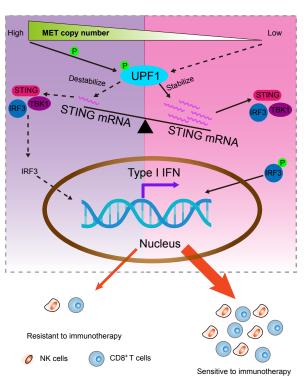

Supplementary Figure S8



#	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	182.02	164.01	164.99	91.51	T(+79.97)					18
2	310.12	292.11	293.09	155.56	K	2032.97	2014.96	2015.95	1016.99	17
3	423.20	405.19	406.17	212.10	L	1904.89	1886.87	1887.85	952.95	16
4	666.23	648.22	649.20	333.62	Y(+79.97)	1791.79	1773.78	1774.77	896.40	15
5	794.29	776.28	777.26	397.64	Q	1548.77	1530.75	1531.74	774.88	14
6	923.33	905.32	906.30	462.17	E	1420.71	1402.70	1403.68	710.85	13
7	1022.40	1004.39	1005.37	511.70	V	1291.67	1273.65	1274.64	646.33	12
8	1151.44	1133.43	1134.42	576.22	E	1192.60	1174.58	1175.57	596.80	11
9	1264.53	1246.52	1247.50	632.76	I	1063.55	1045.54	1046.53	532.28	10
10	1335.56	1317.55	1318.54	668.28	Α	950.47	932.45	933.44	475.73	9
11	1422.60	1404.59	1405.57	711.80	S	879.44	861.42	862.41	440.22	8
12	1521.66	1503.65	1504.64	761.33	V	792.40	774.39	775.37	396.70	7
13	1636.69	1618.68	1619.66	818.85	D	693.33	675.32	676.31	347.17	6
14	1707.73	1689.72	1690.70	854.36	Α	578.31	560.29	561.28	289.65	5
15	1854.80	1836.79	1837.77	927.90	F	507.27	489.26	490.24	254.13	4
16	1982.86	1964.84	1965.83	991.93	Q	360.20	342.20	343.17	180.60	3
17	2039.88	2021.87	2022.85	1020.44	G	232.14	214.13	215.11	116.57	2
18					R	175.12	157.11	158.09	88.06	1

Supplementary Figure S8. UPF1 can be phosphorylated at tyrosine residues in a MET kinase-dependent manner

- **A,** Flag-tagged UPF1 protein was expressed in A549 MET WT and MET KO cells and purified. Coomassie Brilliant Blue (CBB) staining of immunoprecipitation products was resolved on a 4–12% NuPAGE gel. Mass spectrometry was performed to map potential tyrosine phosphorylation sites on UPF1.
- **B-C,** Mass spectrometry was performed to map potential acetylation sites on UPF1. The MS/MS spectrum unambiguously identifies Y818 as the phosphorylated amino acid within the peptide.
- **D,** RIP was performed in MET inhibitor (tivantinib 100 nM for 48h) or DMSO treated H1993 cells using UPF1 antibody, followed by RNA-seq on the extracted RNAs. Heatmap of genes enriched by UPF1 through RIP-seq is shown (three independent replicates).
- **E**, Gene Ontology (GO) analysis of RIP-seq that interacted with anti-UPF1 that were significantly enriched in multiple important biological pathways, including STING and immune-related pathways. The data are shown as *p* value.
- **F,** UPF1 WT or Y818 mutant was expressed in MET amplification cell H1993 with endogenous UPF1 knocked down. RNA-seq was performed on the extracted RNAs. Heatmap of UPF1Y818F-related genes is shown (three independent replicates).
- **G,** Working model: oncogenic MET signaling induces phosphorylation of UPF1 and regulates STING mRNA stability via UPF1. MET mediates immune evasion and modulates the efficiency of anti-PD1/PDL1 immunotherapy via STING signaling.