
Supplementary Material for Sparse Reduced Rank

Huber Regression in High Dimensions

A An Alternating Direction Method of Multipliers Algo-

rithm

In this section, we develop an alternating direction method of multipliers (ADMM) algo-

rithm for solving the convex relaxation (4), which allows us to decouple some of the terms

that are di�cult to optimize jointly (Eckstein and Bertsekas, 1992; Boyd et al., 2010). More

specifically, the convex program is equivalent to

minimize
A,Z,W2Rp⇥q ,D2Rn⇥q

⇢
1

n
`⌧ (Y �D) + � (kWk⇤ + �kZk1,1)

�
,

subject to

0

BBBBBB@

D

Z

W

1

CCCCCCA
=

0

BBBBBB@

X

I

I

1

CCCCCCA
A.

(12)

With some abuse of notation, let B = (BD,BZ ,BW )T, eX = (X, I, I)T, and ⌦ = (D,Z,W)T.

The scaled augmented Lagrangian of (12) takes the form

L⇢(A,D,Z,W,B) =
1

n
`⌧ (Y �D) + � (kWk⇤ + �kZk1,1) +

⇢

2
k⌦� eXA + Bk

2
F,

where A,D,Z,W are the primal variables, and B is the dual variable.

The ADMM algorithm requires the following updates:

1. A
t+1
 argmin

A
L⇢(A,D

t
,W

t
,Z

t
,B

t).

2. D
t+1
 argmin

D
L⇢(At+1

,D,W
t
,Z

t
,B

t).

3. W
t+1
 argmin

W
L⇢(At+1

,D
t+1

,W,Z
t
,B

t).
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4. Z
t+1
 argmin

Z
L⇢(At+1

,D
t+1

,W
t+1

,Z,B
t).

5. B
t+1
 B

t + ⇢(X(At+1)�⌦
t+1).

Update for A: To obtain an update for A, we solve the following optimization problem

minimize
A

���⌦ + B� eXA

���
2

F
.

Thus, we obtain bA = (eXT eX)�1 eXT(⌦ + B).

Update for Z: To obtain an update for Z, we need to solve the following optimization

problem

minimize
Z

1

2
kZ� (A�BZ)k

2
F +

��

⇢
kZk1,1.

Thus, we have bZ = S(A�BZ ,��/⇢).

Update for W: To obtain an update for W, it amounts to solving

minimize
W

1

2
kW � (A�BW )k2F +

�

⇢
kWk⇤.

Let A � BW =
Pmin{p,q}

j=1 !jajb
T
j
be the singular value decomposition of A � BW . Then,

we obtain cW =
Pmin{p,q}

j=1 max (!j � �/⇢, 0)ajb
T
j
.

Update for D: We solve the following problem to obtain an update for D:

minimize
D

1

n
`⌧ (Y �D) +

⇢

2
kD� (XA�BD)k

2
F .

For notational convenience, let C = XA �BD. We can solve the above problem element-

wise:

minimize
Dij

1

n
`⌧ (Yij �Dij) +

⇢

2
(Dij � Cij)

2
.

Recall the Huber loss function from Definition 1 that there are two cases.

2



First, we assume that |Yij �Dij |  ⌧ . Then, the above optimization problem reduces to

minimize
Dij

1

2n
(Yij �Dij)

2 +
⇢

2
(Dij � Cij)

2
.

Thus, we have bDij = (Yij + n⇢Cij)/(1 + n⇢). Substituting this into the constraint |Yij �

Dij |  ⌧ , we have |[n⇢(Yij � Cij)]/(1 + n⇢)|  ⌧ . Thus, bDij = (Yij + n⇢Cij)/(1 + n⇢) if

|[n⇢(Yij � Cij)]/(1 + n⇢)|  ⌧ .

Next, we assume that |Yij�Dij | > ⌧ . To obtain an estimate of Dij in this case, we solve

minimize
Dij

⌧

n
|Yij �Dij | +

⇢

2
(Dij � Cij)

2
.

