jp307211h_si_001.pdf (422.37 kB)
Download fileStructural Modification of TiO2 Surfaces in Bulk Water and Binding Motifs of a Functionalized C60 on TiO2 Anatase and Rutile Surfaces in Vacuo and in Water: Molecular Dynamics Studies
journal contribution
posted on 2016-02-20, 09:58 authored by Alexey
L. Kaledin, Tianquan Lian, Craig L. Hill, Djamaladdin G. MusaevThe nature of several TiO2 surfaces in liquid
water,
as well as the adsorption of a functionalized C60, L*C60 (where L is a carboxylic acid),
on TiO2 anatase and rutile low index surfaces in vacuo
and in liquid water have been studied at the self-consistent charge
density functional tight-binding (SCC-DFTB) level of theory. It is
shown that the SCC-DFTB method provides very good agreement with the
high-level DFT data. The typical binding motif of L*C60@TiO2 is found to be the formation of a strong HC1C(O2H)O1–Ti5C/O1–Ti4C bond with a distance of 2.0–2.1 Å and a weaker
HC1CO1O2–H···O2C/O2···H–O2C hydrogen
bond. In some cases, a terminal OH of the linking group coordinates
with a Ti–O–Ti bridging oxygen and loses the H to the
surface. The adsorption energies in vacuum range between 21 and 82
kcal/mol depending on the surface. The density of states of these
species reveals the presence of peaks below the surface conduction
band upon ligand adsorption, which is due to the low-lying lowest
unoccupied molecular orbitals (LUMOs) of the L*C60. Electron transfer from the surface to the
ligand is thus possible via the initial UV photoexcitation of the
surface followed by nonradiative relaxation of the excited electron
to the LUMO of the ligand. This pattern was observed for all six surfaces
considered in the present work. Solvation of C60@TiO2 in liquid
water does not change the qualitative character of surface–ligand
binding. In all cases, the ligand remains bound to the surface in
the presence of water. The interaction of water molecules with the
surface shows various patterns depending on the surface index. Anatase
(101) and (100) surfaces favor nondissociative water adsorption, while
anatase (001) and rutile (001), (110), and (101) surfaces show dissociative
water adsorption which results in OH/OH2-terminated TiO2 surfaces. The latter finding is in agreement with several
previous DFT studies reported by others.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
TiO 2 anatasevacuum rangebinding motifsurface conduction bandUV photoexcitationLUMOwater moleculesTiO 2 Anatasesurface indexterminal OHTiO 2 SurfacesStructural Modificationnonradiative relaxationcharge densityDFT dataHC 1CO hydrogen bondDFT studiesFunctionalized C 60Rutile Surfacesadsorption energiesindex surfacesHC 1C bondBinding MotifsMolecular Dynamics StudiesThe natureTiO 2 surfacesgroup coordinatesBulk Waterligand adsorption