figshare
Browse
00085472can054510-sup-supplementary_figure_2.pdf (877.02 kB)

Supplementary Figure 2 from Regulation of Microtubule-Dependent Protein Transport by the TSC2/Mammalian Target of Rapamycin Pathway

Download (877.02 kB)
journal contribution
posted on 2023-03-30, 16:41 authored by Xiuyun Jiang, Raymond S. Yeung
Supplementary Figure 2 from Regulation of Microtubule-Dependent Protein Transport by the TSC2/Mammalian Target of Rapamycin Pathway

History

ARTICLE ABSTRACT

Protein transport plays a critical role in the interaction of the cell with its environment. Recent studies have identified TSC1 and TSC2, two tumor suppressor genes involved in tuberous sclerosis complex, as regulators of the mammalian target of rapamycin (mTOR) pathway. Cells deficient in TSC1 or TSC2 possess high levels of Rheb-GTP resulting in constitutive mTOR activation. We have shown previously that the TSC1/TSC2 complex is involved in post-Golgi transport of VSVG and caveolin-1 in mammalian cells. Here, we show that modulation of mTOR activity affects caveolin-1 localization and that this effect is independent of p70S6K. Tsc1- and Tsc2-null cells exhibit abnormal caveolin-1 localization that is accompanied by disorganized microtubules in the subcortical region. Analyses of green fluorescent protein-EB1 and tubulin in live mutant cells suggest a failure of the plus-ends to sense cortical signals and to halt microtubule growth. Down-regulation of CLIP-170, a putative mTOR substrate with microtubule-binding properties, rescued the abnormal microtubule arrangement and caveolin-1 localization in Tsc2−/− cells. Together, these findings highlight a novel role of the TSC2/mTOR pathway in regulating microtubule-dependent protein transport. (Cancer Res 2006; 66(10): 5258-69)

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC