma 4
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ensure (Xi, Zi) capture no mediators. These results assert unconfoundedness given the substitute
confounders Zi and the observed covariates Xi. They greenlight us for causal inference if the
factor model admits consistent estimates of Zi, i.e. the substitute confounder has a degenerate
distribution P(Zi |A i)= ± f (A i).

Given these results, Theorem 6 identifies the average causal effect of all the causes by assuming
ra f (a1, . . . ,am) = 0 almost everywhere and a separable outcome model. These two assumptions
let us identify the average causal effect without assuming overlap.

More specifically, ra f (a1, . . . ,am) = 0 roughly requires that the substitute confounder is a step
function of the all causes. In other words, we can partition all possible values of (a1, . . . ,am) into
countably many regions. In each region, the value of the substitute confounder must be a constant.
But the substitute confounder can take different values in different regions. This condition ensures
that the average causal effect EY [Yi(a)]°EY

£
Yi(a0)

§
is identifiable if a and a0 belong to the same

region.

Further, we assume the outcome model be separable in the substitute confounder and the causes.
It roughly requires that there is no interaction between the substitute confounder and the causes.
This separability condition lets us identify the average causal effect for all values of a and a0. The
full proof is in Appendix K.

Proof. For notational simplicity, denote a= (a1, . . . ,am), a0 = (a0
1, . . . ,a0

m), and A i = (Ai1, . . . , Aim).
We also write fµ(·)= f (·).

We start with rewriting EY [Yi(a)]°EY
£
Yi(a0)

§
using the unconfoundedness assumption and the

separability assumption.

First notice that

EY [Yi(a)]=EZ,X [EY [Yi(a) |Xi, Zi]] (84)
=EX [ f1(a, Xi)]+EZ [ f2(Zi)] . (85)

The first equality is due to the tower property. The second equality is due to the separability
assumption. The third equality is due to linearity of expectations.

Hence we have

EY [Yi(a)]°EY
£
Yi(a0)

§
=EX [ f1(a, Xi)]°EX

£
f1(a0, Xi)

§
(86)

=
Z

C(a,a0)
raEX [ f1(a, Xi)]da, (87)

where C(a,a0) is a line where a and a0 are the end points. The second equality is due to the
fundamental theorem of calculus.

Next we see how the gradient of the potential outcome function raEX [ f1(a, Xi)] relates to the
gradient of the outcome model we fit. The key idea here is that the two gradients are equal in
regions {a : f (a)= c} for each c.
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We will rely on the consistent substitute confounder assumption. Notice that, for almost all a, we
have

raEX [ f1(a)]=raEX [ f3(a)] (88)

It is due to two observations. The first observation is that

raEX [EY [Yi |Zi = f (a), Ai = a, Xi]] (89)
=raEX [EY [Yi(a) |Zi = f (a), Ai = a, Xi]] (90)
=raEX [EY [Yi(a) |Zi = f (a), Xi]] (91)
=raEX [ f1(a, Xi)]+ra f2( f (a)) (92)
=raEX [ f1(a, Xi)]+r f (a) f2 ·ra f (a) (93)
=raEX [ f1(a, Xi)] (94)

The first equality is due to SUTVA. The second equality is due to is due to Proposition 5.1:
Yi(a) ? A i |Xi, Zi. The third equality is due to the separability condition. The fourth equality is
due to the chain rule. The fifth equality is due to ra f (a)= 0 up to a set of Lebesgue measure zero.

The second observation is that

raEX [EY [Yi |Zi = f (a), A i = a, Xi]] (95)
=raEX [ f3(a, Xi)]+ra f4( f (a)) (96)
=raEX [ f3(a, Xi)] (97)

Hence Eq. 88 is true because f1 and f3 are continuously differentiable.

Therefore, we have

EY [Yi(a)]°EY
£
Yi(a0)

§
(98)

=
Z

C(a,a0)
raEX [ f1(a, Xi)]da (99)

=
Z

C(a,a0)
raEX [ f3(a, Xi)]da (100)

=EX [ f3(a, Xi)]°EX
£
f3(a0, Xi)

§
(101)

=(EX [ f3(a, Xi)]+E [ f4(Zi)])° (EX
£
f3(a0, Xi)

§
+E [ f4(Zi)])) (102)

=
Z
EY

£
Yi |A i = a0, Xi, Zi

§
P(Zi, Xi)dZi dXi

°
Z
EY [Yi |A i = a, Xi, Zi]P(Zi, Xi)dZi dXi (103)

=EZ,X [EY [Yi |A i = a, Zi, Xi]]°EZ,X
£
EY

£
Yi |A i = a0, Zi, Xi

§§
. (104)

The first equality is due to Eq. 87. The second equality is due to Eq. 88. The third equality is due
to the fundamental theorem of calculus. The fourth equality is due to simple algebra. The fifth
equality is due to the separability condition.
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L Proof of Theorem 7

Proof. Lemma 1 and Lemma 2, together with “no unobserved single-cause confounders”, ensures
that the substitute confounder Zi and the observed covariate Xi satisfies

(Ai1, . . . , Aim)??Yi(ai1, . . . ,aim) |Zi, Xi. (105)

Therefore, we have

EA(k+1):m

£
EY

£
Yi(a1:k, Ai,(k+1):m)

§§
(106)

=EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim)

§§
(107)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim) |Zi, Xi

§§§
(108)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(a1, . . . ,ak, Ai,k+1, . . . , Aim) |Zi, Xi, Ai1 = a1, . . . , Aik = ak

§§§
(109)

=EZ,X
£
EA(k+1):m

£
EY

£
Yi(Ai1, . . . , Aik, Ai,k+1, . . . , Aim) |Zi, Xi, Ai1 = a1, . . . , Aik = ak

§§§
(110)

=EZ,X
£
EA(k+1):m [EY [Yi |Zi, Xi, Ai1 = a1, . . . , Aik = ak]]

§
(111)

=EZ,X [EY [Yi |Zi, Xi, Ai1 = a1, . . . , Aik = ak]] (112)
=EZ,X

£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
(113)

The first equality is an expansion of the notations. The second equality is due to the tower property.
The third equality is due to Eq. 105. The fourth equality is due to Ai1 = a1, . . . , Aik = ak. The fifth
equality is due to SUTVA. The sixth equality is due to the inner expectation does not depend on
A(k+1):m.

Therefore, we have

EA(k+1):m

£
EY

£
Yi(a1:k, Ai,(k+1):m)

§§
°EA(k+1):m

£
EY

£
Yi(a0

1:k, Ai,(k+1):m)
§§

=EZ,X
£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
°EZ,X

£
EY

£
Yi |Zi, Xi, Ai,1:k = a0

1:k
§§

by the linearity of expectation.

Finally, EZ,X
£
EY

£
Yi |Zi, Xi, Ai,1:k = a1:k

§§
can be estimated from the observed data because (1)

Ai,1:k satisfy overlap with respect to (Zi, Xi) and (2) the substitute confounder Z can be consis-
tently estimated.

M Proof of Theorem 8

Proof. As with Theorem 6 and Theorem 7, Theorem 8 relies on the unconfoundedness given the
substitute confounders Zi and the observed covariates Xi due to Lemma 3 and Lemma 4.

Given this unconfoundedness, Theorem 8 identifies the mean potential outcome of an individ-
ual given its current cause assignment Ai = (a1, . . . ,am); it only requires that the new cause as-
signment of interest (a0

1, . . . ,a0
m) lead to the same substitute confounder estimate: f (a1, . . . ,am) =

f (a0
1, . . . ,a0

m).
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To prove identification, we rewrite this conditional mean potential outcome

EY
£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am

§
(114)

=EZ,X
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am, Zi, Xi

§§
(115)

=EX
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am, Zi = f (a1, . . . ,am), Xi

§§
(116)

=EX
£
EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a0

1, . . . , Aim = a0
m, Zi = f (a1, . . . ,am), Xi

§§
(117)

=EZ,X
£
EY

£
Yi |Ai1 = a0

1, . . . , Aim = a0
m, Zi, Xi

§§
(118)

The first equality is due to the tower property. The second equality is due to the consistency
requirement on the substitute confounder P(Zi |A i) = ± f (A i). The third equality is due to uncon-
foundedness given Zi, Xi. The fourth equality is estimable from the data because f (a1, . . . ,am) =
f (a0

1, . . . ,a0
m). Hence the nonparametric identification of EY

£
Yi(a0

1, . . . ,a0
m) |Ai1 = a1, . . . , Aim = am

§

is established. We note that this identification result does not require overlap.

