figshare
Browse

Supplementary Figure 4 from Ionizing Radiation Induces Frequent Translocations with Delayed Replication and Condensation

Download (40.71 kB)
journal contribution
posted on 2023-03-30, 16:22 authored by Kevin S. Breger, Leslie Smith, Mitchell S. Turker, Mathew J. Thayer
Supplementary Figure 4 from Ionizing Radiation Induces Frequent Translocations with Delayed Replication and Condensation

History

ARTICLE ABSTRACT

Certain chromosome rearrangements display a significant delay in replication timing that is associated with a delay in mitotic chromosome condensation. Chromosomes with delay in replication timing/delay in mitotic chromosome condensation participate in frequent secondary rearrangements, indicating that cells with delay in replication timing/delay in mitotic chromosome condensation display chromosomal instability. In this report, we show that exposing cell lines or primary blood lymphocytes to ionizing radiation results in chromosomes with the delay in replication timing/delay in mitotic chromosome condensation phenotype, and that the delay in replication timing/delay in mitotic chromosome condensation phenotype occurs predominantly on chromosome translocations. In addition, exposing mice to ionizing radiation also induces cells with delay in replication timing/delay in mitotic chromosome condensation chromosomes that persist for as long as 2 years. Cells containing delay in replication timing/delay in mitotic chromosome condensation chromosomes frequently display hyperdiploid karyotypes, indicating that delay in replication timing/delay in mitotic chromosome condensation is associated with aneuploidy. Finally, using a chromosome engineering strategy, we show that only a subset of chromosome translocations displays delay in replication timing/delay in mitotic chromosome condensation. Our results indicate that specific chromosome rearrangements result in the generation of the delay in replication timing/delay in mitotic chromosome condensation phenotype and that this phenotype occurs frequently in cells exposed to ionizing radiation both in vitro and in vivo.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC