
Supplementary Material

S-1 Additional discussion on the practical aspects

We proved in the paper that the choice of γ
(p)
0 is irrelevant for the asymptotic theory. In

practice the choice of γ
(p)
0 could be related to prior information on a class of alternatives

and thus help the practitioner to build a powerful test against that class. Concerning the

set Bp, since Qn(γ) = Qn(−γ) for any γ ∈ Sp, one could restrict the set Bp to a half unit

hypersphere like {γ ∈ Sp : γ1 ≥ 0}. One could restrict Bp even more, and hence to speed

up the optimization algorithms, when some prior information indicates a set of directions

that would be able to detect alternatives.

Let us next discuss the influence of the choice of bandwidth. In our theory the choice of

bandwidth does not appear in the asymptotic approximation of the size of the test. With

finite samples, however, the law of nh1/2Qn(γ)/v̂n(γ) may change significantly with h even

for a fixed γ, and hence a size correction is often necessary. We propose to make this

correction using the simple wild bootstrap procedure described in the paper. Alternatively,

one could look for more elaborate methods, as for instance those in Horowitz and Spokoiny

(2001) or Gao and Gijbels (2008). Such theoretical investigations could likely be reproduced

in our framework under suitable, though restrictive, assumptions. We argue that the aspects

concerning the choice of bandwidth in a functional data framework, are quite challenging

and hence deserve a separate investigation to be undertaken in future work.

For the sake of completeness, let us recall some notions related to the functional principal

components (FPC), their estimation and the sample based L2[0, 1] basis that could be

obtained from them. The covariance operator Γ of X is defined by:

(Γv)(t) =

∫
σ(t, s)v(s)ds, v ∈ L2[0, 1],
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where X is supposed to satisfy the condition
∫
E(X2(t))dt < ∞ and σ(t, s) = E[{X(t) −

E(X(t))}{X(s) − E(X(s))}] is supposed positive definite. Let λ1 ≥ λ2 ≥ · · · denote the

ordered eigenvalues of Γ and let R = {ψ1, ψ2, · · · } be the corresponding basis of eigenfunc-

tions of Γ that are usually called the functional principal components (FPC). The FPCs

represent the orthonormal basis of the Karhunen-Loève decomposition of X and provide

optimal low-dimensional representations of X, with respect to the mean-squared error. See,

for instance, Ramsay and Silverman (2005). In some cases where the law of X is given, the

FPCs are available. However, most of the time this is not the case and the FPCs have to

be estimated from the empirical covariance operator

(Γ̂v)(t) =

∫
σ̂(t, s)v(s)ds,

where σ̂(t, s) = n−1
∑n

i=1{Xi(t) − Xn(t)}{Xi(s) − Xn(s)}] and Xn(t) = n−1
∑n

i=1Xi(t).

Let λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 denote the eigenvalues of Γ̂ and let ψ̂1, ψ̂2, · · · be the corresponding

basis of eigenfunctions, i.e., the estimated FPCs.

S-2 Additional empirical evidence

First, in Figure 1 we plot the curve µ(t) which is the common curve shape for all individuals

in the multiplicative effects model considered in section 4.1 in the paper.

Next, some additional experiments are provided to explore the possible influence of the

algorithm on the statistical properties of the proposed test, the effect of the bandwidth and

the penalization αn, and to study the possible approximation by the asymptotic distribution

of the test statistic. As in the main part of the manuscript, all the results will be provided

on the basis of one thousand original samples.

At the end of this section extended versions of Tables 3, 4 and 6 in the main part of the

manuscript are given, as well as the results of an heteroscedastic model.
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Figure 1: Function µ(t) = 0.01 · exp(−4 · (t− 0.3)2) representing the common curve shape
under the multiplicative effects model with one dimension predictor.

S-2.1 The sequential algorithm

In Section 3.5 of the paper, a simplified algorithm for optimization in the hypersphere

Sp is proposed which is based on (p − 1) one-dimensional optimizations. We shall show

here that the statistical properties of the test with this simplified algorithm are similar to

those obtained with a grid in the hypersphere. The same functional linear model studied

in Section 4.2 of the paper will be considered. The procedure will be applied with the

same values of the parameters used there which yielded the results in Tables 2 and 3. The

dimension p is now taken to be 3 and 5. Table S.1 contains the percentages of rejections

for the new test with the sequential algorithm and with a full-dimensional optimization

algorithm based on a grid in the hypersphere Sp. For the sequential algorithm a grid

of 50 points was taken in each one-dimensional optimization. For the full-dimensional

optimization, a grid of 1200 points was taken in the hypersphere when p = 3, while a grid
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of 3125 points was taken when p = 5. It can be observed that similar results are obtained

with the two algorithms, while the one-dimensional algorithm is much less time consuming

and it is still feasible for a large dimension p.

Level = 10% Level = 5% Level = 1%

Hypothesis p Algorithm n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

Null 3 Sequential 9.6 10.7 5.2 5.7 1.0 1.3

Full-dim. 9.8 11.0 4.9 6.4 1.1 1.4

5 Sequential 10.1 10.4 5.2 5.9 0.9 1.1

Full-dim. 10.2 11.5 5.4 6.3 1.2 1.6

Alternative 3 Sequential 53.3 94.8 42.1 89.7 20.1 75.9

Full-dim. 50.7 93.0 40.5 88.3 20.1 74.7

5 Sequential 50.4 92.2 38.5 87.6 16.5 71.3

Full-dim. 54.2 92.3 42.0 88.8 20.4 74.3

Table S.1. Percentages of rejections for the new test with the sequential algorithm and with a

full-dimensional grid-based algorithm.

S-2.2 The bandwidth

To show the effect of the bandwidth on the test, the functional linear model studied in

Section 4.2 is again considered, and the test is applied with the same values of the param-

eters used there. We shall fix the dimension p here, to be 3, while the bandwidth will be

h = chn
−2/9 for different values of ch.

Table S.2 contains the percentages of rejections under the null hypothesis and under the

alternative, coming from the functional linear effect. The level is respected for all values

of the bandwidth, while the power is not much affected by the bandwidth in the wide

range of values from ch = 0.5 to ch = 1.5. A possible trend to a higher power for larger

4



bandwidths can be derived within this range, which is explained by the smoothness of the

functional linear alternative. On the other hand, more curved alternatives generally require

a smaller bandwidth as was observed in similar smoothed testing methods. Either way, the

test proposed here does not show a large effect coming from the bandwidth, and it should

also be noted that, due to the nearest neighbor methodology, the choice of bandwidth does

not depend on the covariate scale, so general rules like h = chn
−2/9, with ch around o1, are

applicable to the common models considered in the literature on lack-of-fit tests.

Level = 10% Level = 5% Level = 1%

Hypothesis ch n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

Null 0.5 11.8 11.1 6.0 6.2 1.3 1.1

0.75 11.2 10.7 4.9 5.4 1.1 1.0

1.0 9.6 10.7 5.2 5.7 1.0 1.3

1.25 9.2 10.9 5.3 6.0 0.7 1.1

1.5 9.3 9.9 5.1 5.5 0.8 1.2

Alternative 0.5 45.4 89.4 34.7 84.3 16.1 68.7

0.75 48.1 92.2 37.4 86.6 18.7 72.6

1.0 53.3 94.8 42.1 89.7 20.1 75.9

1.25 54.0 95.8 42.0 91.5 21.0 78.2

1.5 66.9 97.4 43.1 93.5 20.4 79.6

Table S.2. Percentages of rejections for the new test under the null hypothesis and the

alternative, for different values of the bandwidth h = chn
−2/9.

