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SUPPLEMENTARY MATERIAL AND METHODS

Patient characteristics and tumor samples

All tumor specimens were collected, stored and used with the patients’ informed consent.
Most of these patients (N=84; see also Table 1) were previously included in Affymetrix GeneChip®
and CGH analyses (1). Patients from the North-East region of France underwent initial surgical
resection of their localized HNSCC between 1989 and 2002 at the St Barbe Clinic (Strasbourg,
France), followed by post-operative radiotherapy (89/100 cases) or chemo-radiotherapy (10/100
cases) at the Paul Strauss Cancer Center (Strasbourg, France) or the Civil Hospitals of Colmar or
Mulhouse. One patient (1/100) was treated exclusively by surgery. Hematoxylin-eosin slides of
paraffin-embedded tumor specimens were examined by two pathologists. All of the tumors were
squamous cell carcinomas. The median age of the patients was 58 years (35-82 years). The inclusion
criteria were: tumor localization (hypopharynx, oropharynx, oral cavity or tongue), any size (Tx), any
lymph node status (Nx), no clinically-evident distant metastases (MO0) by conventional clinical and
diagnostic radiological examinations (computed tomography). The patients did not have any previous
or synchronous neoplasia.

101 additional samples were used to validate the methylation data (Supplementary Materials
and Methods and Table S2). Patients included in this validation group underwent initial surgical
resection of their HNSCC between 1990 and 2006, followed by post-operative radiotherapy (49/101
cases; 48.5%) or by post-operative chemo- radiotherapy (52/101 cases; 51.5%). The median age of
the patients was 57 years (41-78 years). The inclusion criteria were: tumor localization (hypopharynx,
oropharynx, oral cavity or tongue), any size (Tx), any lymph node status (Nx), no clinically-evident
distant metastases (MO0) by conventional clinical and diagnostic radiological examinations (computed
tomography). Patients did not have any previous or synchronous neoplasia. The median follow up
period was 32 months (3-187 months). 20/101 patients developed distant metastasis to lung, bone
or liver as the first recurrence during the minimal 36-months follow up period (M); 81/101 patients
developed no metastasis during the same period (NM). Tumor samples were collected at the time of
surgery. A fragment was taken near the advancing edge of the primary tumor (avoiding its necrotic
center), immediately frozen in liquid nitrogen and stored at -70°C. The rest of the tumor was fixed in
6% buffered formalin and embedded in paraffin for histopathological analysis. Examination of
sections adjacent to each tumor fragment showed that the percentage of tumor cells was over 70%.

Data sets and preprocessing

Transcriptome data: HG-U133-plus-2.0 Affymetrix array data were obtained for 89 HSNCC samples
(1):

* RNA extraction and Quality Control: tumor samples (10 to 50 mg) were powdered under

liquid nitrogen. RNA were extracted using RNAble (Eurobio, Courtaboeuf, France), followed
by a clean-up step on RNAeasy columns (Qiagen, Courtaboeuf, France). Aliquots of the RNA
were analyzed by electrophoresis on a Bioanalyser 2100 (version A.02 S1292, Agilent
Technologies, Waldbronn, Germany) and quantified using Nano Drop™ ND-1000 (Nyxor



Biotech). Stringent criteria for RNA quality were applied to rule out degradation, especially a
28s/18s ratio above 1.8 for microarray.

* CcRNA probe production and labeling: 3 mg of total RNA were amplified and labeled according
to the manufacturer’s one-cycle target labeling protocol (http://www.affymetrix.com). 10

mg of cRNA were used per hybridization (GeneChip Fluidics Station 400; Affymetrix, Santa
Clara, CA). The labeled cRNAs were hybridized to HG-U133 plus 2.0 Affymetrix GeneChip
arrays (Affymetrix, Santa Clara, CA). Chips were scanned with a Affymetrix GeneChip Scanner
3000 and subsequent images analyzed using GCOS 1.4 (Affymetrix).

* Affymetrix chips quality control: we used the R package affyQCReport to generate a QC
report for all chips (CEL files). All the chips that did not pass this QC filtering step were
removed from further analysis.

*  Normalization: raw feature data from Affymetrix HG-U133A Plus 2.0 GeneChip™ microarrays
are normalized using Robust Multi-array Average (RMA) method (R package affy) (2).

Methylome data from the discovery cohort: Whole-genome DNA methylation was analyzed in 84

HNSCC samples using the Illumina Infinium HumanMethylation27 assay. In brief, genomic DNA was
bisulfite-converted using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA). Bisulfite-
converted DNA was whole-genome amplified, enzymatically fragmented, and hybridized to the
BeadChip arrays according to the manufacturer’s instructions. Bisulfite conversion and microarray
experiments were performed by Integragen SA (Evry, France, http://www.integragen.com). The
HumanMethylation27 BeadChip examines the DNA methylation status of 27,578 CpG sites at
promoter regions of 14,495 protein-coding genes. Each CpG site is represented by two beads on the

array, measuring the levels of methylated (M) and unmethylated (U) DNA. The beta value DNA
methylation scores for each locus are then calculated as M/(M+U). Detailed information on
HumanMethylation27 BeadChip can be obtained at http://www.illumina.com. Data were exported as

standard report files and normalized using le R lumi package (v2.15).

Methylome data from the validation cohort: Whole-genome DNA methylation was analyzed in 101

HNSCC samples using the lllumina Infinium HumanMethylation450 assay that examines the DNA
methylation status of 485,000 CpG sites (covering 99% of RefSeq genes and 96% of CpG islands).
Detailed information about this technology can be obtained at http://www.illumina.com.

In brief, genomic DNA was extracted using either the Manual-MagNa Pure LC DNA Il kit (Roche) or
the Manual-Gentra Puregene kit (Qiagen) and bisulfite-converted using the EZ-96 DNA Methylation
Kit (Zymo Research, Orange, CA). DNA was then whole-genome amplified, enzymatically fragmented
and hybridized (500 ng) to the BeadChip arrays according to the manufacturer’s instructions. Bisulfite
conversion and microarray experiments were performed by Integragen SA (Evry,
France, http://www.integragen.com). The BeadChips were scanned using the lllumina HiScan SQ

scanner and raw images data were imported into the GenomeStudio (v2011.1) methylation module
(v1.9.2.) which was used to extract and transform the fluorescent signal intensities into beta-value
(range: 0 -unmethylated site- to 1 -fully methylated site-). Data were exported as standard report
files and normalized using le R lumi package (v2.15).

miRNome data: MicroRNA sequencing were obtained for 64 HSNCC samples by the /llumina

sequencing process HiSeq2000. miRNA-Seq libraries were performed from at least 1ug of extracted
total RNA with a RIN greater than 7. Before starting, total RNAs were purified with miRNeasy kit



which allows the selection of the small RNA fraction less than 100 bases. From these samples
enriched in small RNAs, libraries were performed according to the protocol described in (3).

Briefly, first, a 3' adenylated DNA adaptor was ligated to the enriched sample in the absence of ATP
preventing the self-ligation of miRNAs. Then a 5' RNA adaptor was ligated in the presence of ATP at
the other end of the miRNAs. The RT primer complementary of the 3' adaptor was added at this
stage with which it will form a duplex thereby reducing the ligation between adaptors. A reverse
transcription was therefore performed from the RT primer and finally these captured miRNAs were
amplified by PCR with primers complementary to the 3' and 5' adaptors. During this PCR a specific
barcode was incorporated allowing individualization of each library. Each PCR was loaded on the
Fragment Analyzer (AATI) for a precise quantification of each miRNA peak of interest. Based on these
results an equimolar pool of about ten of different samples were performed. Finally the pooled PCR
product was loaded on PAGE in order to excise the band of miRNA that was extracted and purified on
a Qiagen MinElute column. Finally the pooled PCR product was loaded on PAGE in order to excise the
band of miRNA that was extracted and purified on a Qiagen MinElute column.