Let Hij = Yij �Dij . By a change of variable, we consider solving

minimize
Hij

1

2
(Yij � Cij �Hij)

2 +
⌧

n⇢
|Hij |,

which yields the solution bHij = S(Yij � Cij , ⌧/(n⇢)). Thus, we have bDij = Yij � S(Yij �

Cij , ⌧/(n⇢)).

Algorithm 2 summarizes the ADMM algorithm for solving (12). Since the term (eXT eX)�1

can be calculated before Step 2 in Algorithm 2, the computational bottleneck in each

iteration of Algorithm 2 is the same as that of Algorithm 1.

B Proof of Lemma 1

Proof. The proposed Huber loss function can be written as

L⌧ (A) =
1

n

nX

i=1

qX

k=1

`⌧ (Yik �X
T
i·A.k).

Let

Ti⌧ = diag{1(|Yi1 �X
T
i·A·1|  ⌧), . . . , 1(|Yiq �X

T
i·A·q|  ⌧)}.

It can be shown that the pseudo Hessian takes the form

H⌧ (A) =
1

n

nX

i=1

Ti⌧ ⌦Xi·X
T
i·,
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Algorithm 2 An ADMM Algorithm for Solving (12).

1. Initialize the parameters:

(a) primal variables A,D,Z, and W to the zero matrix.

(b) dual variables BD,BZ , and BW to the zero matrix.

(c) constants ⇢ > 0 and ✏ > 0.

2. Iterate until the stopping criterion kAt
�A

t�1
k
2
F/kA

t�1
k
2
F  ✏ is met, where A

t is the value

of A obtained at the tth iteration:

(a) Update A,Z,W,D:

i. A = (eXT eX)�1 eXT(⌦ + B).

ii. Z = S(A � BZ ,��/⇢). Here S denote the soft-thresholding operator, applied

element-wise to a matrix: S(Aij , b) = sign(Aij)max(|Aij |� b, 0).

iii. W =
P

j max (!j � �/⇢, 0)ajb
T
j , where

P
j !jajb

T
j is the singular value decompo-

sition of A�BW .

iv. C = XA�BD. Set

Dij =

8
>>><

>>>:

(Yij + n⇢Cij)/(1 + n⇢), if |n⇢(Yij � Cij)/(1 + n⇢)|  ⌧,

Yij � S(Yij � Cij , ⌧/(n⇢)), otherwise.

(b) Update BD,BZ ,BW :

i. BD = BD + D�XA; ii. BZ = BZ + Z�A; iii. BW = BW + W �A.

where ⌦ is the kronecker product between two matrices. For notational convenience, let

eTi⌧ = diag{1(|Yi1 �X
T
i·A·1| > ⌧), . . . , 1(|Yiq �X

T
i·A·q| > ⌧)}.
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Let eu = vec(U). For any (U,A) 2 C(m, ⇠, ⌘), we have

euT
H⌧ (A)eu = euT

 
1

n

nX

i=1

Ti⌧ ⌦Xi·X
T
i·

!
eu

= euT

 
1

n

nX

i=1

Iq ⌦Xi·X
T
i·

!
eu� euT

 
1

n

nX

i=1

eTi⌧ ⌦Xi·X
T
i·

!
eu

= keS1/2euk22 � euT

 
1

n

nX

i=1

eTi⌧ ⌦Xi·X
T
i·

!
eu,

(13)

where eS = n
�1Pn

i=1 Iq ⌦Xi·X
T
i·. We now obtain an upper bound for each element in eTi⌧ .

For 1  j  q,

1(|Yij �X
T
i·A·j | > ⌧) = 1(|Yij �X

T
i·A

⇤
·j + X

T
i·A

⇤
·j �X

T
i·A·j | > ⌧)

 1(|Eij | > ⌧/2) + 1(|XT
i·(A

⇤
·j �A·j)| > ⌧/2). (14)

Moreover, we have

1(|XT
i·(A

⇤
·j �A·j)| > ⌧/2) = 1

✓
2

⌧
|X

T
i·(A

⇤
·j �A·j)| > 1

◆


2

⌧
|X

T
i·(A

⇤
·j �A·j)| (15)


2⌘

⌧
max
1in

kXi·k1 (16)


2⌘

⌧
. (17)

where the second inequality holds by Holder’s inequality and the condition that kA⇤
·j �

A·jk1  ⌘. Let uj be the jth column of U. Since, eTi⌧ is a diagonal matrix, we obtain

euT

 
1

n

nX

i=1

eTi⌧ ⌦Xi·X
T
i·

!
eu

=
qX

j=1

u
T
j

 
1

n

nX

i=1

Xi·X
T
i· · 1(|Yij �X

T
i·A·j | > ⌧)

!
uj



qX

j=1

u
T
j

 
1

n

nX

i=1

Xi·X
T
i· · 1(|Eij | > ⌧/2)

!
uj

+
qX

j=1

u
T
j

 
1

n

nX

i=1

Xi·X
T
i· · 1(|X

T
i·(A

⇤
·j �A·j)| > ⌧/2)

!
uj


2⌘

⌧
keS1/2euk22 + max

1in

qX

j=1

(XT
i·uj)

2
· max
1jq

 
1

n

nX

i=1

1(|Eij | > ⌧/2)

!
,

(18)
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where the first inequality holds by (14) and the last inequality holds by (15).

By Lemma 11, for any 1  j  q and t > 0, we have

1

n

nX

i=1

1(|Eij | > ⌧/2)  (2/⌧)1+�
⌫� +

p
t/n

with probability at least 1� exp(�2t). Moreover, for any 1  i  n, we have

qX

j=1

|X
T
i·uj |  kX

T
i·k1keuk1  (1 + ⇠)keuSk1  (1 + ⇠)

p
mkeuSk2.

Thus, combining the above with (13) and (18), we have

euT
H⌧ (A)eu � keS1/2euk22 �

2⌘

⌧
keS1/2euk22 � (1 + ⇠)2m

h
(2/⌧)1+�

⌫� +
p

t/n

i
.

Consequently, picking ⌧ � max(8⌘, C(m⌫�)1/(1+�)), t = log(pq)/2, and n > C
0(m2 log(pq))

for su�ciently large C and C
0, we have

euT
H⌧ (A)eu � 3

4
lower �m(1 + ⇠)2

h
(2/⌧)1+�

⌫� +
p

t/n

i
�

1

2
lower,

with probability at least 1� (pq)�1.

The upper bound euT
H⌧ (A)eu  upper can be obtained similarly.

C Proof of Theorem 1

Recall from (4) that the optimization problem takes the form

minimize
A

⇢
L⌧ (A) + � (kAk⇤ + �kAk1,1)

�
, (19)

where we use the notation L⌧ (A) = n
�1Pn

i=1

P
q

k=1 `⌧ (Yik�X
T
i·A.k) for convenience through-

out the proof. We start with stating some facts and notation.

Let A 2 Rp⇥q be a rank r matrix with singular value decomposition U⇤V
T, where

U 2 Rp⇥r, V 2 Rq⇥r, and ⇤ 2 Rr⇥r. The sub-di↵erential of the nuclear norm is then given
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by (see, for instance, Recht et al., 2010)

@kAk⇤ =
�
UV

T + W : W 2 Rp⇥q
,U

T
W = 0,WV = 0, kWk2  1

 
. (20)

Let F(r) = {A 2 Rp⇥q : rank(A)  r} be the algebraic variety of matrices with rank at

most r. Then, the tangent space at A with respect to F(r) is given by

T (A) =
�
UW

T
1 + W2V

T : W1 2 Rq⇥r
,W2 2 Rp⇥r

 
,

where T (A) can be interpreted as a subspace in Rp⇥q (Chandrasekaran et al., 2012). We

now state a connection between the sub-di↵erential of the nuclear norm and its tangent

space. Let PT (A) denote the projection operator onto T (A). Then, it can be shown that

the following relationship holds

eN 2 @kAk⇤ if and only if PT (A)( eN) = UV
T
, kPT (A)?

eNk2  1.