S-2.3 The penalty amplitude αn

The strength of the penalty is controlled through the value of αn. This is one parameter

that has to be chosen for the proposed test. We can say that there is no optimal choice

for this parameter, but the decision will simply be based on the certainty about the best
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direction to detect the alternative. If the practitioner has a clear intuition that one direction

will reveal a deviation from the null hypothesis, then this privileged direction should be

protected by means of a large penalization αn. On the other hand, if there is no clear

reference for a privileged direction, then a low penalization would be the most natural

option. Regarding the values for the penalization, since the test statistic is asymptotically

standard normal, values from 2 to 5 provide a balance between the privileged direction and

the direction maximizing the deviation.

In our simulation results, the power (percentages of rejections), obtained for a penaliza-

tion αn, takes values from the power obtained with the privileged direction (αn = ∞) to

the power obtained with the maximizing direction (αn = 0). The directions we considered

are the first eigenvector in the empirical FPC of the covariate, the second eigenvector and

an un-informative direction with the same coefficients in all FPC components. The first

eigenvector is a direction with very good power, the second has very poor power and the

uninformative direction has moderate power, similar to the maximizing direction.

Table S.3 shows the percentages of rejections with the same model studied in Section

4.2 of the paper, under the null hypothesis and under the alternative given by the func-

tional linear model, with the second eigenvector of the empirical FPC of the covariate as

privileged direction, and different values of the penalization. All other parameters and

configurations of the test are the same as used in Section 4.2 of the paper. We have chosen

the worst direction as the privileged direction, in order to show that some values of the

penalization protect against a bad choice of the privileged direction. At the same time, this

kind of privileged direction allows one to distinguish more clearly the balancing effect of the

penalization between the privileged direction and the direction maximizing the statistic.

We observe that, under the null hypothesis, the nominal levels are respected for any

value of the penalization. Under the alternative, the value 0 of the penalization provides the

power coming from the direction maximizing the statistic, while the value ∞ corresponds
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to the test based only on the second eigenvector as privileged direction, which is a test with

no power at all. It should be noted that the power is preserved with the values in the range

from 0 up to 4 or 5, which we recommend. Smaller values, such as 1, 2 or 3, lead to a test

based on the maximizing direction, while values from 4 or 5 lead to a test mainly based on

the privileged direction.
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Level = 10% Level = 5% Level = 1%
Model αn n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

Null 0.0 9.9 10.3 4.7 5.0 1.0 1.3

0.5 9.6 10.3 4.9 5.2 1.1 1.3

1.0 9.5 10.2 4.9 5.5 1.1 1.4

1.5 9.2 9.7 4.9 5.5 1.1 1.5

2.0 9.7 10.0 4.9 5.7 1.1 1.5

2.5 9.7 10.7 4.7 5.6 1.1 1.3

3.0 8.5 10.6 4.2 5.3 1.0 1.2

3.5 8.9 11.5 4.5 5.6 1.1 1.3

4.0 9.3 11.1 4.9 5.9 1.0 1.2

4.5 9.3 10.7 4.8 5.6 1.0 1.2

5.0 9.4 10.8 4.8 6.1 1.1 0.9

7.0 9.2 10.9 4.7 6.0 0.8 1.1

10.0 9.2 10.7 4.7 5.8 0.9 0.9

∞ 9.2 10.7 4.7 5.8 0.9 0.9

Alternative 0.0 65.1 98.6 51.9 96.2 23.9 85.4

0.5 65.5 98.6 52.4 96.2 24.1 85.5

1.0 66.0 98.6 52.9 96.2 24.4 85.6

1.5 67.0 98.5 53.3 96.2 24.7 85.8

2.0 68.2 98.6 54.3 96.4 25.2 86.4

2.5 66.1 98.6 54.6 96.6 26.0 86.3

3.0 56.8 96.1 51.5 96.5 26.3 86.6

3.5 48.2 96.4 43.9 95.3 26.8 87.1

4.0 39.7 93.3 36.4 92.2 27.2 87.0

4.5 30.7 89.5 26.9 88.0 22.7 85.4

5.0 23.6 83.3 19.3 81.4 15.7 79.7

7.0 10.0 51.0 5.6 47.6 2.1 44.6

10.0 8.6 21.5 4.0 16.4 0.5 12.6

∞ 8.6 10.9 4.0 5.2 0.5 1.3

Table S.3. Percentages of rejections for the new test under the null hypothesis and under the

alternative (functional linear deviation), for different values of the penalization, αn.
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S-2.4 Approximation by the asymptotic distribution

Since the limit distribution of the test has been shown to be standard normal, one could

wonder about the possibility of approximating the critical values of the test by the quantiles

of the standard normal distribution.

The same model studied in Section 4.2 of the paper will be used under the null hypoth-

esis, in the following experiment. In this way we shall check the accuracy of the standard

normal approximation of the test. All the parameters and configurations of the test will be

as in Section 4.2. The dimension p will be set to 3, while different values for the penalization

αn will be considered.

The penalization will play a crucial role in the approximation of the test. A large value

of the penalization leads to a test based on the projections of the covariate on the privileged

direction, while a small value of the penalization leads to a test based on the maximum

over the set of directions. Large values of the penalization then lead to smaller values of

the test statistic, while small values lead to larger test statistics.

Table S.4 below shows the percentages of rejections for the test, when the standard

normal distribution is used for the approximation of the critical values. Different nominal

levels, sample sizes and values of the penalization, αn, are considered. Small values of the

penalization (smaller than 2) will generally lead to percentages of rejections higher than

the nominal level. Large values of the penalization will lead to percentages of rejections

smaller than the nominal level. This fact is due to the negative correlation of the residuals

which makes the test statistic based on a single direction negatively biased for small sample

sizes. Since the approximation of the standard normal distribution would only be valid for

a fine tuning of the penalization, we generally propose to use the bootstrap approximation

that was shown to work for all models considered.
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Level = 10% Level = 5% Level = 1%

αn n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

0.0 14.6 21.7 8.8 15.3 4.1 6.5

0.5 14.4 21.2 8.8 15.1 4.1 6.4

1.0 13.8 19.8 8.5 14.2 3.8 6.4

1.5 12.4 18.0 8.0 13.6 3.7 6.4

2.0 10.7 15.2 7.6 12.1 3.7 5.9

2.5 8.0 12.2 6.6 10.1 3.4 5.5

3.0 5.5 7.9 5.3 7.1 2.9 4.6

3.5 2.9 5.0 2.8 4.6 2.1 3.7

4.0 2.0 3.3 1.9 2.9 1.4 2.3

4.5 1.2 2.2 1.1 1.7 0.6 1.0

5.0 1.0 1.9 0.9 1.4 0.4 0.7

7.0 0.8 1.7 0.7 1.2 0.2 0.5

∞ 0.8 1.7 0.7 1.2 0.2 0.5

Table S.4. Percentages of rejections for the new test under the null hypothesis, with asymptotic

distribution approximation, for different values of the penalization, αn.

S-2.5 Complementary results to Section 4.2

In this section, we present some complementary results to those presented in section

4.2.First we provide extended versions of Tables 3, 4 and 6 in the main part of the
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manuscript.

Level = 10% Level = 5% Level = 1%

p Test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

2 New 9.7 10.6 5.1 5.2 0.5 1.1

KMSZ 8.0 8.7 2.7 3.7 0.3 0.3

3 New 9.6 10.7 5.2 5.7 1.0 1.3

KMSZ 7.3 8.3 2.5 3.6 0.2 0.5

5 New 10.1 10.4 5.2 5.9 0.9 1.1

KMSZ 7.4 8.5 2.6 3.9 0.5 0.8

7 New 10.9 11.2 5.5 5.1 1.2 0.9

KMSZ 6.1 8.6 2.5 3.5 0.5 1.0

10 New 10.9 10.8 5.6 5.5 1.4 0.9

KMSZ 7.0 8.9 2.6 4.2 0.3 0.7

15 New 11.2 10.8 7.5 5.8 1.9 1.3

KMSZ 5.8 8.7 2.1 3.2 0.0 0.0

Random New 10.5 11.1 4.9 5.6 1.2 0.8

KMSZ 6.1 8.8 2.5 4.6 0.1 0.5

Table S.5. Percentages of rejections for the new test and Kokoszka et al. (2008)’s test under

the null hypothesis (extended version of Table 3 in the main manuscript).
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Level = 10% Level = 5% Level = 1%

p Test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

2 New 62.7 97.5 45.8 94.1 21.6 80.9

KMSZ 99.9 100.0 99.7 100.0 92.4 100.0

3 New 53.3 94.8 42.1 89.7 20.1 75.9

KMSZ 99.6 100.0 97.1 100.0 74.3 100.0

5 New 50.4 92.2 38.5 87.6 16.5 71.3

KMSZ 94.0 100.0 79.1 100.0 37.7 100.0

7 New 47.4 91.1 35.2 85.9 15.7 67.6

KMSZ 79.6 100.0 59.0 100.0 19.5 100.0

10 New 43.1 86.1 31.5 79.5 13.4 60.0

KMSZ 61.9 100.0 40.0 100.0 8.5 99.5

15 New 38.0 80.7 27.3 72.0 11.3 48.8

KMSZ 38.9 99.9 19.8 98.8 1.9 91.1

Random New 44.5 85.2 33.7 78.1 14.1 59.4

KMSZ 67.4 100.0 44.7 100.0 12.7 98.4

Table S.6. Percentages of rejections for the new test and Kokoszka et al. (2008)’s test under

the functional linear effect (extended version of Table 4 in the main manuscript).

12



Level = 10% Level = 5% Level = 1%

p Test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

2 New 57.0 99.4 48.0 99.3 25.3 97.1

KMSZ 23.7 25.7 14.5 17.3 3.6 6.8

3 New 73.0 99.8 61.0 99.8 26.9 99.3

KMSZ 34.9 36.8 21.5 27.4 6.8 12.8

4 New 75.5 100.0 58.6 99.9 23.9 99.6

KMSZ 39.2 44.1 26.6 32.3 8.9 17.1

5 New 71.6 100.0 52.3 100.0 18.6 99.8

KMSZ 45.1 50.0 28.7 39.6 10.0 20.9

6 New 64.6 100.0 44.0 100.0 14.6 99.7

KMSZ 39.8 48.0 25.5 36.8 9.2 17.9

7 New 57.2 100.0 36.1 100.0 10.6 99.4

KMSZ 37.1 45.1 24.6 33.2 6.9 15.9

8 New 50.3 100.0 30.0 100.0 9.0 99.2

KMSZ 33.3 44.6 20.5 30.8 5.2 13.9

9 New 45.5 100.0 26.6 99.9 7.6 99.0

KMSZ 31.7 41.5 18.7 28.7 3.9 12.4

10 New 40.3 100.0 23.2 99.8 6.6 98.4

KMSZ 29.0 39.8 16.1 26.9 3.1 11.1

Random New 75.9 99.9 61.8 99.8 27.5 99.5

KMSZ 34.8 39.5 21.9 28.7 7.5 14.3

Table S.7. Percentages of rejections for the new test and Kokoszka et al. (2008)’s test under

the quadratic high-frequency effect model (extended version of Table 6 in the main manuscript).

Next we report the results obtained for the functional linear model with heteroscedastic
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error, given by

Ui(t) =

∫ 1

0

ζ(s, t)Xi(s) ds+
√
1/2 +Xi(t)2ǫi(t), 1 ≤ i ≤ n

where Xi and ǫi are independent Brownian bridges and the kernel ψ was chosen to be

ζ(s, t) = c · exp(t2 + s2)/2, with c = 0 under the null and c = 0.35 under the alternative.

It is the same functional linear model introduced in (4.1), but with heteroscedastic error.

The new test and Kokoszka et al. (2008)’s test were applied with the same configuration

used for the homoscedastic functional linear model.

Table S.8 contains the empirical powers under the null hypothesis for different values

of the dimension p, and for a random p with 95% of explained variance, with different

significance levels and sample sizes. We found that the new test respects the nominal level,

while Kokoszka et al. (2008)’s test provides significant deviations from the nominal level.

The detected over-rejection of their test is not reduced with increasing sample size. Note

that their test assumes homoscedasticity. Table S.9 contains the percentages of rejections

obtained under the alternative corresponding to a functional linear effect with heteroscedas-

tic errors. Kokoszka et al. (2008)’s test is more powerful than the new test, particularly

for small dimensions p and large nominal levels. This could be expected since their test is

designed for detecting linear deviations. Some contribution to this higher power may also
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come from the excess of rejections of their test in this heteroscedastic setup.

Level = 10% Level = 5% Level = 1%

p Test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

2 New 8.8 10.8 4.5 5.4 0.5 1.3

KMSZ 20.4 24.1 9.3 12.5 1.5 3.7

3 New 9.6 9.9 5.2 5.4 0.7 1.1

KMSZ 18.0 21.5 9.3 12.0 1.3 3.3

5 New 9.7 10.4 4.8 4.8 0.7 1.0

KMSZ 15.3 19.5 7.6 11.3 1.2 3.1

7 New 9.8 9.3 4.6 4.3 0.7 1.2

KMSZ 13.0 18.3 6.8 9.7 0.9 2.0

10 New 11.0 10.2 5.5 5.0 1.5 0.9

KMSZ 12.1 16.9 5.1 8.8 0.5 1.7

15 New 11.8 10.6 7.1 5.4 1.9 1.6

KMSZ 8.7 14.0 2.5 7.4 0.2 0.7

Random New 9.9 10.2 5.1 5.3 1.4 0.9

KMSZ 12.0 16.8 5.6 8.6 0.5 1.5

Table S.8. Percentages of rejections for the new test and Kokoszka et al. (2008)’s test under

the null hypothesis with heteroscedastic error.
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Level = 10% Level = 5% Level = 1%

p Test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

2 New 43.9 88.4 29.7 78.9 12.5 55.0

KMSZ 99.8 100.0 99.0 100.0 90.1 100.0

3 New 38.7 81.0 27.9 72.3 9.9 49.5

KMSZ 99.5 100.0 95.6 100.0 71.0 100.0

5 New 34.8 77.0 25.1 68.5 9.3 44.4

KMSZ 93.2 100.0 79.4 100.0 37.4 100.0

7 New 34.8 75.0 22.9 65.8 7.8 39.2

KMSZ 79.9 100.0 58.6 100.0 20.7 100.0

10 New 31.6 69.3 21.0 58.6 7.1 34.2

KMSZ 61.6 100.0 39.3 100.0 10.5 98.6

15 New 27.2 61.6 18.8 48.6 5.5 27.5

KMSZ 42.6 99.8 21.5 98.8 2.4 88.4

Random New 31.9 68.5 22.4 57.8 7.5 32.9

KMSZ 67.6 100.0 45.8 99.8 14.8 97.3

Table S.9. Percentages of rejections for the new test and Kokoszka et al. (2008)’s test under

the functional linear effect with heteroscedastic error.

S-3 Technical lemmas and proofs

Below, c, c1, C, C1, ... denote constants that may have different values from line to line.

Moreover, for any integrable function φ defined on the real line, F [φ] denotes its Fourier

Transform, i.e., F [φ](t) =
∫
R
φ(x) exp{−2πitx}dx.
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The following result is due to Cover (1967) and is used in the proof of Lemma 3.3.

Lemma 3.1 There are precisely q(n, p) linearly inducible orderings of n points in general

position in R
p, where

q(n, p) = 2

p−1∑

k=0

Sn,k = 2

[
1 +

∑

2≤i≤n−1

i+
∑

2≤i<j≤n−1

ij + · · ·
]

(p terms),

where Sn,k is the number of the (n− 2)!/(n− 2− k)!k! possible products of numbers taken

k at a time without repetition from the set {2, 3, · · · , n− 1}

By Lemma 3.1 we obtain the simple upper bound for q(n, p) when n ≥ 2p, i.e.,

q(n, p) ≤ 2[1 + n2 + · · ·+ np] ≤ np+1.

Lemma 3.2 Let K be a density satisfying Assumption K-(a) and assume that h→ 0 and

nh→∞. Let

Sni =
1

(n− 1)h

∑

1≤j≤n, i 6=j

K

(
i− j

nh

)
and Sn =

1

n

∑

1≤i≤n

Sni.

Constants c1, c2 then exist such that for sufficiently large n

0 < c1 ≤ min
1≤i≤n

Sni ≤ max
1≤i≤n

Sni ≤ c2 <∞.

Moreover, Sn → 1.

Proof of Lemma 3.2. It is clear that Sn − S̃n → 0 where

S̃n =
1

n2h

∑

1≤i,j≤n

K

(
i− j

nh

)
.
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If [a] denotes the integer part of any real number a, we can write

S̃n =

∫ (n+1)/n

1/n

∫ (n+1)/n

1/n

h−1K

(
[ns]− [nt]

nh

)
dsdt

=

∫ (n+1)/n

1/n

∫ 1/h+1/nh−t/h

1/nh−t/h

K

(
[nt+ nzh]− [nt]

nh

)
dzdt [z = (s− t)/h]

=

∫ (n+1)/n

1/n

∫ 1/h+1/nh−t/h

1/nh−t/h

K (z) dzdt+ o(1)

=

∫ 1/h

−1/h

∫ 1+1/n−zh

1/n−zh

dtK (z) dz + o(1) [Fubini]

→ 1,

where the order o(1) of the remainder on the right-hand side of the third equality could be

obtained as a consequence of the fact that K is symmetric and monotonic. Hence Sn → 1.

Similarly, we can write

S̃ni =

∫ (n+1)/n

1/n

h−1K

(
i− [nt]

nh

)
dt

=

∫ 1/h+(1−i)/nh

(1−i)/nh

K

(
i− [i+ nzh]

nh

)
dz [z = (t− i/n)/h]

=

∫ 1/h+(1−i)/nh

(1−i)/nh

K (z) dz + o(1).

Deduce that ∫ 1

0

K(z)dz + rni ≤ S̃ni ≤
∫

R

K(z)dz + rni

where max1≤i≤n{|rni|+ |rni|} = o(1). The result follows.

Proof of Lemma 5.2. The bound for An is obvious. For C
2
n note that

E[h2i,j(Zi, Zj)] =
M−4

n2(n−1)2hE
[
〈Zi , Zj〉2

]
h−1K2

h (Fγ,n(〈xi, γ〉)− Fγ,n(〈xj, γ〉)) .

By the Cauchy-Schwarz inequality and the triangle inequality and recalling that Z̃i is dis-
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tributed according to the conditional law of Ui given Xi = xi,

E
[
〈Zi , Zj〉2

]
≤ 16E

[
‖Z̃i‖2

]
E

[
‖Z̃j‖2

]
≤ 16C2,

for any constant C that bounds from above E(‖U‖2 | X), see Assumption D-(c). Finally,

recall that K is bounded and note that

1

n(n− 1)h

∑

1≤i 6=j≤n

Kh (Fγ,n(〈xi, γ〉)− Fγ,n(〈xj, γ〉)) =
1

n(n− 1)h

∑

1≤i 6=j≤n

K

(
i− j

nh

)

and apply the second part of Lemma 3.2 to derive the bound for C2
n. To derive the bound for

B2
n recall that hi,j(Zj, z) vanishes for ‖z‖ > 2M , again using the Cauchy-Schwarz inequality

and the triangle inequality and the first part of Lemma 3.2. For the bound of Dn, using

the Cauchy-Schwarz inequality and the independence of Zi and Zj, we can write

E

∑

i,j

hi,j(Zi,Zj)fi(Zi)gj(Zj) ≤
∑

i,j

E|〈Zifi(Zi), Zjgj(Zj)〉|
n(n− 1)hM2

Kh(Fγ,n(〈xi, γ〉)−Fγ,n(〈xj, γ〉))

≤
∑

i,j

4CE1/2f 2
i (Zi)E

1/2g2j (Zj)

n(n− 1)hM2
Kh(Fγ,n(〈xi, γ〉)−Fγ,n(〈xj, γ〉))

≤ 4C

M2
‖|K‖|2,

where C is such that E(‖U‖2 | X) ≤ C and K is the matrix with elements

Kij = K ((i− j)/nh) /[n(n− 1)h], i 6= j, and Kii = 0, (S-3.5)

and ‖|K‖|2 is the spectral norm of K. By definition, ‖|K‖|2 = supu∈Rn,u6=0 ‖Ku‖/‖u‖ and
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|u′Kw| ≤ ‖|K‖|2‖u‖‖w‖ for any u, w ∈ R
n. By Lemma 3.2, for any u ∈ R

n,

‖Ku‖2 =
n∑

i=1

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)
uj

)2

≤
n∑

i=1

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)
u2j

≤ ‖u‖2
[
max
1≤i≤n

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)]2

≤ cn−2‖u‖2, (S-3.6)

for some constant c > 0. The bound for Dn follows immediately.

Complements for the proof of Lemma 3.3. For the inverse of the variance estimator,

for any γ ∈ Sp, let us define

v̂2N,n(γ) =
2

n(n− 1)h

∑

j 6=i

〈Ui, Uj〉2I{〈Ui,Uj〉2≤N}K
2
h (Fγ,n(〈Xi, γ〉)− Fγ,n(〈Xj, γ〉)) .

Using the Hölder inequality, the Chebyshev inequality and the Cauchy-Schwarz inequality,

E

[
sup
γ

∣∣v̂2n(γ)− v̂2N,n(γ)
∣∣ | X1, · · · , Xn

]
≤ Ch−1E

(
〈Ui, Uj〉2I{〈Ui,Uj〉2>N}

)

≤h−1E1/s
[
〈Ui, Uj〉2s

]
P
(s−1)/s

[
〈Ui, Uj〉2s > N s

]
≤ h−1E2

[
‖Uj‖2s

]
N1−s.

Take s = 4, N = n1/4 and deduce that the right bound in the last display tends to zero.

Next, we apply the Hoeffding (1963) inequality for U−statistics to control the deviations

of v̂2N,n(γ)− E[v̂2N,n(γ) | X1, · · · , Xn] conditionally on X1, · · · , Xn. For any fixed γ we have

P
(
n1/2h|v̂2N,n(γ)− E[v̂2N,n(γ) | X1, · · · , Xn]| ≥ t | X1, · · · , Xn

)

≤ 2 exp

{
− [n/2]n−1t2

2[τ 2 +K2(0)Nn−1/2t/3]

}
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where τ 2 is the variance of a term in the sum defining hv̂2N,n(γ)−E[hv̂2N,n(γ) | X1, · · · , Xn].

Take t = n1/2−ch for some small c > 0 and note that τ 2 ≤ C for some constant independent

of γ and h. In the similar way as we did for QM,n(γ), applying equation (5.4), we obtain

an exponential bound for the tail of v̂2N,n(γ) − E[v̂2N,n(γ) | X1, · · · , Xn] given X1, · · · , Xn

uniformly with respect to γ. This bound is independent of X1, · · · , Xn. Deduce that

sup
γ
|v̂2N,n(γ)− E[v̂2N,n(γ) | X1, · · · , Xn]| = oP(1),

conditionally on X1, · · · , Xn and unconditionally. It remains to note that Assumption D-

(c) and Lemma 3.2 in the Supplementary Material guarantee that E[v̂2N,n(γ) | X1, · · · , Xn]

stays away from zero. Conclude that 1/v̂2n(γ) is uniformly bounded in probability.

Proof of Theorem 3.5. By Lemma 3.4, if suffices to prove the asymptotic normality

of the test statistic Tn defined with γ̂n = γ
(p)
0 . The proof of this asymptotic normality is

based on the Central Limit Theorem 5.1 of de Jong (1987). We will apply the result of

de Jong conditionally given the values of the covariate sample. Let x1, · · · , xn be an arbi-

trary collection of non-random points in L2[0, 1]. Consider Z̃1, · · · , Z̃n independent random

variables with values in L2[0, 1] such that for each i, the law of Z̃i is the conditional law

of Ui given Xi = xi. Let F
γ
(p)
0 ,n

(·) be the empirical distribution function of the sample

〈x1, γ(p)0 〉, · · · , 〈xn, γ
(p)
0 〉,

Kh,ij(γ
(p)
0 ) = Kh

(
F
γ
(p)
0 ,n

(〈xi, γ(p)0 〉)− F
γ
(p)
0 ,n

(〈xj, γ(p)0 〉)
)

and

Wij =
1

n(n− 1)
〈Z̃i, Z̃j〉

1

h
Kh,ij(γ

(p)
0 ), 1 ≤ i 6= j ≤ n, Wii = 0, 1 ≤ i ≤ n.

Hence Qn(γ
(p)
0 ) =

∑
i,j Wij and v̂

2
n(γ

(p)
0 ) = 2n(n−1)h

∑
i,j W

2
ij. A crucial remark that is used
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several times in the following is that the elements of the matrix (Kh,ij(γ
(p)
0 )) are the same

as those of the matrix (Kh((i− j)/nh) up to permutations of lines and columns. Following

the notation of de Jong (1987), let

σ2
ij = E(W 2

ij) = E[〈Ui, Uj〉2 | Xi = xi, Xj = xj]
K2

h,ij(γ
(p)
0 )

n2(n− 1)2h2

and σ(n)2 = 2
∑

i 6=j σ
2
ij. Since

E[〈Ui, Uj〉2 | X1, · · · , Xn] = E[〈Ui, Uj〉2 | Xi, Xj] ≤ E[‖Ui‖2 | Xi]E[‖Uj‖2 | Xj],

and E[〈Ui, Uj〉2 | Xi, Xj] is bounded away from zero by Assumption D-(c), deduce that

positive constants c and c exist such that

c

n4h2
K2

h,ij(γ
(p)
0 ) ≤ σ2

ij ≤
c

n4h2
K2

h,ij(γ
(p)
0 ). (S-3.7)

Applying Lemma 3.2 with K replaced by K2, one can deduce that for each i,

c1
n3h

≤ c

n4h2
min
1≤i≤n

∑

j 6=i

K2
h((i− j)/nh) ≤

∑

1≤j≤n,i 6=j

σ2
ij (S-3.8)

≤ c

n4h2
max
1≤i≤n

∑

j 6=i

K2
h((i− j)/nh) ≤ c2

n3h
,

for some constants c1 and c2. Moreover, constants c
′ and c′ exist such that

c′n−2h−1 ≤ σ(n)2 ≤ c′n−2h−1.

It follows that

σ(n)−2 max
1≤i≤n

n∑

j=1

σ2
ij = O(n−1),
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and thus Condition 1 in Theorem 5.1 of de Jong (1987) holds true as soon as κ(n) = o(n1/2).

In order to check Condition 2 in Theorem 5.1 of de Jong (1987), let us use the Hölder

inequality with p = ν/2 and q = ν/(ν − 2), with ν given by Assumption D-(c)-(ii), and the

Markov inequality to get, for some constant C,

E[σ−2ij W
2
ijI{σ−1

ij
|Wij |>κ(n)}] ≤ E

2/ν [σ−νij |Wij|ν ]P(ν−2)/ν [σ−1ij |Wij| > κ(n)] ≤ Cκ(n)−(ν−2)/ν .

This shows that Condition 2 of Theorem 5.1 of de Jong holds true for any κ(n) tending

to infinity. Finally, let µ1, · · · , µn denote the eigenvalues of the matrix (σij). To check

Condition 3 of de Jong, we use the upper bound of σij in (S-3.7) to deduce that there exists

a constant C (independent of n and i) such that

n∑

j=1,j 6=i

σij ≤ C

n2h

n∑

j=1,j 6=i

Kh,ij(γ
(p)
0 ).

Next, it should be noted that if Σ denotes the n × n matrix with generic element σij,

following the lines of equation (S-3.6) and using equation (S-3.7), for any u ∈ R
n,

‖Σu‖2 ≤ ‖u‖2
[
max
1≤i≤n

(
n∑

j=1,j 6=i

σij

)]2

≤ c1 ‖u‖2
[
max
1≤i≤n

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)]2
≤ c2n

−2‖u‖2, (S-3.9)

for some constants c1, c2 > 0. It can be deduced that

σ(n)−2 max
1≤i≤n

µ2
i ≤

hn2

c′
c2
n2
→ 0,

and thus Condition 3 of de Jong (1987) holds true. To complete the proof of the asymptotic

normality of the statistic Tn = nh1/2Qn(γ
(p)
0 )/v̂n(γ

(p)
0 ) given the covariate values, it should
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be noted that

σ2(n) = E[Q2
n(γ

(p)
0 ) | X1 = x1, · · · , Xn = xn] =

E[v̂2n(γ
(p)
0 ) | X1 = x1, · · · , Xn = xn]

n(n− 1)h
.

Moreover, by direct standard calculation, it can be shown that the variance of

1

n(n− 1)

∑

1≤i 6=j≤n

〈Z̃i, Z̃j〉2
1

h
K2

h,ij(γ
(p)
0 )

is of rate O(h−1n−1) = o(1). One can deduce that

v̂2n(γ
(p)
0 )/n(n− 1)h

σ2(n)
− 1 = oP(1) (S-3.10)

given X1 = x1, · · · , Xn = xn. The asymptotic normality of Tn given X1 = x1, · · · , Xn = xn

is a consequence of Theorem 5.1 of de Jong and equation (S-3.10). The proof is complete.

Proof of Theorem 3.6. The proof is based on inequality (3.6). Since E(〈U1, U2〉2 |

X1, X2) ≥ σ2 + r4n〈δ(X1), δ(X2)〉2, clearly the variance estimate v̂2n(γ̃) does not approach

zero for all γ̃. On the other hand, by Cauchy-Schwarz and the property of the spectral

norm for matrices,

v̂2n(γ̃) ≤ 2n/(n− 1)

n2h

∑

1≤i,j≤n

‖δ(Xi)‖2‖δ(Xj)‖2K2
h(Fn,γ̃(〈Xi, γ̃〉)− Fn,γ̃(〈Xj, γ̃〉))

≤ ‖|K2‖|2
∑

1≤i≤n

‖δ(Xi)‖4, (S-3.11)

where K2 is the matrix with entries n−2h−1K2
h(Fn,γ̃(〈Xi, γ̃〉) − Fn,γ̃(〈Xj, γ̃〉)). From the

arguments used in equation (S-3.9), ‖|K2‖|2 = OP(n
−1). This together with the finite

fourth order moment condition for δ(·) imply that v̂2n(γ̃) is bounded in probability. Hence
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it suffices to examine at the behavior of Qn(γ̃). By Lemma 3.1-(B) there exists p0 and

γ̃ ∈ Bp0 ⊂ Sp0 (p0 and γ̃ independent of n) such that E[δ(X) | 〈X, γ̃〉] 6= 0. Hereafter, γ̃ is

supposed to have this property. Let Vni = Fn,γ̃(〈Xi, γ̃〉). We can write

Qn(γ̃) =
1

n(n− 1)h

∑

i 6=j

〈U0
i , U

0
j 〉Kh(Vni − Vnj〉)

+
2rn

n(n− 1)h

∑

i 6=j

〈U0
i , δ(Xj)〉Kh(Vni − Vnj)

+
r2n

n(n− 1)h

∑

i 6=j

〈δ(Xi), δ(Xj)〉Kh(Vni − Vnj)

=: Q0n(γ̃) + 2rnQ1n(γ̃) + r2nQ2n(γ̃).

Since γ̃ is fixed, Q0n(γ̃) = OP(n
−1h−1/2) (cf. proof of Theorem 3.5). Next, let us fol-

low Guerre and Lavergne (2005), and denote by En the conditional expectation given

X1, · · · , Xn and define

δn(Xi) =
1

n(n− 1)h

n∑

j=1, j 6=i

δ(Xj)Kh(Vni − Vnj), δ = (δ(X1), · · · , δ(Xn))
′.

Then the Marcinkiewicz-Zygmund inequality and the Cauchy-Schwarz and Jensen inequal-

ities imply that

En

∣∣∣∣∣

n∑

i=1

〈U0
i , δn(Xi)〉

∣∣∣∣∣ ≤ c En

∣∣∣∣∣

n∑

i=1

∣∣〈U0
i , δn(Xi)〉

∣∣2
∣∣∣∣∣

1/2

≤ c En

∣∣∣∣∣

n∑

i=1

‖U0
i ‖2‖δn(Xi)‖2

∣∣∣∣∣

1/2

≤ c

{
n∑

i=1

En

(
‖U0

i ‖2
)
‖δn(Xi)‖2

}1/2

≤ c C
1/ν
2

{
n∑

i=1

‖δn(Xi)‖2
}1/2

= c C
1/ν
2 ‖K3δ‖ ≤ c C

1/ν
2 n1/2‖|K3|‖2

{
1

n

n∑

i=1

‖δ(Xi)‖2
}1/2

,

for K3 a matrix with the same elements as the matrix K defined in equation (S-3.5) up to

permutations of lines and columns, and C2 and ν the constants in Assumption D, and c
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some constant independent of n. Since ‖|K|‖2 = ‖|K3|‖2 = OP(n
−1), one can deduce that

Q1n(γ̃) = OP(n
−1/2) conditionally on X1, · · · , Xn. Now, let us investigate Q2n(γ̃). With

an inequality such as in equation (S-3.11) and the moment conditions on δ(·) it is easy to

bound Q2n(γ̃) in probability. It remains to show that it is bounded away from zero. Let

Vi = Fγ̃(〈Xi, γ̃〉), so that V1, · · · , Vn are independent uniform variables on [0, 1], and

Q′2n(γ̃) =
1

n2h

∑

1≤i,j≤n

〈δ(Xi), δ(Xj)〉Kh(Vni − Vnj),

Q′′2n(γ̃) =
1

n2h

∑

1≤i,j≤n

〈δ(Xi), δ(Xj)〉Kh(Vi − Vj),

Q⋆
2n(γ̃) =

1

n(n− 1)h

∑

1≤i 6=j≤n

〈δ(Xi), δ(Xj)〉Kh(Vi − Vj).

We have

Q′2n(γ̃)−
n−1
n

Q2n(γ̃) = Q′′2n(γ̃)−
n−1
n

Q⋆
2n(γ̃)=

K(0)

n2h

n∑

i=1

‖δ(Xi)‖2=OP(n
−1h−1)=oP(1).

Next we show that Q′2n(γ̃) − Q′′2n(γ̃) = oP(1). If K satisfies a Lipschitz condition and

nh4 →∞, by the Cauchy-Schwarz inequality, for some constant C > 0

|Q′2n(γ̃)−Q′′2n(γ̃)| ≤
C∆n

h2

[
1

n

∑

1≤i≤n

‖δ(Xi)‖
]2

= oP(1),

where ∆n = sup1≤i≤n |Vni − Vi|. Note that ∆n ≤ supt∈R |Fn,γ̃(t)− Fγ̃(t)| = OP(n
−1/2). One

can conclude that Q2n(γ̃) − Q∗2n(γ̃) = oP(1), so that is suffices to investigate Q
∗
2n(γ̃). It is

easy to show that the variance of Q∗2n(γ̃) tends to zero, so that it remains to show that

the expectation of Q∗2n(γ̃) does not approach zero. Let δ(t, v) = E[δ(Xj)(t) | Vj = v] and

note that 0 <
∫∫

[0,1]×[0,1]
|δ(t, v)|2dvdt <∞. By the Inverse Fourier Transform formula and
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repeated applications of Fubini’s theorem we get

E[Q∗2n(γ̃)] = E
[
〈δ(Xi), δ(Xj)〉h−1Kh(Vi − Vj)

]

= E(〈δ(Xi),E[δ(Xj)h
−1Kh(Vi − Vj) | Xi]〉)

=

∫

[0,1]

E

(
δ(X)(t)

∫

R

exp{2πisV }F [δ(t, ·)](−s)F [K](hs)ds
)
dt

=

∫

[0,1]

[∫

R

‖F [δ(t, ·)](s)‖2F [K](hs)ds
]
dt.

When h→ 0, by the Lebesgue dominated convergence theorem and the Plancherel theorem

applied to the integral inside the square brackets,

E[Q∗2n(γ̃)]→
∫

[0,1]

∫

[0,1]

|δ(t, v)|2dvdt.

One can deduce that P[c−1 ≤ Q2n(γ̃) ≤ c] → 1 for some constant c > 0. Taking all the

results together, we can conclude that for any C > 0, P[Tn ≥ C]→ 1.

Proof of Corollary 3.7. a) Let x̂ik =
∫
[0,1]

Xi(t)ψ̂k(t)dt, so that 〈Xi, γ〉n =
∑p

k=1 x̂ikγk.

Note that x̂ik, 1 ≤ k ≤ p, 1 ≤ i ≤ n are measurable functions of X1, · · · , Xn. Now, let F̂γ,n

denote the empirical distribution function of the sample 〈X1, γ〉n, · · · , 〈Xn, γ〉n. Note that

the elements of the matrices (Kh(F̂γ,n(〈Xi, γ〉n)− F̂γ,n(〈Xj, γ〉n))) and (K ((i− j)/nh)) are

the same up to permutations of lines and columns. Given that in the proofs of Lemma 3.3

and Theorem 3.5 the arguments were provided conditionally on X1, · · · , Xn, it is quite clear

that the conclusion of Theorem 3.5 remains true if the 〈Xi, γ〉’s are everywhere replaced by

the 〈Xi, γ〉n.

b) Similarly, all but one of the arguments in the proof of Theorem 3.6 applies with the

〈Xi, γ〉n’s. It only remains to investigate the counterpart of Q2n(γ̃) that was the leading
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term in Qn(γ̃). For this purpose, note that for any γ, 〈Xi, γ〉n = 〈Xi, γ〉+ 〈Xi,∆n,γ〉 where

∆n,γ(t) =

p∑

k=1

γk[ψ̂k(t)− ψk(t)], t ∈ [0, 1].