After the sequencing platform generated the sequencing images, the data were analyzed in three
steps: image analysis, base calling and bcl conversion. CASAVA (4) demultiplexed multiplexed
samples during the bcl conversion step. Convert *bcl files into compressed FASTQ files. To do some
quality control checks on raw sequence data, fastqc software was used. Finally, the script
"Trim_adapter", provided by mirExpress software, handled the sequence file which contained
adapter or not according the input of adaptor sequence. The sequence adaptor was trimmed on
sequence data.

For each sample, FASTA files were processed by miRanalyzer0.3 software (5) to obtain counts for
each mir of mirBase v18 (6).

Genome data: 88 HSNCC samples were analyzed with lllumina HumanCNV370-Quad v3.0 chips,
containing 373,397 probes. Hybridization was performed by IntegraGen (Evry, France), according to
the instructions provided by the array manufacturer. Raw fluorescent signals were imported and
normalized into lllumina BeadStudio software as previously described (7) to obtain the log R ratio
(LRR) and B Allele Frequency (BAF) for each SNP. The tQN (8) normalization procedure was then
applied to correct for the asymmetry in BAF signals due to the bias between the two dyes used in
[llumina assays. Genomic profiles were segmented by applying the circular binary segmentation
algorithm (DNAcopy package, Bioconductor) (9, 10) to the LRR and BAF data separately, as previously
described (11, 12). The absolute copy numbers and genotype status of segments were then
determined using the Genome Alteration Print (GAP) method (11). In brief, the GAP pattern of each
sample (a sideview projection of segmented LRR and BAF) is built, and the best-fitting model GAP is
used to determine the ploidy of the sample, the contamination by normal cells, and the absolute
copy number and genotype corresponding to each cluster of segments. Segments with an absolute
copy number above (resp. below) the ploidy of the sample were considered as gains (resp. losses).

The Genomic Identification of Significant Targets In Cancer (GISTIC) methodology (13) was used to
identify significantly recurrent chromosome aberrations in our data set. In short, a G score is
computed for each genomic marker on the array that is proportional to both the frequency and
amplitude of copy number changes at each location. GISTIC then determines the distribution of the G
scores that would be expected by chance, by permuting the locations of the markers in each tumor.



A significance threshold is determined from this distribution, above which aberrations are deemed to
be significantly recurrent. For each significant aberration, a “peak region” (region with the greatest
frequency and amplitude of aberration, most likely to contain the driver genes) is defined, and GISTIC
determines whether the signal is primarily due to broad or focal events. GISTIC was run on the Gene
Pattern platform of the Broad Institute (14). For more confidence, peak regions were extended such
that each peak border was validated by at least two samples in the data set.

Omics Analysis

Except where indicated, all transcriptome and genome analysis are carried out using either an
assortment of R system software (15) packages including those of Bioconductor (9) (V2.9) or original
R codes. R packages and versions are indicated where appropriate.

1- Unsupervised classification
Three methods were used to find unsupervised clusters within the four omics.

* A model-based clustering method called RPMM for “Recursively Partitioned Mixture Model”
(16). This method models beta distributions specifically for the beta-values of methylation
data and it also models gaussian distributions for the other data types. RPMM estimates
parameters of mixture models via recursive Expectation-Maximization algorithms and it
determines the final clustering thanks to Bayesian Information Criteria (BIC). See (16) for
more details.

* A consensus clustering method proposed by Monti et al. in (17). This method perturbs the
original data via resampling techniques. For each perturbed data set, a clustering algorithm is
performed. A consensus clustering among the multiple runs are then assessed by taking the
average over the connectivity matrices of every perturbed dataset. See (17) for more details.
The Bioconductor R package ConsensusClusterPlus was then used.