N Details of Section 6.2

We follow Song et al. (2015) in simulating the allele frequencies. We present the full details here.

We simulate the n£m matrix of genotypes A from Ai j ª Binomial(2,Fi j), where F is the n£m
matrix of allele frequencies. Let F = °S, where ° is n£d and S is d£m with d ∑ m. The d£m
matrix S encodes the genetic population structure. The n£ d matrix ° maps how the structure
affects the allele frequencies of each SNP. Table 19 details how we generate ° and S for each
simulation setup.

For each simulation scenarios, we generate 100 independent studies. We then simulate a trait; we
consider two types: one continuous and one binary. For each trait, three components contributing
to the trait: causal signals

Pm
j=1Ø jai j, confounder ∏i, and random effects ≤i.

Notice that the SNPs are affected by some latent population structure. We simulate the confounder
∏i and the random effects ≤i so that they depend on the latent population structure as well.

For the confounder ∏i, we first perform K-means clustering on the columns of S with K = 3 using
Euclidean distance. This assigns each individual i to one of three mutually exclusive cluster sets
S1,S2,S3, where Sk Ω {1,2, . . . ,n}. Set ∏ j = k if j 2Sk,k = 1,2,3.

We then simulate the random effects ≤i. Let ø2
1,ø2

2,ø2
3

iidª InvGamma(3,1), and set æ2
i = ø2

k for all
j 2S i,k = 1,2,3. Draw ≤i ªN (0,æ2

i ).

We control the SNR to mimic the highly noisy nature of GWAS data sets. In the low SNR setting,
we simulate datasets of n = 5000 individuals and m = 100,000 SNPs; we let the causal signalsPm

j=1Ø jai j contribute to ∫gene = 0.1 of the variance, the confounder ∏i contribute ∫conf = 0.2, and
the random effects ≤i contribute ∫noise = 0.7. We set the first 10% of the m SNPs to be the true
causal SNPs (Ø j 6= 0,Ø j

iidª N (0,1); Ø j = 0 for the rest of the SNPs. In the high SNR setting, we
simulate datasets of n = 5,000 individuals and m = 5,000 SNPs; we have ∫gene = 0.4, ∫conf = 0.4,
and ∫noise = 0.2.
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We set

∏i √
"

s.d.{
Pm

j=1Ø jai j}n
i=1

p
∫gene

#" p
∫conf

s.d.{∏i}n
i=1

#

∏i, (119)

≤i √
"

s.d.{
Pm

j=1Ø jai j}n
i=1

p
∫gene

#" p
∫noise

s.d.{≤i}n
i=1

#

≤i. (120)

We finally generate a real-valued outcome from a linear model and a binary outcome from a logistic
model:

yi,real =
mX

j=1
Ø jai j +∏i +≤i, (121)

yi,binary ªBernoulli

√
1

1+exp(
Pm

j=1Ø jai j +∏i +≤i)

!

. (122)
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

Æ= 0.01 No control — 40.68 30.37
Control for confounders§ — 34.35 28.21

(G)LMM — 39.09 28.36
PPCA 0.15 38.14 28.97
PF 0.16 34.77 28.67
LFA 0.16 35.87 28.33
GMM 0.02 38.15 29.69
DEF 0.18 34.84 28.04

Æ= 0.1 No control — 43.87 36.77
Control for confounders§ — 37.62 33.89

(G)LMM — 39.97 35.76
PPCA 0.21 39.60 35.61
PF 0.19 38.95 34.28
LFA 0.18 39.28 34.73
GMM 0.00 44.38 36.44
DEF 0.20 38.75 34.85