For an integral operator (Ψv)(t) =
∫
ψ(t, s)v(s)ds with

∫ ∫
ψ2(t, s)dtds <∞, consider the

operator norm ‖Ψ‖S defined by ‖Ψ‖2S =
∫ ∫

ψ2(t, s)dtds. Under Assumption D-(a) and the

moment assumption on ‖X‖,

‖Γ̂− Γ‖S = OP(1/
√
n),

see for instance Bosq (2000) or Horváth and Kokoszka (2012). Next, by the Cauchy-Schwarz

inequality, Lemma 4.3 in Bosq (2000) or Lemma 2.3 in Horváth and Kokoszka (2012), and

the fact that the spectral norm of the operator Γ̂− Γ is less than or equal to ‖Γ̂− Γ‖S,

∫

[0,1]

∆2
n,γ(t)dt ≤

[
p∑

k=1

γ2k

]
p∑

k=1

‖ψ̂k − ψk‖2 ≤ p
8

ς2p
‖Γ̂− Γ‖2S,

where ςp = min1≤j≤p(λj − λj+1). Then the lower bound for the spacing between the eigen-

values implies

sup
γ∈Sp

∫

[0,1]

∆2
n,γ(t)dt ≤ cp2η+1‖Γ̂− Γ‖2S,

for some constant c > 0. One can deduce that

sup
γ∈Sp

max
1≤i≤n

|〈Xi, γ〉n − 〈Xi, γ〉| ≤ max
1≤i≤n

‖Xi‖c1/2pη+1/2‖Γ̂− Γ‖S = OP(p
η+1/2 lnn/

√
n),

where for the last equality we used the condition E[exp(̺‖X‖)] < ∞ to deduce that

max1≤i≤n ‖Xi‖ = OP(lnn). Let bn ↓ 0 such that bn
√
n/[pη+1/2 lnn] → ∞ and define the

event

En = { sup
γ∈Sp

max
1≤i≤n

|〈Xi, γ〉n − 〈Xi, γ〉| ≤ bn}
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so that P(Ec
n)→ 0. On the set En, for any γ ∈ Sp and t ∈ R we can write

F̂γ,n(t) =
1

n

n∑

i=1

I{〈Xi,γ〉n≤t} ≤
1

n

n∑

i=1

I{〈Xi,γ〉≤t+bn} = Fγ,n(t+ bn),

and similarly, F̂γ,n(t) ≥ Fγ,n(t− bn). One can deduce that on En,

∣∣∣F̂γ̃,n(〈Xi,γ̃〉n)− F̂γ̃,n(〈Xj,γ̃〉n)
∣∣∣

≤ max{|Fγ̃,n(〈Xi,γ̃〉+bn)−Fγ̃,n(〈Xj,γ̃〉−bn)| , |Fγ̃,n(〈Xi,γ̃〉−bn)−Fγ̃,n(〈Xj,γ̃〉+bn)|}.

On the other hand,

|Fγ̃,n(〈Xi,γ̃〉+bn)−Fγ̃,n(〈Xj,γ̃〉−bn)| ≤ |Fγ̃,n(〈Xi,γ̃〉+bn)− Fγ̃(〈Xi,γ̃〉+bn)|

+ |Fγ̃(〈Xi,γ̃〉+bn)− Fγ̃(〈Xi,γ̃〉−bn)|+ |Fγ̃,n(〈Xi,γ̃〉−bn)− Fγ̃(〈Xi,γ̃〉−bn)|

≤ 2 sup
t∈R
|Fγ̃,n(t)− Fγ̃(t)|+ 2bn sup

t∈R
fγ̃(t)

= OP(n
−1/2 + bn) = OP(bn).

From this and the Lipschitz condition on K, one can deduce that

∣∣∣Kh(F̂γ̃,n(〈Xi, γ̃〉n)−F̂γ̃,n(〈Xj, γ̃〉n))−Kh(Fγ̃,n(〈Xi, γ̃〉)−Fγ̃,n(〈Xj, γ̃〉))
∣∣∣ = OP(bnh

−1).

Let Q̂2n(γ̃) be defined like Q2n(γ̃) but with 〈Xi, γ̃〉’s replaced by 〈Xi, γ̃〉n’s. One can deduce

from above

∣∣∣Q̂2n(γ̃)−Q2n(γ̃)
∣∣∣ ≤ OP(bnh

−2)

[
1

n

∑

1≤i≤n

‖δ(Xi)‖
]2

= oP(1),

provided bn
√
n/[pη+1/2 lnn]→∞ and bn = o(h2). The conclusion follows.
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Proof of Theorem 3.8. Consider the event An = {max1≤i≤n ‖Ui‖ ≤ M} with M =

n1/4−a for some small a. Assumption D-(a) guarantees P(Ac
n)→ 0. We define

hbi,j =
ζi ζj

n(n− 1)h
Cn,ij,

where

Cn,ij =
〈UiI{‖Ui‖≤M}, UjI{‖Uj‖≤M}〉

M2
Kh (Fγ,n(〈xi, γ〉)− Fγ,n(〈xj, γ〉)) .

Let Qb
n (γ) be the bootstrap version of Qn (γ) , and let

Qb
M,n (γ) =

1

n(n− 1)

∑

1≤i 6=j≤n

hbi,j, γ ∈ Sp.

Note that for any t > 0

P

[
sup
γ

∣∣M−2Qb
n (γ)−Qb

M,n (γ)
∣∣ > t | U1, X1, · · · , Un, Xn

]
≤ P(Ac

n)→ 0. (S-3.12)

We define the quantities Ab
n, B

b
n, C

b
n and Db

n as in (5.1)-(5.2) with hi,j replaced by hbi,j

and the expectations replaced by the conditional expectations given (U1, X1), · · · , (Un, Xn).

When the variables ζi are bounded, it is easy to check that the same upper bounds as in

Lemma 5.2 could be derived on the event An. When the variables ζi have an exponential

moment, that is E(exp{c|ζ|}) < ∞ for some c > 0, it suffice to redefine the event An =

{max1≤i≤n ‖Ui‖ζi ≤ M} with M = n1/4−a lnn ≤ n1/4−a′ for some small 0 < a′ < a. Thus,

the upper bounds as in Lemma 5.2 could still be derived on this event An. Moreover,

the condition E(U | X) = 0, a.s. was not required for deriving that bounds. Hence the

arguments are valid both under the null hypothesis and the alternative hypotheses. Then

equation (S-3.12) and the exponential inequality from Lemma 5.1 applied as in Lemma 3.3
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yield, for any C > 0,

P

[
sup
γ

∣∣Qb
n (γ)

∣∣ > Cp lnn/nh1/2 | U1, X1, · · · , Un, Xn

]
→ 0 in probability . (S-3.13)

The second part of Lemma 3.3 follows from similar arguments.

Next, let us consider the case where the null hypothesis H0 holds true. Let γ̂bn be a

least favorable direction γ for H0 obtained as in equation (3.4) using a bootstrap sample.

We deduce that P(γ̂bn 6= γ
(p)
0 | U1, X1, · · · , Un, Xn) → 0, in probability. It remains to

reconsider the steps of Theorem 3.5 with Z̃i replaced by ζi and Kh,ij(γ
(p)
0 ) by Kb

h,ij(γ
(p)
0 ) =

〈Ui, Uj〉Kh,ij(γ
(p)
0 ). Consequently Wij becomes W

b
ij = n−1(n− 1)−1h−1ζiζjK

b
h,ij(γ

(p)
0 ), σ2

ij is

replaced by (σb
ij)

2 = [Kb
h,ij(γ

(p)
0 )]2/[n2(n − 1)2h2] and σ(n)2 is now σb(n)2 = 2

∑
i 6=j(σ

b
ij)

2.