* In (18) we presented another method performing a consensus clustering. This method can be
detailed in the six following steps. This method was used in a subgroup of our transcriptomic
datain (1):

o Unsupervised probe set selection : Probe set’s unsupervised selection was based on
the two following criteria: a p-value of a variance test (see below) less than 0.01, a
“robust” coefficient of variation (rCV) less than 10 and superior to a given rCV
percentile. Eight rCV percentile thresholds were used (60%; 70%; 80%; 90%; 95%;
97.5%; 99%; 99.5%) yielding 8 lists of probe sets.

o Variance test: For each probe set (P) we tested whether its variance across samples
was different from the median of the variances of all the probe sets. The statistic
used was ((n-1)xVar(P) / Varmes), where n refers to the number of samples. This
statistic was compared to a percentile of the Chi-square distribution with (n-1)
degrees of freedom and yielded a p-value for each probe set. This criteria is the same
used in the filtering tool of BRB ArrayTools software (linus.nci.nih.gov/BRB-

ArrayTools.html), described in the User’s Manual.




o Robust coefficient of variation: For each probe set, the rCV is calculated as follows:
having ordered the intensity values of the n samples from min to max, we eliminate
the minimum value and the maximum value and calculate the coefficient of variation
(CV) for the rest of the values.

o Obtaining a series of 24 dendrograms: We performed hierarchical clustering of the
samples, using samples profiles restricted to each of the 8 probe sets lists obtained
via unsupervised selection (as described above), for 3 different linkage methods
(average, complete and Ward’s), using 1-Pearson correlation as a distance metric
(package cluster V1.9.3). This analysis produced 24 dendrograms.

o Similarity score To compare two dendrograms, we compare the two partitions in k
clusters (k = 2..18) being obtained from these two dendrograms. To compare a pair
of partitions, we used a similarity measure corresponding to the symmetric
difference distance (19) NB: A similarity matrix A can be obtained from distance a
matrix B by posing Aij = X — Bij, where for any pair (i,j), Bij < X.

o Calculus of a consensus dendrogram and a consensus partition To identify the
groups of samples that consistently clustered together in the 24 dendrograms (that is
robust clusters obtained independently from a given clustering method and/or
threshold for unsupervised genes selection), we first calculated a consensus
dendrogram using an algorithm derived from Diday (20), and similar to the approach
used by (17). We proceeded as follows: each of the 24 dendrograms was cut in k
clusters, thus yielding 24 partitions. We then calculated the (N,N) symmetrical matrix
S of sample’s co-classification (N = number of samples), giving for each pair of
samples the number of times they were in the same cluster group in the 24
partitions (from 0 to 24). S is a similarity matrix, and a corresponding distance matrix
D is obtained by posing D(i,j) = 24 — S(i,j) (i.e. A(i,j) = max(B) — B(i,j)). Finally to obtain
the consensus dendrogram we use the distance D and complete linkage hierarchical
clustering method. Then, cutting this consensus dendrogram in k clusters, we

obtained a consensus partition.

Only the results obtained with the RPMM method were described in the paper.
Nevertheless, we showed a strong association between the three methods for the four omics (Fisher
exact pvalues from 2.10E-04 to 2.49E-19).

2- Differential Analysis

Since the different studied omics have different density distributions, several differential analysis
methods were used.

Transcriptome data: Based on the RMA log, single-intensity expression data, we used moderate T-

tests to identify genes differentially expressed between groups of samples, using limma R package.
The H1 proportion of T-tests over the set of measured transcripts was estimated using B Storey
method : (1 — 2 x mean{ if(p; > 0.5) then 1 else O} probe set i:1.55¢) (21). Anova models were used for
multigroup comparison. To control for multiple testing we measured the local false discovery rate.



Methylome data: Because of the beta distribution of the beta values, Wilcoxon tests were used to

identify genes differentially methylated between groups of samples. The H1 proportion of T-tests
over the set of measured transcripts was estimated using B Storey method : (1 — 2 x mean{ if(p; >
0.5) then 1 else 0} probe seti:1.55¢) (21). Anova models were used for multigroup comparison. To control
for multiple testing we measured the local false discovery rate.

miRNome data: Differential expression (DE) analysis is performed using likelihood ratio tests (LRT)
based on a negative binomial model for gene-level read counts. We used the Bioconductor R package
edgeR (22) to fit a negative binomial model to gene-level read counts and perform likelihood ratio
tests of DE. edgeR was used on the original counts by passing an offset to the generalized linear
model. This method was also used on normalized data. Finally, a Wilcoxon test was performed. The
results of these three methods were used to select differentially expressed microRNAs.

Genome data: we used moderate T-tests to identify differential aberrations between groups of
samples, using limma R package. The H1 proportion of T-tests over the set of measured transcripts
was estimated using B Storey method : (1 — 2 x mean{ if(p; > 0.5) then 1 else 0} yrope set i:1..55x) (21).
Because of the large number of probes, multiple test correction was not performed but we used the
sensitivity and the specificity related to each probe to select the probes characterizing the R1
subgroup.

3- Signaling pathway analysis

To identify biological features associated with unsupervised samples partitions, 17306 pathways
collected from KEGG, GO, MSigDB, SMD and Biocarta (and related genes) were tested. Four methods
were used to compare gene sets with sample groups:

* GSA (23): R package GSA

* globaltest (24) R package globaltest

* SAM-GS (25): original R code (available at http://www.ualberta.ca/~yyasui/SAM-GS/SAM-

GS%20code.txt)

* Tuckey approach (algorithm described in the table 4 from (26): original R code
Each method gave a p-value (based on Monte-Carlo simulations). The lower the p-value, the more
the genes in the gene set that are differentially expressed between the sample groups. To aggregate
the results of the four methods, given a list of gene sets (pathways/ GO terms/...), we first sorted the
list of gene sets for each method according to p-value, and then we calculated for each gene set the
geometric mean rank across the four methods. The final order is based on this mean rank.
For the miRNome data, genes used in the signaling pathway analysis are the targets predicted
simultaneously by mirTarget2.0 (27) and miRanda (28).

4- Survival analysis

Survival time was calculated from the date of surgical resection. Patients who were lost to follow-up
or alive at the time of the study were treated as censored events. Survival curves were calculated
according to the Kaplan-Meier method (function Surv, R package survival, V2.29) and differences
between curves were assessed using the log-rank test (function survdiff, R package survival).

To find clinical criteria related to metastasis-free survival, overall survival or disease-free survival, we
built univariate and multivariate cox models (function coxph, R package survival) and we selected
clinical criteria on the score test p-value of the cox models. The coxph function was also used to
calculate adjusted models (using the parameter strata).



Events related to metastasis-free survival included the metastasis development whatever the body
localization (Bone, CNS, kidney, lung...). Events related to disease-free survival included death events
associated with the disease (metastasis and/or loco-regional relapse) contrarily to the overall survival
that did not distinguish the death cause.

5- Classifier building
Methylome data: the training set was composed of our 84 samples analyzed by the lllumina

HumanMethylation27K arrays and the validation set was our independent data set composed of 101
samples analyzed by the Illumina HumanMethylation450K arrays.

A centroid based predictor was build using the differentially methylated genes between the studied
groups. A gene was defined differentially methylated when the wilcoxon pvalue was less than 1e-03.

A manhattan distance metric was used to predict either R1 versus non-R1 or Me.1 vs Me.2+Me.3.

Transcriptome data: the training set was composed of our 89 samples with transcriptome data and

the validation set was the 44 samples of Cohen et al. (29).

A centroid based predictor was build using the differentially expressed genes between the studied
groups. A gene was defined differentially expressed when the moderatet-test pvalue was less than
1le-05. A dqda distance metric was used to predict either R1 versus non-R1 or T.1 vs T.2+T.3.

6- Controls for batch effects.

Transcriptome data. We used probes related to ubiquitously expressed genes (actin and GAPDH). For
the 22 probes associated with these genes, there are no differences between the R1 and non-R1
groups (moderate t-test g-values from 2.78E-01 to 9.61E-01).

Methylome data. We used the background estimate as control. No difference in background
intensity was found between R1 and non-R1 (moderate t-test p-value = 6.68E-01).

miRNome data. Only flow cell lane effects may influence the sequencing data. There is no association
between the used flow cell lane and the R1 subgroup (Fisher-exact p-value = 7.12E-01).

Genomic data. Ee used probes that are well known to be CNVs in the literature. Three probes were

chosen that have been cited in 22 papers to be CNV. No difference is observed in the groups R1 and
non-R1 for these three probes (moderate t-test p-value = 8.25E-01).