Æ= 0.5 No control — 47.38 41.84
Control for confounders§ — 43.63 39.86

(G)LMM — 47.28 42.91
PPCA 0.14 46.90 41.41
PF 0.16 43.29 40.69
LFA 0.17 43.60 40.77
GMM 0.02 46.95 42.47
DEF 0.18 43.09 40.03

Æ= 1.0 No control — 53.94 49.32
Control for confounders§ — 47.12 45.96

(G)LMM — 49.21 48.96
PPCA 0.21 50.57 47.58
PF 0.19 48.07 46.16
LFA 0.17 49.27 46.16
GMM 0.02 52.28 50.31
DEF 0.23 47.82 45.62

Table 9: GWAS high-SNR simulation IV: Pritchard-Stephens-Donnelly (PSD). (“Control for con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms (G)LMM; DEF often performs the best among the five factor models. Predictive checking
offers a good indication of when the deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

ø= 0.1 No control — 47.47 45.16
Control for confounders§ — 44.22 43.85

(G)LMM — 47.35 44.15
PPCA 0.08 47.61 44.36
PF 0.09 47.13 43.69
LFA 0.09 47.16 43.87
GMM 0.01 47.55 45.95
DEF 0.10 46.95 43.62

ø= 0.25 No control — 44.68 41.10
Control for confounders§ — 41.23 39.65

(G)LMM — 43.42 40.67
PPCA 0.11 43.26 41.28
PF 0.12 43.30 41.10
LFA 0.13 43.62 41.65
GMM 0.01 44.81 41.02
DEF 0.13 43.35 40.97

ø= 0.5 No control — 45.18 40.92
Control for confounders§ — 41.33 37.35

(G)LMM — 44.83 40.59
PPCA 0.10 43.78 39.99
PF 0.09 43.65 40.23
LFA 0.10 43.88 40.04
GMM 0.01 46.08 40.76
DEF 0.12 43.57 40.02

ø= 1.0 No control — 56.57 57.70
Control for confounders§ — 52.98 55.46

(G)LMM — 56.44 56.33
PPCA 0.14 55.18 57.36
PF 0.12 55.29 56.31
LFA 0.13 54.75 56.66
GMM 0.01 57.15 57.55
DEF 0.12 55.07 56.22

Table 10: GWAS high-SNR simulation V: Spatial model. (“Control for confounders” means
including the unobserved confounders as covariates.) The deconfounder often outperforms
(G)LMM. Predictive checking offers a good indication of when the deconfounder fails: GMM
poorly captures the SNPs; it can amplify the error in causal estimates.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 6.55 5.75
Control for confounders§ — 6.54 5.75

(G)LMM — 6.54 5.74
PPCA 0.14 6.52 5.74
PF 0.16 6.53 5.74
LFA 0.14 6.54 5.74
GMM 0.01 6.54 5.74
DEF 0.19 6.47 5.74

Table 11: GWAS low-SNR simulation I: Balding-Nichols Model. (“Control for all confounders”
means including the unobserved confounders as covariates.) The deconfounder outperforms LMM;
DEF performs the best among the five factor models; it also outperforms using the (unobserved)
confounder information. Predictive checking offers a good indication of when the deconfounder
fails.

Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 8.31 4.85
Control for confounders§ — 8.28 4.85

(G)LMM — 8.29 4.85
PPCA 0.14 8.29 4.85
PF 0.15 8.29 4.85
LFA 0.17 8.26 4.85
GMM 0.02 8.30 4.85
DEF 0.20 8.11 4.84

Table 12: GWAS low-SNR simulation II: 1000 Genomes Project (TGP). (“Control for all con-
founders” means including the unobserved confounders as covariates.) The deconfounder outper-
forms LMM; DEF performs the best among the five factor models; it also outperforms using the
(unobserved) confounder information. Predictive checking offers a good indication of when the
deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

