

Supplementary Figure S1: Microbiome and Trif are dispensable for melanoma tumor progression.

A–D, B16-F10 melanoma cells were injected into WT and *Trif*^{-/-} mice. **(A)** Mean tumor volume in WT (n = 15) and *Trif*^{-/-} (n = 10) mice. **(B)** Tumor weights of WT (n = 15) and *Trif*^{-/-} (n = 10) mice, 2 weeks after tumor cell injection. **(C)** Representative pictures of tumors from WT and *Trif*^{-/-} mice. **(D)** Immunohistochemistry staining of tumors with F4/80 harvested from WT (n = 5) and *Trif*^{-/-} (n = 5) mice. (Scale bar, 100 µm).

Data are presented as mean \pm SD. (A) Two-way ANOVA with Sidak's multiple comparison test and (B) unpaired *t*-test with Welch's correction were used to determine the significance between the two groups analyzed. ns, not significant ***P* < 0.01.

Supplementary Figure S2: Tumor and splenic immune cell populations in *MyD88^{-/-}* mice

bearing melanoma.

A–B, Flow cytometry analysis of immune cell populations in tumors harvested from WT (n = 7) and $MyD88^{-/-}$ (n = 7) mice. (A) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (B) Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.

C–L, Flow cytometry analysis of immune cell populations in spleens harvested from WT (n = 7) and $MyD88^{-/-}$ (n = 7) mice. (**C**) Pseudocolor plots of F4/80⁺CD11b⁺ macrophage population. (**D**) Quantification of the F4/80⁺CD11b⁺ macrophage population. (**E**) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (**F**) Quantification of the Gr1⁺CD11b⁺ granulocyte population. (**G**) Pseudocolor plots of the B220⁺ B-cell and CD3⁺ T-cell populations. (**H**) Quantification of the B220⁺ B-cell and CD3⁺ T-cell populations. (**I**) Pseudocolor plots of the CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. (**J**) Quantification of the CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. (**J**) Quantification of the CD62L^{Io}CD44^{hi} effector T-cell populations. (**L**) Quantification of the CD62L^{hi}CD44^{Io} naïve and CD62L^{Io}CD44^{hi} effector T-cell populations.

Data are presented as mean ± SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, *P < 0.05, ***P < 0.001.

Supplementary Figure S3: FACS gating strategy for sorting the TAM population in tumors.

Debris and doublets were removed, then TAMs were sorted as the CD45⁺CD3⁻CD19⁻NK1.1⁻CD11b⁺F4/80⁺ population.

Supplementary Figure S4: Tumor and splenic immune cell populations in IL-1R- or IL-1β-

deficient mice bearing melanoma.

A–B, Flow cytometry analysis of immune cell populations in tumors harvested from WT (n = 6), $ll1r^{-l-}$ (n = 6) and $ll1b^{-l-}$ (n = 6) mice. (A) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (B) Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.

C–L, Flow cytometry analysis of immune cell populations in spleens harvested from WT (n = 6), $ll1r^{-l-}$ (n = 6) and $ll1b^{-l-}$ (n = 6) mice. (**C**) Pseudocolor plots of the F4/80⁺CD11b⁺ macrophage population. (**D**) Quantification of the F4/80⁺CD11b⁺ macrophage population. (**E**) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (**F**) Quantification of the Gr1⁺CD11b⁺ granulocyte population. (**G**) Pseudocolor plots of the B220⁺ B-cell and CD3⁺ T-cell populations. (**H**) Quantification of the B220⁺ B-cell and CD3⁺ T-cell populations. (**I**) Pseudocolor plots of the CD4⁺ and CD8⁺ T-cell populations. (**J**) Quantification of the CD4⁺ and CD8⁺ T-cell populations. (**K**) Pseudocolor plots of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations. (**L**) Quantification of the CD62L^{hi}CD44^{lo} naïve and CD62L^{lo}CD44^{hi} effector T-cell populations.

Data are presented as mean \pm SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, ****P* < 0.001.

Supplementary Figure S5: Tumor and splenic immune cell populations in *MyD88*^{△Mye} mice

bearing melanoma.

A–B, Flow cytometry analysis of immune cell populations in tumors harvested from $MyD88^{Ctrl}$ (n = 9) and $MyD88^{\Delta Mye}$ (n = 13) mice. (A) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (B) Pseudocolor plots of B220⁺ B-cell and NK1.1⁺ NK-cell populations.

C–L, Flow cytometry analysis of immune cell populations in spleens harvested from $MyD88^{Ctrl}$ (n = 9) and $MyD88^{\Delta Mye}$ (n = 13) mice. (**C**) Pseudocolor plots of the F4/80⁺CD11b⁺ macrophage population. (**D**) Quantification of the F4/80⁺CD11b⁺ macrophage population. (**E**) Pseudocolor plots of the Gr1⁺CD11b⁺ granulocyte population. (**F**) Quantification of the Gr1⁺CD11b⁺ granulocyte population. (**F**) Quantification of the Gr1⁺CD11b⁺ granulocyte population. (**G**) Pseudocolor plots of the B220⁺ B-cell and CD3⁺ T-cell populations. (**H**) Quantification of the B220⁺ B-cell and CD3⁺ T-cell populations. (**H**) Quantification of the B220⁺ B-cell and CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. (**J**) Quantification of the CD3⁺CD4⁺ and CD3⁺CD8⁺ T-cell populations. (**J**) Quantification of the CD62L^{Io}CD44^{hi} effector T-cell populations. (**L**) Quantification of the CD62L^{hi}CD44^{Io} naïve and CD62L^{Io}CD44^{hi} effector T-cell populations.

Data are presented as mean \pm SD. Unpaired *t*-test, with Welch's correction, was used to determine the statistical significance between the two groups analyzed. ns, not significant, *****P* < 0.0001.

Supplementary Table S1: Average FPKM values of genes in the study analyzed in various cancers.

	Melanoma n = 102	Breast Cancer n = 1075	Colorectal Cancer n = 597	Ovarian Cancer n = 373	Lung Cancer n = 994	Stomach Cancer n = 354
MYD88	16.2	18.3	22.5	18.6	17.5	26
TIRAP	2.3	2.6	2.3	1.3	2.1	3.6
TICAM1	10.5	10.6	14.9	10.4	11.4	18.3
TICAM2	0	0	0	0	0	0
MITF	39.2	2.1	0.9	1	1.6	2.3
CEACAM1	15.9	6.7	43.3	2.5	8.2	19.8