Supporting Information Section

Structures, Biogenesis, and Biological Activities of Pyrano[4,3-*c*]isochromene-4-one Derivatives from the Fungus *Phellinus igniarius*:

Ying Wang,^{†,‡} Xiao-Ya Shang,[†] Su-Juan Wang,^{*,†} Shun-Yan Mo,[†] Shuai Li,[†] Yong-Chun Yang,[†] Fei Ye,[†] Jian-Gong Shi,^{*,†} and Lan He^{.§}

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education), Beijing 100050, China, Key Laboratory for Atmospheric Chemistry (LAC), Centre for Atmosphere Watch and Services (CAWAS), Chinese Academy of Meteorological Sciences (CAMS), Beijing 100081, China, and Department of Chemistry, Beijing Normal University, Beijing 100875, China

^{*}To whom correspondence should be addressed. Tel: 86-10-83154789. Fax: 86-10-63017757. shijg@imm.ac.cn

List of Supporting Information

Page	Contents				
S1	The negative mode ESIMS spectrum of Phelligridin H (1)				
S2	The HR-MALDI-FTMS spectrum of Phelligridin H (1)				
S3	IR spectrum of Phelligridin H (1)				
S4	UV spectrum of Phelligridin H (1)				
S5	The ¹ H NMR spectrum of Phelligridin H (1)				
S6	Regional enlarged ¹ H NMR spectrum of Phelligrdin H (1)				
S7	The 13 C NMR spectrum of Phelligridin H (1)				
S8	The DEPT spectrum of Phelligridin H (1)				
S9	¹ H- ¹ H COSY spectrum of Phelligridin H (1)				
S10	HSQC spectrum of Phelligridin H (1)				
S11	HMBC spectrum of Phelligridin H (1)				
S12	Regional enlarged HMBC spectrum of Phelligridin H (1)				
S13	Regional enlarged HMBC spectrum of Phelligridin H (1)				
S14	The negative mode ESIMS spectrum of Phelligridin I (2)				
S15	The HR-MALDI-FTMS spectrum of Phelligridin I (2)				
S16	IR spectrum of Phelligridin I (2)				
S17	UV spectrum of Phelligridin I (2)				
S18	The ¹ H NMR spectrum of Phelligridin I (2)				
S19	Regional enlarged ¹ H NMR spectrum of Phelligrdin I (2)				
S20	The ¹³ C NMR spectrum of Phelligridin I (2)				
S21	The DEPT spectrum of Phelligridin I (2)				
S22	¹ H- ¹ H COSY spectrum of Phelligridin I (2)				
S23	HSQC spectrum of Phelligridin I (2)				
S24	HMBC spectrum of Phelligridin I (2)				
S25	Regional enlarged HMBC spectrum of Phelligridin I (2)				
S26	Regional enlarged HMBC spectrum of Phelligridin I (2)				
S27	Regional enlarged HMBC spectrum of Phelligridin I (2)				
S28	IR Spectrum of Phelligridin J (3)				
S29	(-)-ESI-MS of Phelligridin J (3)				
S30	HRESI of Phelligridin J (3)				
S31	¹ H NMR Spectrum of Phelligridin J (3)				
S32	¹³ C NMR Spectrum of Phelligridin J (3)				
\$33	gHMBC Spectrum of Phelligridin J (3)				
S34	Table of ¹ H and ¹³ C NMR assignments for Phelligridins H-J (1-3)				
S35	Scheme S1. Biogenetic scheme for phelligridins H (1) and I (2) involving				
	phelligridin D, and phelligridin $J(3)$				
S36	Scheme S2. Biogenetic scheme for phelligridins H (1) and I (2) involving				
	hypholomine B and 3,14'-bihispidinyl.				
S37	Scheme S3. Biogenetic scheme for davallialactone (4), phelligridin F, and inoscavin				
	A from hispidin and hispilone.				

Display Report - Selected Window Selected Analysis

 $\mathbf{S1}$

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument:

IonSpec 4.7 Tesla FTMS

Card Serial Number: I041198

Sample Serial Number: SH-W6 C155

Operator: Hua Qin Date: 2004/08/03

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target m/z = 623.0808 ± 0.003 Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
0	15.994915	0	30

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results: Number of H	lits = 2		(我们化学研究
m/z	Delta m/z	DBE	Formula
623.08202	-0.00122	24.5	C33H19 19
623.07852	0.00228	2.5	C ₁₅ H ₂₇ 26 至 日 米

HR-MS of Phelligridin H (1)

THERMO SPECTRONIC ~ VISION32 SOFTWARE V1.25

Batch Information - scan003

Batch Type	Scan	Operator Name	(None Entered)
Instrument ID	110514	Aborted	No

Results Table - scan003

Data	Mode Absorbance				
	Α	В	С	D	Е
1	C155		1	2	3
2	Cycle01	nm	204.0	262.0	406.0
3	Manual	А	.911	.522	.908

All calculations have been performed to double precision as defined by ANSI/IEEE STD 754-1985 but have been rounded for display purposes.

C155,Cycle01

Page 1, Batch Information - scan003

UV spectrum of Phelligridin H (1)

 $\mathbf{S7}$

DEPT spectrum of Phelligridin H (1)

INOVA-500 DEPT-NMR C155 IN DMSO 06.01 Archive directory: /export/home/vnmr1/vnmrsys/data Sample directory: File: CARBON

Pulse Sequence: DEPT

 $\mathbf{S8}$

~

HMBC spectrum of Phelligridin H (1)

Single Mass Spectrum Deconvolution Report

Analysis Name:	WY000000.D	Instrument:	LC-MSD-Trap-SL	Print Date:	11/28/03 17:26:48
Method:	Copy of TEST.M	Operator:	Administrator	Acq. Date:	11/28/03 17:17:24
Sample Name: Analysis Info:	E13D				

Acquisition Parameter:

Mass Range Mode	Std/Normal	Trap Drive	61.0	Scan Begin	100 m/z	
Ion Polarity	Positive	Skim 1	-40.0 Volt	Scan End	800 m/z	
Ion Source Type	ESI	Skim 2	5.0 Volt	Averages	20 Spectra	
Dry Temp (Set)	325 °C	Octopole RF Amplitude	150.0 Vpp	Max. Accu Time	300000 µs	
Nebulizer (Set)	20.00 psi	Capillary Exit	-137.7 Volt	ICC Target	30000	
Dry Gas (Set)	6.00 l/min			Charge Control	on	

MSD Trap Report v2

Page 1 of 2

ESI-MS of Phelligridin I (2)

Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument:

IonSpec 4.7 Tesla FTMS

Card Serial Number: I041195

Sample Serial Number: SH-W2 E^{120}

Operator: Hua Qin Date: 2004/08/03

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target m/z = 625.0998 ± 0.003 Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
C	12.000000	0	100
Н	1.007825	0	100
0	15.994915	0	30

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results:

Number of Hits = 2

m/z	Delta m/z
625.10118	-0.00138
625.09767	0.00213

HR-MS of Phelligridin I (2)

THERMO SPECTRONIC ~ VISION32 SOFTWARE V1.25

Batch Information - scan006

Batch Type	Scan	Operator Name	(None Entered)
Instrument ID	110514	Aborted	No

Results Table - scan006

Data	Mode Absorbance				
	Α	A B		D	Е
1	E13C4D		1	2	3
2	Cycle01	nm	221.0	254.0	378.0
3	Manual	А	.261	.210	.206

All calculations have been performed to double precision as defined by ANSI/IEEE STD 754-1985 but have been rounded for display purposes.

E13C4D

Description 0.074mg/10mlMeOH

E13C4D,Cycle01

Page 1, Batch Information - scan006

UV spectrum of Phelligridin I (2)

DEPT spectrum of Phelligridin I (2)

INOVA-501 GCOSY E13D IN DMSO 03.11.2**5** Solvent: DMSO Temp: 40.0 C / 313.1 K TROVA-500 "NMR501" INOVA-500 "NMR501" Acq. time 0.196 sec Acq. time 0.196 sec Width 5228.8 Hz Vidth 528.8 Hz Vidth 2005 Sec Fig. 2048 Sec Fig. 2048 Sec Fig. 2048 Sec

(-)-ESIMS of Phelligridin J (3)

\mathfrak{O}
ſ
ridin
nellig
of Pł
MS
ESI
)-HR
ĺΓ.

Data:shxy-11 Sample Name: Description: Ionization Mode:ESI-

History:Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[]];Correct Base[5.0%];Average(MS[1] 1.4..2.7)

Charge number:1 Element:¹²C:0 .. 100, ¹H:0 .. 200, ¹⁶O:0 .. 10

Tolerance:5.00(mmu)

Acquired:12/22/2005 2:01:38 PM Operator:Accutof Mass Calibration data:TFANa_ESI-_1000 Created:12/22/2005 2:13:50 PM Created by:Accutof Unsaturation Number:-1.5 .. 20.0 (Fraction:Both)

INDVA-500 HMBC-NMR SHXY-11 IN DMSO

HMBC Spectrum of Phelligridin J (3)

No.	$\delta_{\mathrm{H}}(1)$	$\delta_{\mathrm{C}}(1)$	$\delta_{ m H}(2)$	$\delta_{\mathrm{C}}(2)$	$\delta_{\mathrm{H}}(3)$	$\delta_{\mathrm{C}}(3)$
1		159.8 s		159.4 s		159.9 s
3		151.7 s		158.6 s		159.5 s
4	7.25 s	103.7 d	6.74 s	99.3 d	6.90 s	100.3 d
4a		160.2 s		160.8 s		160.2 s
6		158.9 s		158.7 s		158.3 s
ба		112.2 s		111.5 s		110.9 s
7	7.58 s	114.8 d	7.50 s	114.5 d	7.51 s	113.7 d
8		147.4 s		146.9 s		146.9 s
9		153.8 s		153.6 s		153.6 s
10	8.38 s	111.0 d	8.26 s	110.6 d	8.38 s	110.2 d
10a		126.8 s		127.1 s		126.2 s
10b		100.5 s		98.8 s		99.9 s
11						157.6 s
1'		108.8 s	6.73 d (16.0)	115.8 d		
2'		155.1 s	7.08 d (16.0)	134.0 d		
3'		119.1 s		126.0 s		
4'	7.08 d (1.5)	114.7 d	7.20 s	112.0 d		
5'		145.5 s		145.4 s		
6'		147.9 s		147.4 s		
7'	6.83 d (7.5)	116.2 d	6.60 s	118.7 d		
8'	7.07 dd (7.5, 1.5)	120.0 d		126.0 s		
2″		157.4 s		162.7 s		
3″		107.8 s		101.5 s		
4″		161.0 s		166.0 s		
5″	7.14 s	95.4 d	6.34 s	100.4 d		
6″		158.2 s		158.3 s		
7″	6.81 d (16.0)	116.4 d	6.80 d (16.0)	116.4 d		
8″	7.24 d (16.0)	134.7 d	7.20 d (16.0)	134.8 d		
9″		127.2 s		127.0 s		
10″	7.06 d (1.5)	114.2 d	7.08 d (1.5)	114.4 d		
11″		145.7 s		145.6 s		
12″		147.5 s		147.4 s		
13″	6.77 d (8.0)	116.1 d	6.78 d (8.0)	115.8 d		
14″	6.98 dd (8.0, 1.5)	120.8 d	7.01 dd (8.0, 1.5)	120.4 d		

Table 1. ¹H and ¹³C NMR data of compounds 1-3. (Recorded in DMSO- d_6)^{*a*}

^{*a*}NMR data were measured at 500 MHz for proton and at 125 MHz for carbon. Proton coupling constants (*J*) in Hz are given in parentheses. The assignments were based on DEPT, 1 H- 1 H COSY, HSQC, and HMBC experiments.

-O<u>H</u> of compound **1**: δ9.12 (brs, 11"-O<u>H</u>), 9.34 (brs, 5'-O<u>H</u>), 9.49 (brs, 6'-O<u>H</u>), 9.60 (brs, 12"-O<u>H</u>), 10.21 (brs, 8-O<u>H</u>), 10.83 (brs, 9-O<u>H</u>).

-O<u>H</u> of compound **2**: δ9.08 (brs, 5'-O<u>H</u>), 9.15 (brs, 11"-O<u>H</u>), 9.48 (brs, 6'-O<u>H</u>), 9.59 (brs, 12"-O<u>H</u>), 10.08 (brs, 8-O<u>H</u>), 10.71 (brs, 9-O<u>H</u>), 11.42 (brs, 4"-O<u>H</u>).

Scheme S1. Biogenetic scheme for phelligridins H (1) and I (2) involving phelligridin D, and phelligridin J (3)

Scheme S2. Biogenetic scheme for phelligridins H (1) and I (2) involving hypholomine B and 3,14'-bihispidinyl.

Scheme S3. Biogenetic scheme for davallialactone (4), phelligridin F, and inoscavin A from hispidin and hispilone.