In addition, we define several quantities that will be used in the proof. For any convex

loss function L⌧ (·), the Bregman divergence between bA and A
⇤ is

DL(bA,A
⇤) = L⌧ (bA)� L⌧ (A

⇤)� hrL⌧ (A
⇤), bA�A

⇤
i � 0.

We define the symmetric Bregman divergence as

D
s

L(bA,A
⇤) = DL(bA,A

⇤) + DL(A
⇤
, bA) = hrL⌧ (bA)�rL⌧ (A

⇤), bA�A
⇤
i � 0 (21)

The proof involves obtaining an upper bound and a lower bound for the symmetric Bregman

divergence. To this end, we state some technical lemmas that will be used in the proof.

Lemma 2. Assume that the covariates are standardized such that maxi,j |Xij | = 1 and

that Eik is such that v� = E(|Eik|
1+�) < 1. Pick ⌧ � C1{nv�/ log(pq)}min{1/2,1/(1+�)}, we

have

krL⌧ (A
⇤)k1,1  C2v

1/min(1+�,2)
�

✓
log(pq)

n

◆min{1/2,�/(1+�)}
,

with probability at least 1� (pq)�1, where C1 and C2 are universal constants.
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Lemma 3 (`1,1-Cone Property). Assume that krL⌧ (A⇤)k1,1  �/2. Let bA be a solution

to (4). We have bA falls in the following `1,1-cone

��(bA�A
⇤)Sc

��
1,1


2� + 5

2� � 5

��(bA�A
⇤)S

��
1,1

.

Let U be the linear space spanned by the columns of U, and V the linear space spanned

by the columns of V. We denote by U
? and V

? the orthogonal complements of U and V,

respectively.

Lemma 4 (Nuclear Cone Property). Assume that krL⌧ (A⇤)k1,1  �/2 and � � 1/2. We

have

��PU?(bA�A
⇤)PV?

��
⇤ 

��PU (bA�A
⇤)PV

��
⇤ + (� + 0.5)

���bA�A
⇤�

S
��
1,1

.

Lemma 5 (Restricted Strong Convexity). Under the same conditions as in Lemma 1, for

matrices (A,U) 2 C(m, ⇠, ⌘), we have

D
s

L(A,A
⇤) �

lower

2
kA�A

⇤
k
2
F,

with probability at least 1� (pq)�1.

To prove Theorem 1, we obtain upper and lower bounds for the symmetric Bregman

divergence, respectively.

Proof. Upper bound under Frobenius norm: By the first order optimality condition

of (4), there exists eN 2 @kbAk⇤ and e� 2 @kbAk1,1 such that

rL⌧ (bA) + �( eN + �e�) = 0. (22)

Substituting (22) into (21), we have

D
s

L(bA,A
⇤) = h�� eN� ��e��rL⌧ (A

⇤), bA�A
⇤
i

= hrL⌧ (A
⇤),A⇤

� bAi| {z }
I1

+�h eN,A
⇤
� bAi| {z }

I2

+��he�,A
⇤
� bAi| {z }

I3

.

(23)

8



Upper bound on I1: By the Holder’s inequality, we have

I1  krL⌧ (A
⇤)k1,1kbA�A

⇤
k1,1


�

2
kbA�A

⇤
k1,1

=
�

2

⇣
k(bA�A

⇤)Sk1,1 + k(bA�A
⇤)Sck1,1

⌘


2��

2� � 5
k(bA�A

⇤)Sk1,1,

(24)

where the last inequality holds by Lemma 3.

Upper bound on I2: By the Holder’s inequality, we have

I2  �k eNk1,1kbA�A
⇤
k1,1

 �k eNk2kbA�A
⇤
k1,1

 2�kbA�A
⇤
k1,1


8��

2� � 5
k(bA�A

⇤)Sk1,1,

(25)

where the second inequality holds by the fact that k eNk2  2, and the last inequality holds

by Lemma 3.

