

Figure S8. An intact adaptive immune response is necessary for efficacy triple therapy in neu/N mice. (A) Tumor bearing neu/N mice were treated with isotype control (gray line) $\alpha \mathrm{CD} 4$ (dashed gray line), $\alpha \mathrm{CD} 8$ (dashed black line), or $\alpha \mathrm{CD} 4+\alpha \mathrm{CD} 8$ (dotted black line) depleting antibodies. Depletion was initiated a week prior to NT2.5 tumor implantation and carried out with biweekly IP injections for the duration of the study. Depletion efficacy of 90% was confirmed before NT2.5 tumor implantation and upon completion of the study. As previously described mice were treated with IT ADU-S100 in sequence with $\alpha \mathrm{OX} 40$ receptor agonistic and α PD-L1 antagonistic antibodies.

Untreated tumor-bearing neu/ N mice were included as control (black line). Tumor
growth was followed for 35 days. (B) Serum from tumor-bearing neu/ N mice receiving mock or ADU-S100 IT injection sequenced with either $\alpha \mathrm{OX} 40$ receptor agonistic and α PD-L1 antagonistic antibodies or isotype matched controls was harvested 7 days post IT injection and HER-2 specific IgG antibody was measured. (C) HER-2-specific IgG antibody was measured in the cohorts of mice from figure (A) 7 days after IT-ADU-S100 injections. Statistical significance was determined through one-way Anova with significant differences in means re-evaluated using Bonferroni post-test. All data is cumulative of $2-3$ experiments of 5 mice/group. ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$, and ${ }^{* * *}$ $\mathrm{p}<0.001$, and ${ }^{* * * *} \mathrm{p}<0.0001$.