Let us define the set E1n = {σb(n)2 ≥ σ2} where σ2 is the lower bound in Assumption D-

(c)-(i). Since limn E(σ
b(n)2) ≥ 2σ2 and the variance of σb(n)2 tends to zero, we deduce that

P(Ec
1n)→ 0. Next, note that limn E(σ

b(n)2) ≤ C where C is some constant that depends on

C2 and ν defined in Assumption D-(c)-(ii). Thus, if E2n = {σb(n)2 ≤ 2C}, since the variance

of σb(n)2 tends to zero, we have P(Ec
2n)→ 0. On E1n∩E2n, Conditions 1 and 2 of Theorem 5.1

of de Jong (1987) are clearly satisfied, given (U1, X1), · · · , (Un, Xn). For checking Condition

3, let Kb denote the matrix with generic element Kb
ij = Kb

h,ij(γ
(p)
0 )/[n(n − 1)h] if i 6=

j and Kb
ij = 0 otherwise. Recall that En stands for the conditional expectation given

X1, · · · , Xn and note that En(‖Ui‖‖Uj‖) ≤ E
1/2(‖Ui‖2 | Xi)E

1/2(‖Uj‖2 | Xj) ≤ C
2/ν
2 . Using

the conditional independence between any Ui and the rest of the sample, for any w ∈ R
n

31



with ‖w‖ = 1,

En

∥∥Kbw
∥∥2 ≤ 1

h2n2(n− 1)2

n∑

i=1

E(‖Ui‖2 | Xi)En

(
n∑

j=1,j 6=i

‖Uj‖Kh,ij(γ
(p)
0 )|wj|

)2

[Cauchy-Schwarz inequality]

≤ C
4/ν
2

h2n2(n− 1)2

n∑

i,j,k=1

Kh,ij(γ
(p)
0 )Kh,ik(γ

(p)
0 )|wjwk|

≤ C
4/ν
2 K2(0)

1

h2n(n− 1)2

n∑

j,k=1

|wjwk|

≤ C3

n2

1

nh2
, [Cauchy-Schwarz inequality]

where C3 > 0 is some constant. We deduce that E
∥∥Kbw

∥∥2 = o(n−2). Let |‖Kb‖|2 denote

the spectral norm of Kb and define E3n = {|‖Kb‖|2 ≤ 1/n}. We deduce from the above

that P(Ec
3n) → 0, and thus the conditional probability of Ec

3n given (U1, X1), · · · , (Un, Xn)

also tends to zero. Condition 3 in Theorem 5.1 of de Jong (1987) is clearly satisfied on

E3n and hence de Jong’s CLT could be applied, given (U1, X1), · · · , (Un, Xn), on the event

En = E1n ∩ E2n ∩ E3n which has a probability tending to one. Finally, it remains to note

that equation (S-3.10) holds on En, given (U1, X1), · · · , (Un, Xn). The arguments for the

test statistic built with the estimated FPC basis (that is not changed in the bootstrap

procedure) are similar.

Let us now consider the case where the null hypothesis does not hold true. Let v̂b,2n (γ) be

the variance estimator obtained by bootstrapping. Since ζ2i ≥ (
√
5− 1)2/4 and 〈U b

i , U
b
j 〉2 >

〈U b
i , U

b
j 〉2(

√
5− 1)4/16, by the second part of Lemma 3.3,

sup
γ
{1/v̂b,2n (γ)} = OP(1).

From this and the bound in equation (S-3.13), we deduce T b
n = OP(p lnn) given the orig-

inal sample of (U,X), in probability. That means that for any C > 0, P(|T b
n| > C |
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U1, X1, · · · , Un, Xn) → 0, in probability. Consequently, T b
n/αn = oP(1) given the origi-

nal sample of (U,X), in probability. In particular, this implies that for any a ∈ (0, 1),

zb1−a,n/αn = oP(1). On the other hand, we proved in Theorem 3.6 that Tn tend to infinity

at the rate OP(nh
1/2r2n), which implies that Tn/αn tends to infinity, in probability. Thus,

the second statement of Theorem 3.8 follows. Again, the arguments for the test statistic

built with the estimated FPC basis are similar.

Lemma A. Under the conditions of Lemma 3.1, for any p ≥ 1 and γ ∈ Sp,

E(U | 〈X, γ〉) = E(U | Fγ(〈X, γ〉)) a.s.

Proof of Lemma A. It suffice to prove that for any U as in Lemma 3.1 and any Z a

real-valued random variable with distribution function F, we have

E(U | Z) = E(U | F (Z)) a.s. (S-3.14)

For any random variable Z (not necessarily continuous) with distribution function F we

have P(Q(F (Z)) 6= Z) = 0 where Q(t) = inf{y : F (y) ≥ t}, ∀0 < t < 1. (See, for instance

Proposition 3, Chapter 1 in Shorack and Wellner (1986).) From this and the properties of

the conditional expectations, for any bounded measurable function g we have

E(g(Z)E(U | Z)) = E(g(Z)U)

= E(g(Q(F (Z)))U) = E(g(Q(F (Z)))E(U | F (Z))) = E(g(Z)E(U | F (Z))).

Since E(U | F (Z)) is a measurable function of Z, the almost sure uniqueness of the condi-

tional expectation implies the equality in equation (S-3.14).

Now, let us provide some theoretical justification for the sequential numerical algorithm
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for searching an approximation of the direction γ̂n defined in equation (3.4). A justification

is necessary only in the case of alternative hypotheses to ensure that a vector γ̃ like in

Theorem 3.6-(e) exists. No additional justification is required for the asymptotic results on

the null hypothesis since Lemma 3.4 still holds with γ̂n replaced by the solution obtained

through our sequential numerical algorithm.

It follows from the proof of Lemma 3.1-(B) that, if

P (E [U | 〈X,ψ1〉, · · · , 〈X,ψp〉] = 0) < 1,

then the set

Ap = {γ ∈ Sp : E(U | 〈X, γ〉) = 0 a.s. }

has Lebesgue measure zero on the unit hypersphere Sp and is not dense. See also Lemma

2.1 in Patilea, Saumard and Sanchez (2012).

Let us next investigate what could happen when searching a direction in Sp+1 using a

direction in Sp and one-dimensional optimization. For a vector v ∈ R
p, let (v, 1) ∈ R

p+1

denote the vector obtained by adding an additional component equal to 1. Moreover, let

0p denote the null vector in R
p. We prove in the following result that if γ 6∈ Ap, then there

exists at most a finite number of angles θ ∈ [0, π) such that

cos θ · (γ, 0) + sin θ · (0p, 1) ∈ Ap+1 ⊂ Sp+1.

Moreover, if γ ∈ Ap and E(U | 〈X, γ〉, 〈X,ψp+1〉) 6= 0 (for instance, this happens when

E(U | 〈X,ψp+1〉) 6= 0), one could draw the same conclusion on the cardinality of the set of

θ such that cos θ · (γ, 0) + sin θ · (0p, 1) ∈ Ap+1.

Lemma B. Assume that E‖U‖ < ∞, E(U) = 0 and there exists s > 0 such that
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E(‖U‖ exp(s‖X‖)) <∞. If either γ ∈ Sp \ Ap, or

γ ∈ Ap and E(U | 〈X, γ〉, 〈X,ψp+1〉) 6= 0,

then the set of θ ∈ [0, π) such that

cos θ · (γ, 0) + sin θ · (0p, 1) ∈ Ap+1 ⊂ Sp+1

is empty or finite.

Proof of Lemma B. If γ 6∈ Ap, then E(U | 〈X, γ〉) 6= 0. In particular, we have E(U |

〈X, γ〉, 〈X,ψp+1〉) 6= 0 and thus the arguments below apply for both cases in the statement

of Lemma B. Now, if θ∗ ∈ (0, π) is such that

E(U | cos θ∗ · 〈X, γ〉+ sin θ∗ · 〈X,ψp+1〉) = 0, (S-3.15)

then, for any b ∈ R, θ∗ is a zero of the analytic function

θ 7→ ζb(θ) = E [U exp(b{cos θ · 〈X, γ〉+ sin θ · 〈X,ψp+1〉})] , θ ∈ (0, 2π). (S-3.16)

(Since X could be rescaled conveniently if necessary, we consider E(‖U‖ exp(s‖X‖)) < ∞

for some s ≥ 1. This guarantees that the expectation in the display (S-3.16) is well defined.)

Since E(U | 〈X, γ〉, 〈X,ψp+1〉) 6= 0, there exists b such that the analytic function ζb(·) is

not the null function. Otherwise, by the unicity of the Fourier Transform, necessarily

E(U | 〈X, γ〉, 〈X,ψp+1〉) = 0 a.s. Next, the zeros of a non-null analytic function in a

bounded interval are necessarily in finite number. Hence, the set of θ∗ satisfying equation

(S-3.15) is necessarily finite.
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