Supplementary Information

Synthesis and biological evaluation of celastrol derivatives as potent antitumor agents with STAT3 inhibition

Shaohua Xu^{a,1}, Ruolan Fan^{a,1}, Lu Wang^{b,1}, Weishen He^c, Haixia Ge^d, Hailan Chen^a, Wen Xu^a, Jian Zhang^e, Wei Xu^{a,*}, Yaqian Feng^{f,*}, Zhimin Fan^{b,*}

- ^a College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.
- ^b National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China.
- ^c Biology department, Boston college, Brighton, MA, 02135, USA.
- ^d School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, P.R. China.
- ^e State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China.
- ^f School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P.R. China.

¹ These authors contributed equally to this work.

*Corresponding authors: <u>2000017@fjtcm.edu.cn</u> (Wei Xu); <u>fengyq17@mails.tsinghua.edu.cn</u> (Yaqian Feng); <u>fanzm@njucm.edu.cn</u> (Zhimin Fan).

Contents:

 Table S1. Results of pharmacokinetic parameters of celastrol derivatives obtained with ADMET

 Predictor software.

Fig.S1 SPR analysis of 3g with rhSTAT3 protein.

Fig.S2- Fig.S106 Structural characterization of the compounds (¹H NMR, ¹³C NMR, ESI/HRMS spectrum of the compounds 1a-1d, 2a-2h, 3a-3i, 4a-4n).

Molecule	logPo/w	logHERG	PCaco	logBB	PMDCK	logKp	#metab	logKhsa	Human	Percent
									Oral	Human
									Absorption	Oral
										Absorption
Celastrol	5.041	-2.069	74.313	-0.963	37.892	-4.071	2	1.054	1	76.993
1a	6.169	-4.874	648.628	-0.898	309.842	-3.047	3	1.686	1	100
1b	5.421	-4.293	595.674	-0.75	282.593	-3.473	2	1.485	1	95.396
1c	7.616	-5.928	832.128	-0.888	405.588	-2.485	4	2.225	1	100
1d	6.659	-6.056	88.244	-2.127	35.872	-4.351	4	2.055	1	74.843
2a	11.276	-8.741	1375.939	-1.308	698.489	-0.316	3	3.136	1	100
2b	11.756	-8.448	1378.162	-1.091	2280.2	-0.58	3	3.231	1	100
2c	12.298	-8.466	1378.484	-0.993	4252.395	-0.644	3	3.397	1	100
2d	13.306	-8.42	1393.405	-0.79	10000	-0.768	3	3.707	1	100
2e	11.958	-8.308	1175.574	-1.45	589.226	-0.911	5	3.531	1	100
2f	11.294	-8.171	1274.999	-1.484	643.271	-0.64	5	3.061	1	100
2g	10.986	-7.792	1229.208	-1.092	1970.498	-0.908	5	2.941	1	100
2h	6.884	-4.916	2010.674	-0.398	1052.511	-2.105	3	1.753	1	100
3a	10.201	-6.103	145.007	-1.57	78.046	-1.461	2	2.607	1	100
3b	10.815	-6.018	144.738	-1.394	253.844	-1.67	2	2.748	1	100
3c	11.201	-5.86	144.754	-1.276	473.301	-1.795	2	2.852	1	100
3d	12.209	-5.897	145.697	-1.098	1528.107	-1.897	2	3.152	1	100
3e	10.849	-5.845	145.76	-1.64	78.484	-1.844	4	2.943	1	100
3f	10.408	-5.965	156.117	-1.739	84.529	-1.555	4	2.599	1	100
3g	10.14	-5.547	210.135	-1.126	366.732	-1.513	4	2.431	1	100
3h	6.783	-3.402	145.505	-1.073	78.336	-3.034	2	1.475	1	79.458
3i	6.033	-2.616	118.373	-0.972	62.673	-3.708	2	1.314	1	73.46
4a	4.854	-3.052	565.15	-0.728	367.811	-3.172	2	1.115	1	100
4b	4.717	-3.291	596.888	-0.874	381.1	-2.952	3	0.937	1	91.289
4c	4.391	-4.26	101.359	-0.647	69.646	-5.249	3	1.049	3	75.598
4d	5.163	-3.497	555.974	-0.866	366.596	-3.078	3	1.17	1	80.391
4 e	4.111	-3.976	115.362	-0.537	79.508	-5.145	4	0.889	3	74.964
4f	5.214	-4.529	135.046	-0.622	83.288	-5.109	3	1.373	1	69.692
4g	3.937	-5.072	24.492	-0.279	16.624	-7.336	4	1.042	2	61.902
4h	6.374	-4.141	705.36	-0.844	421.474	-2.297	3	1.579	1	89.33
4i	6.426	-3.856	481.271	-0.989	340.26	-2.561	4	1.601	1	86.661

Table S1. Results of pharmacokinetic parameters of celastrol derivatives obtained with ADMET

Predictor software.

4j	6.609	-4.018	710.956	-0.736	764.113	-2.426	3	1.621	1	90.767
4k	7.302	-4.03	744.276	-0.59	1755.75	-2.492	3	1.823	1	95.181
41	6.082	-4.472	592.669	-0.947	374.675	-2.366	2	1.451	1	86.267
4m	6.493	-4.349	570.622	-0.855	628.767	-2.491	4	1.586	1	88.379
4n	5.982	-4.596	420.017	-1.123	263.589	-2.626	4	1.44	1	83.009

Fig. S1 SPR analysis of 3g with rhSTAT3 protein.

Fig. S3 ¹³C NMR spectrum of compound 1a (CDCl₃, 150 MHz)

Fig. S5 ¹H NMR spectrum of compound 1b (CDCl₃, 600 MHz)

Fig. S6 ¹³C NMR spectrum of compound 1b (CDCl₃, 150 MHz)

Fig. S8 ¹H NMR spectrum of compound 1c (CDCl₃, 600 MHz)

Fig. S9 ¹³C NMR spectrum of compound 1c (CDCl₃, 150 MHz)

Fig. S11 ¹H NMR spectrum of compound 1d (CDCl₃, 600 MHz)

Fig. S12 ¹³C NMR spectrum of compound 1d (CDCl₃, 150 MHz)

Fig. S14 ¹H NMR spectrum of compound 2a (CDCl₃, 600 MHz)

Fig. S17 ¹H NMR spectrum of compound 2b (CDCl₃, 600 MHz)

Fig. S18 ¹³C NMR spectrum of compound 2b (CDCl₃, 150 MHz)

Fig. S20 ¹H NMR spectrum of compound 2c (CDCl₃, 600 MHz)

Fig. S21 ¹³C NMR spectrum of compound 2c (CDCl₃, 150 MHz)

Fig. S24 ¹³C NMR spectrum of compound 2d (CDCl₃, 150 MHz)

Fig. S26 ¹H NMR spectrum of compound 2e (CDCl₃, 600 MHz)

Fig. S27 ¹³C NMR spectrum of compound 2e (CDCl₃, 150 MHz)

Fig. S29 ¹H NMR spectrum of compound 2f (CDCl₃, 600 MHz)

Fig. S30 ¹³C NMR spectrum of compound 2f (CDCl₃, 150 MHz)

Fig. S32 ¹H NMR spectrum of compound 2g (CDCl₃, 600 MHz)

Fig. S33 ¹³C NMR spectrum of compound 2g (CDCl₃, 150 MHz)

Fig. S36 ¹³C NMR spectrum of compound 2h (CDCl₃, 150 MHz)

Fig. S37 HR-MS spectrum of compound 2h

Fig. S38 ¹H NMR spectrum of compound 3a (CDCl₃, 600 MHz)

Fig. S39 ¹³C NMR spectrum of compound 3a (CDCl₃, 150 MHz)

Fig. S41 ¹H NMR spectrum of compound 3b (CDCl₃, 600 MHz)

Fig. S44 ¹H NMR spectrum of compound 3c (CDCl₃, 600 MHz)

Fig. S45 ¹³C NMR spectrum of compound 3c (CDCl₃, 150 MHz)

Fig. S47 ¹H NMR spectrum of compound 3d (CDCl₃, 600 MHz)

Fig. S48 ¹³C NMR spectrum of compound 3d (CDCl₃, 150 MHz)