No control — 9.59 5.84
Control for confounders§ — 9.52 5.84

(G)LMM — 9.57 5.84
PPCA 0.14 9.55 5.84
PF 0.13 9.56 5.84
LFA 0.14 9.54 5.84
GMM 0.03 9.59 5.84
DEF 0.16 9.47 5.83

Table 13: GWAS low-SNR simulation III: Human Genome Diversity Project (HGDP). (“Control
for confounders” means including the unobserved confounders as covariates.) The deconfounder
outperforms LMM; DEF performs the best among the five factor models; it also outperforms using
the (unobserved) confounder information. Predictive checking offers a good indication of when
the deconfounder fails.
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Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

Æ= 0.01 No control — 3.73 3.23
Control for confounders§ — 3.71 3.23

(G)LMM — 3.71 3.23
PPCA 0.13 3.64 3.23
PF 0.16 3.67 3.23
LFA 0.16 3.66 3.23
GMM 0.02 3.72 3.23
DEF 0.18 3.59 3.22

Æ= 0.1 No control — 4.09 3.84
Control for confounders§ — 4.09 3.84

(G)LMM — 4.09 3.84
PPCA 0.20 4.08 3.84
PF 0.18 4.08 3.84
LFA 0.18 4.07 3.84
GMM 0.00 4.09 3.84
DEF 0.20 4.05 3.83

Æ= 0.5 No control — 4.82 4.14
Control for confounders§ — 4.81 4.14

(G)LMM — 4.82 4.14
PPCA 0.14 4.81 4.13
PF 0.17 4.80 4.13
LFA 0.16 4.81 4.14
GMM 0.03 4.82 4.14
DEF 0.19 4.80 4.13

Æ= 1.0 No control — 5.43 4.58
Control for confounders§ — 5.38 4.57

(G)LMM — 5.40 4.58
PPCA 0.21 5.38 4.57
PF 0.16 5.41 4.57
LFA 0.19 5.40 4.57
GMM 0.02 5.43 4.58
DEF 0.24 5.37 4.57

Table 14: GWAS low-SNR simulation IV: Pritchard-Stephens-Donnelly (PSD). (“Control for
confounders” means including the unobserved confounders as covariates.) The deconfounder out-
performs LMM; DEF performs the best among the five factor models; it also outperforms using
the (unobserved) confounder information. Predictive checking offers a good indication of when
the deconfounder fails.

24



Real-valued outcome Binary outcome
Pred. check RMSE£10°2 RMSE£10°2

ø= 0.1 No control — 4.66 4.74
Control for confounders§ — 4.63 4.73

(G)LMM — 4.57 4.73
PPCA 0.09 4.62 4.74
PF 0.08 4.58 4.74
LFA 0.09 4.54 4.73
GMM 0.02 4.70 4.74
DEF 0.10 4.53 4.73

ø= 0.25 No control — 4.30 3.81
Control for confounders§ — 3.81 3.79

(G)LMM — 4.28 3.80
PPCA 0.10 4.26 3.80
PF 0.12 4.26 3.80
LFA 0.12 4.27 3.80
GMM 0.01 4.30 3.81
DEF 0.13 4.25 3.80

ø= 0.5 No control — 4.30 3.85
Control for confounders§ — 3.82 3.83

(G)LMM — 4.28 3.83
PPCA 0.11 4.27 3.83
PF 0.09 4.28 3.84
LFA 0.11 4.27 3.84
GMM 0.01 4.29 3.84
DEF 0.13 4.25 3.84

ø= 1.0 No control — 6.71 5.52
Control for confounders§ — 5.43 5.51

(G)LMM — 6.70 5.52
PPCA 0.14 6.70 5.52
PF 0.12 6.70 5.52
LFA 0.12 6.69 5.52
GMM 0.01 6.72 5.53
DEF 0.13 6.62 5.51

Table 15: GWAS low-SNR simulation V: Spatial model. (“Control for confounders” means in-
cluding the unobserved confounders as covariates.) The deconfounder often outperforms LMM;
DEF often performs the best among the five factor models. Yet, the deconfounder does not out-
perform using the (unobserved) confounder information. Spatially-induced SNPs challenge many
latent variable models to capture its patterns and fully deconfound causal inference. Predictive
checking offers a good indication of when the deconfounder fails: GMM poorly captures the SNPs;
it can amplify the error in causal estimates.
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Control Average predictive log-likelihood

No Control -1.1
Control for X -1.1
Control for âPPCA -1.2
Control for âPF -1.2
Control for âDEF -1.2
Control for (âPPCA, X ) -1.3
Control for (âPF, X ) -1.2
Control for (âDEF, X ) -1.2

Table 16: Average predictive log-likelihood on a holdout set of all movies. (X represents the
observed covariates.) Causal models (the deconfounder) predicts slightly worse than prediction
models.

Control Average predictive log-likelihood

No Control -2.5
Control for X -2.1
Control for âPPCA -1.6
Control for âPF -1.5
Control for âDEF -1.5
Control for (âPPCA, X ) -1.7
Control for (âPF, X ) -1.5
Control for (âDEF, X ) -1.6

Table 17: Average predictive log-likelihood on the holdout set of non-English movies. (X rep-
resents the observed covariates.) On a test set of uncommon movies, causal models with the
deconfounder predict better than prediction models.

Control Average predictive log-likelihood

No Control -2.1
Control for X -1.9
Control for âPPCA -1.4
Control for âPF -1.2
Control for âDEF -1.3
Control for (âPPCA, X ) -1.4
Control for (âPF, X ) -1.3
Control for (âDEF, X ) -1.2

Table 18: Average predictive log-likelihood on the holdout set of non-drama/comedy/action
movies. (X represents the observed covariates.) On a test set of uncommon movies, causal models
with the deconfounder predict better than prediction models.
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Model Simulation details

Balding-Nichols
Model (Balding-
Nichols)

Each row i of ° has i.i.d. three independent and identically dis-
tributed draws from the Balding- Nichols model: ∞ik

iidª BN(pi,Fi),
where k 2 {1,2,3}. The pairs (pi,Fi) are computed by randomly se-
lecting a SNP in the HapMap data set, calculating its observed al-
lele frequency and estimating its FST value using the Weir & Cock-
erham estimator (Weir and Cockerham, 1984). The columns of S were
Multinomial(60/210,60/210,90/210), which reflect the subpopulation
proportions in the HapMap data set.

1000 Genomes
Project (TGP)

The matrix ° was generated by sampling ∞ik
iidª 0.9£Uniform(0,0.5),

for k = 1,2 and setting ∞i3 = 0.05. In order to generate S, we compute
the first two principal components of the TGP genotype matrix after
mean centering each SNP. We then transformed each principal com-
ponent to be between (0,1) and set the first two rows of S to be the
transformed principal components. The third row of S was set to 1, i.e.
an intercept.

Human Genome
Diversity Project
(HGDP)

Same as TGP but generating S with the HGDP genotype matrix.

Pritchard-
Stephens-
Donnelly (PSD)

Each row i of ° has i.i.d. three independent and identically distributed
draws from the Balding- Nichols model: ∞ik

iidª BN(pi,Fi), where
k 2 {1,2,3}. The pairs (pi,Fi) are computed by randomly selecting a
SNP in the HGPD data set, calculating its observed allele frequency
and estimating its FST value using the Weir & Cockerham estimator
(Weir and Cockerham, 1984). The estimator requires each individual
to be assigned to a subpopulation, which were made according to the
K = 5 subpopulations from the analysis in Rosenberg et al. (2002).
The columns of S were sampled (s1 j, s2 j, s3 j

iidª Dirichlet(Æ,Æ,Æ) for
j = 1, . . . ,m,Æ= 0.01,0.1,0.5,1.

Spatial The matrix ° was generated by sampling ∞ik
iidª 0.9£Uniform(0,0.5),

for k = 1,2 and setting ∞i3 = 0.05. The first two rows of S correspond
to coordinates for each individual on the unit square and were set to
be independent and identically distributed samples from Beta(ø,ø),ø =
0.1,0.25,0.5,1, while the third row of S was set to be 1, i.e. an intercept.
As ø ! 0, the individuals are placed closer to the corners of the unit
square, while when ø= 1, the individuals are distributed uniformly.

Table 19: Simulating allele frequencies.
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