STRUCTURE OF OXIDIZED HYDROLYSIS LIGNIN

Dmitriy N. Zakusilo,^a Edward I. Evstigneyev,^a Alexandr Yu. Ivanov,^b Anton S. Mazur,^b Elena A. Bessonova,^c Oussama Abdelhamid Mammeri,^c Aleksander V. Vasilyev*^{a,c}

^aDepartment of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, Russia, 194021. E-mails: <u>aleksvasil@mail.ru</u>, <u>a.vasilyev@spbu.ru</u> ^bCenter for Magnetic Resonance, Research park, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, Petrodvoretz, Russia, 198504. ^cInstitute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, Russia, 199034.

Contents

1. ¹ H NMR spectra of <i>cis-, cis-</i> muconic acid 1 in the acid H_2SO_4 and TfOH showing the formation	l
of <i>cis-,trans</i> -muconic acid 1, muconolactone 2 and dilactone 3S	2
2. NMR and IR spectra of derivatives of oxidized hydrolysis lignin	1
3. X-ray data for compound 3	5

1. ¹H NMR spectra of *cis-,cis-*muconic acid 1 in the acid H₂SO₄ and TfOH showing the formation of *cis-,trans-*muconic acid 1, muconolactone 2 and dilactone 3

Muconic acid in H₂SO₄+H₂O

Fig. S1. Monitoring of ¹H NMR spectra of *cis-, cis-*muconic acid **1** in H₂SO₄-H₂O (400 MHz).

Muconic acid in TfOH

Fig. S7. ¹H NMR spectrum of muconic acid in H₂SO₄-H₂O (400 MHz), (r.t., after 8 d).

5.0 f1 (мд)

4.5

F001

3.0

2.5

2.0

1.5

1.0

0.5

3.5

4.0

1.73 A

6.0

1.00-4

5.5

P.62-I

6.5

7.0

≥ 000 2 000 = 2000

8.0

7.5

8.5

9.0

10.0

9.5

Fig. S10. ¹H NMR spectrum of muconic acid in H₂SO₄-H₂O (400 MHz), (r.t., after 4.5 months and heating at 80°C, 2h).

Fig. S11. ¹H NMR spectrum of muconic acid in H₂SO₄-H₂O (400 MHz), (r.t., after 4.5 months and heating at 80°C, 32 h).

Fig. S13. ¹H NMR spectrum of muconic acid in TfOH (400 MHz), (r.t., after 0.25 h).

Fig. S14. ¹H NMR spectrum of muconic acid in TfOH (400 MHz), (r.t., after 2 h).

Fig. S15. ¹H NMR spectrum of muconic acid in TfOH (400 MHz), (r.t., after 4 h).

Fig. S17. ¹H NMR spectrum of muconic acid in TfOH (400 MHz), (r.t., after 24 h and heating at 80°C, 24 h).

id8404_87872_OGL_114_salt_CI_13C 12.5kHz -151.73 -12625 -166.69 -1144 73.03 521 44.73 4E+08 4E+08 -3E+08 -2E+08 -2E+08 -2E+08 -1E+08 -5E+07 Mariel Laward -0 1 4 181 250 110 90 f1 (мд) 50 40 30 150 80 70 60 20 10 230 210 190 170 130 0 -10 -20 -30 -40 -50

2. NMR and IR spectra of derivatives of oxidized hydrolysis lignin

Fig. S18. Solid state ¹³C NMR spectrum of Cl-OHL (100 MHz).

Fig. S19. IR spectrum of Cl-OHL (KBr).

Fig. S20. Solid state ¹³C NMR spectrum of NH₂-OHL (100 MHz).

Fig. S21. IR spectrum of NH₂-OHL (KBr).

S13

Fig. S24. Solid state ¹³C NMR spectrum of MeO-OHL (100 MHz).

Fig. S25. IR spectrum of MeO-OHL (KBr).

3. X-ray data for compound 3

Compound 3

Table S1. Crystal data and	structure refinement for 3.
Identificationcode	zak3
Empiricalformula	$C_6H_6O_4$
Formulaweight	142.11
Temperature/K	100(2)
Crystalsystem	monoclinic
Spacegroup	P2 ₁ /n
a/Å	9.9244(15)
b/Å	6.1496(6)
c/Å	10.3688(19)
$\alpha/^{\circ}$	90
β/°	113.69(2)
$\gamma/^{\circ}$	90
Volume/Å ³	579.52(17)
Z	4
$\rho_{calc}g/cm^3$	1.629
μ/mm^{-1}	0.140
F(000)	296.0
Crystalsize/mm ³	$0.26\times0.16\times0.10$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/ ^o	^o 7.348 to 54.972
Indexranges	$-10 \le h \le 12, -7 \le k \le 7, -13 \le l \le 13$
Reflectionscollected	3012
Independentreflections	1322 [$R_{int} = 0.0230, R_{sigma} = 0.0329$]
Data/restraints/parameters	1322/0/91
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0365, wR_2 = 0.0855$
Final R indexes [all data]	$R_1 = 0.0459, wR_2 = 0.0922$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.23

Table S2. Parameter	Fractional Atomic Co rs (Å ² ×10 ³) for 3. U _{eq} is d	ordinates (×10 ⁴) and l efined as 1/3 of of the tra	Equivalent Isotropic ace of the orthogonali	Displacement ised U _{IJ} tensor.
Atom	x	у	z	U(eq)
O7	4760.6(11)	1567.6(16)	3662.2(10)	14.7(2)
03	6201.6(11)	39.5(15)	1733.7(10)	14.0(3)
O10	3534.5(11)	4550.6(17)	2605.1(12)	19.0(3)
O6	8542.2(11)	6.5(16)	3257.0(12)	19.1(3)
C8	3976.8(15)	2762(2)	2506.0(15)	13.7(3)
C4	7278.0(16)	-340(2)	3026.4(15)	13.6(3)
C5	6614.4(15)	-1195(2)	4004.3(15)	14.2(3)
С9	3773.2(15)	1517(2)	1185.6(15)	14.4(3)
C1	5013.6(15)	-626(2)	3268.7(15)	13.3(3)
C2	4757.2(15)	-440(2)	1713.4(15)	13.1(3)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
O7	17.4(5)	13.8(5)	13.4(5)	-1.1(4)	6.6(4)	2.4(4)
O3	14.3(5)	14.6(5)	14.7(5)	1.4(4)	7.5(4)	0.7(4)
O10	18.6(5)	15.4(5)	24.0(6)	-1.7(5)	9.5(5)	2.9(4)
06	13.6(5)	16.6(5)	27.8(6)	1.8(5)	9.0(5)	-0.1(4)
C8	10.1(6)	15.0(7)	17.1(7)	0.1(6)	6.7(6)	-0.4(5)
C4	16.3(7)	8.4(6)	16.5(7)	-0.9(6)	6.9(6)	1.5(5)
C5	15.2(7)	12.5(6)	14.1(7)	0.5(6)	5.2(6)	0.4(5)
С9	12.2(6)	16.0(7)	14.5(7)	0.2(6)	4.9(6)	0.8(5)
C1	15.4(7)	10.7(6)	14.6(7)	-0.6(6)	6.9(6)	-0.5(5)
C2	12.0(6)	12.5(6)	14.1(7)	-2.3(6)	4.7(5)	-2.0(5)

Table S4. Bond Lengths for 3.							
Aton	n Atom	Length/Å	Ator	n Atom	Length/Å		
O7	C8	1.3539(17)	C8	C9	1.510(2)		
O7	C1	1.4599(16)	C4	C5	1.5084(19)		
O3	C4	1.3571(18)	C5	C1	1.5016(19)		
O3	C2	1.4555(16)	C9	C2	1.507(2)		
O10	C8	1.2036(17)	C1	C2	1.533(2)		
06	C4	1.1982(17)					

Table S5. Bond Angles for 3.

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom		Angle/°	
C8	O7	C1	110.86(11)	C1	C5	C4	103.64(11)
C4	03	C2	111.06(10)	C2	C9	C8	104.16(11)
O7	C8	C9	110.34(11)	O 7	C1	C5	109.83(11)
O10	C8	O7	121.32(13)	O 7	C1	C2	104.52(11)
O10	C8	C9	128.34(14)	C5	C1	C2	104.26(11)
03	C4	C5	109.93(11)	O3	C2	C9	109.51(11)
06	C4	O3	120.81(13)	O3	C2	C1	104.70(11)
06	C4	C5	129.26(14)	C9	C2	C1	104.54(11)

Table S6 Torsion Angles for 3.

Α	BCD	Angle/°	ABCD	Angle/°
O 7	C8 C9 C2	-9.05(14)	C4 O3 C2 C9	125.75(12)
O 7	C1 C2 O3	91.47(11)	C4 O3 C2 C1	14.15(14)
07	C1 C2 C9	-23.66(13)	C4C5C1O7	-87.25(13)
03	C4 C5 C1	-16.81(14)	C4 C5 C1 C2	24.26(14)
O10	C8 C9 C2	171.42(14)	C5 C1 C2 O3	-23.83(14)
06	C4 C5 C1	163.11(14)	C5 C1 C2 C9	-138.97(11)
C8	O7C1C5	130.41(12)	C1 O7 C8 O10	173.07(12)
C8	O7C1C2	19.07(14)	C1 O7 C8 C9	-6.50(14)
C8	C9 C2 O3	-91.89(13)	C2O3C4O6	-178.40(12)
C8	C9 C2 C1	19.82(14)	C2 O3 C4 C5	1.54(14)

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3.

Atom	x	у	z	U(eq)
H5A	6749	-2756	4127	17
H5B	7051	-498	4919	17
H9A	2755	1081	684	17
H9B	4069	2387	563	17
H1	4371	-1707	3428	16
H2	4323	-1761	1179	16

Crystal structure determination of 3

Crystal Data for C₆H₆O₄ (M=142.11 g/mol): monoclinic, space group P2₁/n (no. 14), a = 9.9244(15) Å, b = 6.1496(6) Å, c = 10.3688(19) Å, $\beta = 113.69(2)^{\circ}$, V = 579.52(17) Å³, Z = 4, T = 100(2) K, μ (MoK α) = 0.140 mm⁻¹, *Dcalc* = 1.629 g/cm³, 3012 reflections measured (7.348° $\leq 2\Theta \leq 54.972^{\circ}$), 1322 unique ($R_{int} = 0.0230$, $R_{sigma} = 0.0329$) which were used in all calculations. The final R_1 was 0.0365 (I >2 σ (I)) and wR_2 was 0.0922 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2.a Ternary CH refined with riding coordinates: C1(H1), C2(H2) 2.b Secondary CH2 refined with riding coordinates: C5(H5A,H5B), C9(H9A,H9B)