Validation of omic data by alternative technologies

1. Gene expression assay

Total RNA were extracted from frozen tumor tissues using DNA/RNA allprep minikits (Qiagen,
France), according to the manufacturer’s instructions. The integrity of extracted RNA was verified on
an Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA). RNA concentrations were
measured using a ND-1000 NanoDrop spectrophotometer (Labtech, Palaiseau, France). 0.5 pg of
extracted RNA was used for cDNA synthesis using the iScript™ cDNA Synthesis Kit (Bio-Rad),
according to the manufacturer’s instructions. One pl of diluted cDNA corresponding to either 5 ng or
1.25 ng of reverse transcribed RNA, was analyzed with SyberGreen (Roche, Meylan, France), in
duplicate, using the LightCycler 480 real-time PCR system c). gRT-PCR data were analyzed using
LightCycler® 480 software. Ct levels were normalized to the average Ct values of 2 internal controls




(housekeeping genes): UBB (Ubiquitine B) and RPLPO (Ribosomal Protein Large PO0). The following
genes were evaluated: AIM2 (Absent in melanoma 2); COL9A3 (Collagen, Type IX, alpha 3); DSG3
(Desmoglein 3); KRT16 (Keratin 16); SFRP1 (Secreted Frizzled-related protein 1).

The primer pair sequences were as follow:

UBB forward: 5’-GCTTTGTTGGGTGAGCTTGT-3’
UBB reverse: 5'-CGAAGATCTGCATTTTGACCT-3’
RPLPO forward: 5-GAAGGCTGTGGTGCTGATGG-3’
RPLPO reverse:5’- CCGGATATGAGGCAGCAGTT-3’
AIM2 forward: 5’- GCTGCACCAAAAGTCTCTCC-3’
AIM2 reverse: 5’- TGCCTTCTTGGGTCTCAAAC-3’
COL9A3 forward: 5’-CAACGTGAGGAAGCAAGTGA-3’
COL9A3 reverse: 5'-AGGGCCTTTTGAGGTATGCT-3’
DSG3 forward: 5’-GGGCTCTTCCCCAGAACTAC-3’
DSG3 reverse: 5’-CTCCTTCTCTGCAGGGTTTG-3’
KRT16 forward: 5’-TCCCCAGCTGCATATAAAGG-3’
KRT16 reverse: 5'-GAGCTGGAGGAGGTGAACTG-3’
SFRP1 forward: 5’-AAGGGAGGCTCTCTGTAGGC-3’
SFRP1 reverse: 5’-ACCTTGGCCCTAGCGATAAT-3

2. miRNA expression assay

Total RNA was extracted from frozen tumor tissues using the miRNeasy extraction kit (Qiagen,
France), according to the manufacturer’s instructions. The integrity of extracted RNA was verified on
an Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA). RNA concentrations were
measured using a ND-1000 NanoDrop spectrophotometer (Labtech, Palaiseau, France). 0.1 pg of
extracted RNA was used for cDNA synthesis using the miScript Reverse Transcription Kit (Qiagen,
France) according to the manufacturer’s instructions. qRT-PCR was performed using this cDNA as a
template in a LC480 thermocycler (Roche, Meylan, France), using the miScript SYBR Green PCR kit
(Qiagen, France). qRT-PCR data were analyzed using LightCycler® 480 software. Ct levels were
normalized to the average Ct values of 2 internal controls: RNU44 and let-7a.

The primer sequences were:

Let-7a: 5’-TGAGGTAGTAGGTTGTATAGTT-3’

RNU44: 5’-TGCTGACTGAACATGAAGGTCT-3’

The expression of miR-1 and miR-345 was measured with Qiagen QuantiTect primers: Hs_miR-1_2
miScript Primer Assay, MS00008358, and Hs_miR-345 3 miScript Primer Assay, MS00031766,
respectively.

3. Methylation assays

Genomic DNA was extracted from frozen tumor tissues using DNA/RNA allprep minikits (Qiagen,
France), according to the manufacturer’s instructions. 2 ug DNA was converted with sodium bisulfite
using the EpiTect Bisulfite Kit (Qiagen, France), according to the manufacturer’s instructions. GPR55
and IHH primers that surround the methylation sites to be probed (cg20287234 and cg 25908985)
were designed with methprimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi). The
amplicons contain Tagl restriction sites (TCGA) that will only be cut by the enzyme if the CpG was
methylated and not modified by bisulfite. The primers are complementary to the bisulfite-modified
sequences (by converting Gs to As):

GPR55 forward: 5'-TTTGGTTTTTAGTAAGTATTTGTTTAGGG-3’

GPR55 reverse: 5’-TAAACTTTATACACACCTATCCCAACTC-3’

IHH forward: 5'-GTATATTGGGGTTGAATTGTTTGTAG-3’

IHH reverse: 5’-ACACTTCTACCTAATCCTATTACTACTACT-3’

PCR products were generated using the EpiTect HRM PCR Kit (Qiagen, France), according to the
manufacturer’s instructions, and touchdown PCR conditions, as follows:




* 95°C:5min
* 95°C:30sec

62->52°C: 30 sec.

72°C: 1 min

=>» 10 cycles with a gradual decrease of hybridization Tm: 1.0°C per cycle.
* 95°C:30sec

52°C: 30 sec

72°C: 1 min

=>» 30 cycles.
e 72°C:5min
PCR products were analyzed by High-Resolution Melting (HRM) in a LC480 thermocycler (Roche,
Meylan, France). Alternatively, DNA was purified with the MinElute® PCR Purification Kit (Qiagen,
France) digested with 10U of Taql (Invitrogen, Life technologies, France) for one hour at 65°C. 10 pl
samples were resolved by electrophoresis on 3% agarose gels.
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SUPPLEMENTARY FIGURE LEGENDS.

Supplementary Figure S1. Venn diagram showing the overlap between patients analyzed at the level
of the genome, transcriptome, methylome and miRNome. N = total number of samples for each type

of analysis. 60 samples were analyzed by all four approaches.

Supplementary Figure S2. Metastasis free survival curves of the predicted R1 subgroup (A) and the
predicted Me.1 and Me.2+3 (C) clusters for the methylation data for 101 independent patient
samples and on the R1 subgroup (B) and the T.1-3 clusters (D) for gene expression data for 44
independent patient samples from Cohen et al.(1). Log-rank analysis was used to compare the

survival distributions of the indicated groups.

Supplementary Figure S3. Metastasis free survival curves of the three unsupervised clusters vMe.1-3

generated by RPMM using the methylation validation data.

Supplementary Figure S4. Box-and-whisker plots of the expression of the AIM2, KRT16, DSG3, SFRP1
and Col9A3 mRNAs (A), and miR-345 and miR-1 (B), as measured by gqRT-PCR on RNA extracts from

R1 and non-R1 tumor samples.

Supplementary Figure S5. Evaluation of the methylation levels of candidate CpG islands. (A)
Methylation scores for cg20287234 and cg 25908985, found in the regions of the GPR55 and IHH
genes, respectively, for six R1 and four non-R1 samples. (B, C) High-Resolution Melting (HRM)-PCR on
bisulfite-converted DNA from the R1 and non-R1 samples using GRP55 (B) and IHH (C) specific

primers.

Supplementary Figure S6. Combined Bisulfite Restriction Analysis (COBRA) of the DNA amplicons
obtained with the GRP55 primers on bisulfite-converted DNA from the six R1 and four non-R1
samples (see Supplementary Figure S5A). PCR amplification products were digested with Taql.
Methylated DNA gives the lower bands that are not resolved on these gels. Non digested DNA from

one R1 sample and one non-R1 sample were loaded on the gel as controls.
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Supplementary Figure S7. Pangenomic profiles of the R1 subgroup (A) and of the other samples (B).
Frequencies of gain (upper part) are shown in red, frequencies of loss (lower part) are shown in

green.

Supplementary Figure S8. Chi2 p values (log10 scale) of the comparison of gains (red) and losses

(green) between R1 and the other samples.
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