jo702312t_si_007.pdf (89.58 kB)
Download fileStructural Effects on Interconversion of Oxygen-Substituted Bisketenes and Cyclobutenediones
journal contribution
posted on 2008-03-07, 00:00 authored by Nanyan Fu, Annette D. Allen, Shinjiro Kobayashi, Thomas T. Tidwell, Sinisa Vukovic, Takeshi Matsuoka, Masaaki MishimaCyclobutenediones 5 disubstituted with HO (a), MeO (b), EtO (c), i-PrO (d), t-BuO (e), PhO (f),
4-MeOC6H4O (g), 4-O2NC6H4O (h), and 3,4-bridging OCH2CH2O (i) substituents upon laser flash
photolysis gave the corresponding bisketenes 6a−i, as detected by their distinctive doublet IR absorptions
between 2075 and 2106 and 2116 and 2140 cm-1. The reactivities in ring closure back to the
cyclobutenediones were greatest for the group 6b−e, with the highest rate constant of 2.95 × 107 s-1 at
25 °C for 6e (RO = t-BuO) in isooctane, were less for 6a (RO = OH, k = 2.57 × 106 s-1 in CH3CN),
while 6f−i were the least reactive, with the lowest rate constant of 3.8 × 104 s-1 in CH3CN for 6h (RO
= 4-O2NC6H4O). The significantly reduced rate constants for 6f−i are attributed to diminution of the
electron-donating ability of oxygen to the cyclobutenediones 5f−h by the ArO substituents compared to
alkoxy groups and to angle strain in the bridged product cyclobutenedione 5i. The reactivities of the
ArO-substituted bisketenes 6f−h in CH3CN varied by a factor of 50 and gave an excellent correlation of
the observed rate constants log k with the σp constants of the aryl substituents. Computational studies at
the B3LYP/6-31G(d) level of ring-closure barriers are consistent with the measured reactivities. Photolysis
of squaric acid (5a) in solution provides a convenient preparation of deltic acid (7).