posted on 2015-12-17, 03:27authored byRui Wu, John A. Latham, Danqi Chen, Jeremiah Farelli, Hong Zhao, Kaila Matthews, Karen N. Allen, Debra Dunaway-Mariano
Herein,
the structural determinants for substrate recognition and
catalysis in two hotdog-fold thioesterase paralogs, YbdB and YdiI
from Escherichia coli, are identified and analyzed
to provide insight into the evolution of biological function in the
hotdog-fold enzyme superfamily. The X-ray crystal structures of YbdB
and YdiI, in complex with inert substrate analogs, determined in this
study revealed the locations of the respective thioester substrate
binding sites and the identity of the residues positioned for substrate
binding and catalysis. The importance of each of these residues was
assessed through amino acid replacements followed by steady-state
kinetic analyses of the corresponding site-directed mutants. Transient
kinetic and solvent 18O-labeling studies were then carried
out to provide insight into the role of Glu63 posited to function
as the nucleophile or general base in catalysis. Finally, the structure–function–mechanism
profiles of the two paralogs, along with that of a more distant homolog,
were compared to identify conserved elements of substrate recognition
and catalysis, which define the core traits of the hotdog-fold thioesterase
family, as well as structural features that are unique to each thioesterase.
Founded on the insight gained from this analysis, we conclude that
the promiscuity revealed by in vitro substrate activity
determinations, and posited to facilitate the evolution of new biological
function, is the product of intrinsic plasticity in substrate binding
as well as in the catalytic mechanism.