Fig. S50 ¹H NMR spectrum of compound 3e (CDCl₃, 600 MHz)

Fig. S51 ¹³C NMR spectrum of compound 3e (CDCl₃, 150 MHz)

Fig. S52 HR-MS spectrum of compound 3e

Fig. S53 ¹H NMR spectrum of compound 3f (CDCl₃, 600 MHz)

Fig. S54 ¹³C NMR spectrum of compound 3f (CDCl₃, 150 MHz)

Fig. S56 ¹H NMR spectrum of compound 3g (CDCl₃, 600 MHz)

Fig. S57 ¹³C NMR spectrum of compound 3g (CDCl₃, 150 MHz)

Fig. S59 ¹H NMR spectrum of compound 3h (CDCl₃, 600 MHz)

Fig. S60 ¹³C NMR spectrum of compound 3h (CDCl₃, 150 MHz)

Fig. S62 ¹H NMR spectrum of compound 3i (CDCl₃, 600 MHz)

Fig. S63 ¹³C NMR spectrum of compound 3i (CDCl₃, 150 MHz)

Fig. S65 ¹H NMR spectrum of compound 4a (CDCl₃, 600 MHz)

Fig. S66 ¹³C NMR spectrum of compound 4a (CDCl₃, 150 MHz)

Fig. S68 ¹H NMR spectrum of compound 4b (CDCl₃, 600 MHz)

Fig. S69 ¹³C NMR spectrum of compound 4b (CDCl₃, 150 MHz)

Fig. S71 ¹H NMR spectrum of compound 4c (CDCl₃, 600 MHz)

Fig. S72 ¹³C NMR spectrum of compound 4c (CDCl₃, 150 MHz)

Fig. S74 ¹H NMR spectrum of compound 4d (CDCl₃, 600 MHz)

Fig. S75 ¹³C NMR spectrum of compound 4d (CDCl₃, 150 MHz)

Fig. S76 HR-MS spectrum of compound 4d

Fig. S77 ¹H NMR spectrum of compound 4e (CDCl₃, 600 MHz)

Fig. S78 ¹³C NMR spectrum of compound 4e (CDCl₃, 150 MHz)

Fig. S80 ¹H NMR spectrum of compound 4f (CDCl₃, 600 MHz)

Fig. S81 ¹³C NMR spectrum of compound 4f (CDCl₃, 150 MHz)

Fig. S83 ¹H NMR spectrum of compound 4g (CDCl₃, 600 MHz)

Fig. S84 ¹³C NMR spectrum of compound 4g (CDCl₃, 150 MHz)

Fig. S85 HR-MS spectrum of compound 4g

Fig. S86 ¹H NMR spectrum of compound 4h (CDCl₃, 600 MHz)

Fig. S87 ¹³C NMR spectrum of compound 4g (CDCl₃, 150 MHz)

Fig. S89 ¹H NMR spectrum of compound 4i (CDCl₃, 600 MHz)

Fig. S90 ¹³C NMR spectrum of compound 4i (CDCl₃, 150 MHz)

Fig. S92 ¹H NMR spectrum of compound 4j (CDCl₃, 600 MHz)

Fig. S93 ¹³C NMR spectrum of compound 4j (CDCl₃, 150 MHz)

Fig. S95 ¹H NMR spectrum of compound 4k (CDCl₃, 600 MHz)

Fig. S96 ¹³C NMR spectrum of compound 4k (CDCl₃, 150 MHz)

Fig. S98 ¹H NMR spectrum of compound 4l (MeOD, 600 MHz)

Fig. S99 ¹³C NMR spectrum of compound 4l (MeOD, 150 MHz)

Fig. S100 HR-MS spectrum of compound 4l

Fig. S101 ¹H NMR spectrum of compound 4m (CDCl₃, 600 MHz)

Fig. S102 ¹³C NMR spectrum of compound 4m (CDCl₃, 150 MHz)

Fig. S104 ¹H NMR spectrum of compound 4n (CDCl₃, 600 MHz)

Fig. S105 ¹³C NMR spectrum of compound 4n (CDCl₃, 150 MHz)