Upper bound on I3: Similarly, by Holder’s inequality and using the fact that ke�k1,1 

1, we obtain

I3  ��ke�k1,1kbA�A
⇤
k1,1  ��k

bA�A
⇤
k1,1 

4��2

2� � 5
k(bA�A

⇤)Sk1,1, (26)

where the last inequality holds by Lemma 3.

Thus, substituting (24), (25), and (26) into (23), we obtain

D
s

L(bA,A
⇤) 

4�2 + 10�

2� � 5
�k(bA�A

⇤)Sk1,1 
4�2 + 10�

2� � 5
�
p

sk(bA�A
⇤)SkF, (27)
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where s  rsusv is the sparsity parameter of A
⇤, that is s = |supp(A⇤)|.

Next, we employ Lemma 5 to obtain a lower bound for the symmetric Bregman diver-

gence. Lemma 5 requires the matrix A 2 C(m, ⇠, ⌘). To this end, we construct the matrix

bA⌘ = A
⇤+ ⇣(bA�A

⇤) such that kbA⌘�
bA⇤
k1,1  ⌘ for some ⌘ > 0. If kbA�A

⇤
k < ⌘, we set

⇣ = 1, so bA⌘ = bA. Otherwise, we pick ⇣ 2 (0, 1) such that kbA⌘�A
⇤
k1,1 = ⌘. By Lemma 3,

it can be shown that bA⌘ falls in an `1-cone, and thus, bA⌘ 2 C(m, ⇠, ⌘) with

k(bA⌘ �A
⇤)Sck1,1 

2� + 5

2� � 5
k(bA⌘ �A

⇤)Sk1,1 and kbA⌘ �A
⇤
k1,1  ⌘. (28)

Therefore, by Lemma 5, we have

D
s

L(bA⌘,A
⇤) �

lower

2
kbA⌘ �A

⇤
k
2
F. (29)

By Lemma A.1 of Sun et al. (2018),

D
s

L(bA⌘,A
⇤)  ⇣Ds

L(bA,A
⇤). (30)

Combining (29) and (30) yields

kbA⌘ �A
⇤
k
2
F  ⇣

�1
lower

8�2 + 20�

2� � 5
�
p

skbA�A
⇤
kF.

Since bA�A
⇤ = ⇣

�1(bA⌘ �A
⇤), this yields

kbA⌘ �A
⇤
kF  

�1
lower

8�2 + 20�

2� � 5
�
p

s.

Finally, by (28), we have

kbA⌘ �A
⇤
k1,1 

4�
p

s

2� � 5
k(bA⌘ �A

⇤)SkF  
�1
lower

4�

2� � 5

8�2 + 20�

2� � 5
�s < ⌘,

where the last inequality holds by the assumption that n > Cs
2 log(pq) for some su�ciently

large constant C > 0. By the construction of bA⌘, since kbA⌘�A
⇤
k1,1 < ⌘, we have bA⌘ = bA,

10



implying

kbA�A
⇤
kF  

�1
lower

8�2 + 20�

2� � 5
�
p

s.

Upper bound under nuclear norm: Next, we establish an upper bound for bA�A
⇤

under the nuclear norm. Recall that s = |supp(A⇤)|. We have shown previously that bA is

in C. Applying Lemma 4, we can bound kPU?
� bA�A

⇤�
PV?k⇤ as

��PU?
� bA�A

⇤�
PV ?

��
⇤ 

��PU (bA�A
⇤)PV

��
⇤ + (� + 0.5)

���bA�A
⇤�

S
��
1,1


p

r
��PU (bA�A

⇤)PV
��
F
+ (� + 0.5)

p
s
��bA�A

⇤��
F

. 
�1
lower

4�2 + 10�

2� � 5
�
p

s
�p

r _ (� + 0.5)
p

s
 
.

Thus, we have

��bA�A
⇤��

⇤ 
��PT⇤

� bA�A
⇤���

⇤ +
��PT?

⇤

� bA�A
⇤���

⇤

. 
�1
lower

4�2 + 10�

2� � 5
�
p

s
�
2
p

r _ (� + 0.5)
p

s
 

 C�
�1
lower�

p
s(
p

r _
p

s)

. 
�1
lower�

p
s(
p

r _
p

s),

where C� = (2� � 5)�1(4�2 + 10�)
�
2 _ (� + 0.5)

 
is a constant depending only on �.

D Proof of Theorem 2

For any probability distributions P and Q, let D(PkQ) denote the Kullback-Leibler diver-

gence of Q from P . For any subset K of R
n⇥n, the volume of K is vol(K) =

R
Kdµ where

dµ is the usual Lebesgue measure on R
m⇥n by taking the product measure of the Lebesgue

measures of individual entries. With these definitions, we state the following variant of

Fano’s lemma (Ma and Wu, 2015).
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Lemma 6. Let (⇥, ⇢) be a metric space and {P✓ : ✓ 2 ⇥} a collection of probability

measures. For any totally bounded T ⇢ ⇥, denote by M(T, ⇢, ✏) the ✏-packing number of T

with respect to ⇢, i.e., the maximal number of points in T whose pairwise minimum distance

is at least ✏. Define the Kullback-Leibler diameter of T by dKL(T ) = sup✓,✓0 D(P✓kP
0
✓
). Then

inf supE[kb✓ � ✓k2] � sup
T⇢⇥

sup
✏>0

✏
2

4

✓
1�

dKL(T ) + log 2

logM(T, ⇢, ✏)

◆
.

In particular, if ⇥ ✓ Rd and k · k is some norm then

inf supE[kb✓ � ✓k2] � sup
T⇢⇥

sup
✏>0

✏
2

4

0

@1�
dKL(T ) + log 2

log vol(T )
volBk·k(✏)

1

A .

We first use Lemma 6 to prove an oracle result in the sense that we know the locations

of the sparse signals. In order to apply the Lemma 6, we need bound three quantities

dKL(T ), vol(T ) and volBk·k(✏). Now consider F0 ✓ F such that uj ’s ((j � 1)su + 1)-th to

jsu-th elements, su elements in total, are nonzeros and vj ’s ((j � 1)sv + 1)-th to jsv-th

elements, sv elements in total, are nonzeros, while all other entries are zeros. In this case,

we may assume for simplicity that p = rsu and q = rsv. In this case, only d = rsvsv,

instead of r
2
susv, of the entries are nonzeros. Denote the support by A.

We then proceed in two cases by assuming sv = 1 and su = 1 respectively.

Case 1: sv = 1. The for any a, let BF(a) = Bk·kF(a) = {A 2 Rp⇥q : kAkF  a,AAc =

0}. Denote BF(a) by T (a). It is easy to see that T (a) ⇢ F .

Then for any A1,A2 2 T (a), we have by the Condition 3 with support size rsu and an

arbitrary ⇠

D(PA1kPA2) =
1

2
kXA1 �XA2k

2
F 

1

2
nupperkA1 �A2k

2
F  2upperna

2
.

Thus the diameter satisfies that dKL(T (a))  2upperna
2
. To obtain a lower bound for

vol(T (a)), we apply the inverse Santaló’s inequality which implies, for some numerical con-

12



stant c0, that

vol(T (a))1/(rsu) = a vol(BF(1))
1/(rsu) � a

c0

EkZAkF
� a

c0
p

rsu
,

where ZA 2 Rrsu⇥rsv is a random matrix with entires in A following i.i.d. standard normals

while all entries in A
c are zeroes. The last inequality follows from Jensen’s inequality. To

obtain an upper bound for vol(BkkF(✏)), we have

vol(BF(✏))
1/(rsu) 

✏
p

rsu
.

Consequently we have

(T (a))1/(rsu)

vol(BF(✏))1/(rsu)
�

ac0

✏
.

For vol(Bkk⇤(✏)), we use Urysohn’s inequality to obtain that

vol(B⇤(✏))1/(rsu)

vol(BF(a))1/(rsu)

✏EkZAks1

a
p

rsu
=
✏EkZAk2
a
p

rsu


4✏

a

p
su +

p
1

p
rsu

p
log r 

8✏

a
p

r

p
log r,

where s1 is the Schattern infinity norm and the last second inequality uses a generalized

Gordon’s inequality, that is, Lemma 8.

Let

a
2 =

rsu

n
, and ✏ = c

0
0c0a,

where c
0
0, depending on upper, is a small enough constant such that

dKL(T (a)) + log 2

log vol(T (a))
volBk·k(✏)


1

2
.

Then applying Lemma 6 with T (a) and ✏ specified previously and optimizing ✏, we obtain

that

inf
bA
sup
A

EkbA�A
⇤
k
2
F � c

rsu

n
,

13



where c is a constant only depending on upper. For the nuclear norm lower bound, taking

a
2 =

rsu

n
, ✏ = c

0
0a
p

r/

p
log r,

implies

inf
bA
sup
A

EkbA�A
⇤
k
2
⇤ � c

r
2
su

n log r
.

Case 2: su = 1. Similarly in this case, we can obtain that

inf
bA
sup
A

EkbA�A
⇤
k
2
F � c

rsv

n
,

inf
bA
sup
A

EkbA�A
⇤
k
2
⇤ � c

r
2
sv

n log r
.

Combining two cases, we shall obtain that

inf
bA
sup
A

EkbA�A
⇤
k
2
F � c

r(su + sv)

n
,

inf
bA
sup
A

EkbA�A
⇤
k
2
⇤ � c

r
2(su + sv)

n log r
.

Now we move to the general case that we do not know the locations of the sparse signals.

In this case we will pay a log factor for searching the sparse signals. To prove the general

result, we first need the following lemma.

Lemma 7. Suppose 2(r� 1)(su _ sv)  p^ q. There exis a subclass F0 of F and a positive

constant c1 such that

logM
�
F0, k · kF,

p
ra
�
� c1r

✓
su log

✓
ep

su

◆
+ sv log

✓
eq

sv

◆◆
,

logM
�
F0, k · k⇤, ra

�
� c1r

✓
su log

✓
ep

sv

◆
+ sv log

✓
eq

sv

◆◆
.

Proof of Lemma 7. Let us focus on the first inequality. Other inequalities follow from sim-

ilar arguments.

14



We first consider the case where sv = 1. We start by constructing a subclass F0 of F .

Let u 2 Rp be an rsu-sparse vector. We consider all such u’s such that the supports Ai,

Aj of any two of them satisfies |Ai \Aj | = 0, that is, they are disjoint. Let A1, . . . , AN be

a maximal set consisting subsets of [p] with cardinality rsu such that any two of them are

disjoint. Then, we have at least

logN � log

⇢✓
p

su

◆✓
p� su

su

◆
· · ·

✓
p� (r � 1)su

su

◆�
.

Now since 2(r�1)(su_sv)  p^ q and by the binomial coe�cient bound that for any k  p

⇣
p

k

⌘
k



✓
p

k

◆


⇣
ep

k

⌘
k

,

we obtain

logN �

rX

j=1

su log

✓
p

2su

◆
� rsu log

✓
p

2su

◆
& rsu log

✓
ep

su

◆
,

where & in the last inequality means � up to a universal constant.

Now denote the support of the first su nonzeros in u by S1, the support of the second

su nonzeros in u by S2,· · · , the support of the r-th su nonzeros in u by Sr. Construct uj

such that (uj)Sj = uSj = (1/
p

su, . . . , 1/
p

su)T, the vector of all 1/
p

su’s, and (uj)Sc
j
= 0,

for 1  j  r. Let vj = ej for 1  j  d, where ej is the standard unit vector. Let

⇤ = diag(a) 2 Rr⇥r. Let F0 be the family of all such A = U⇤V
T’s. It is easy to see that

F0 ✓ F .

For every pair Ai,Aj 2 F0, we have

kAi �AjkF =
q
kAi �Ajk

2
F =
p
2ra.

Let Ri, Rj ✓ [p] be the supports of Ai and Aj ’s nonzero rows. Since the nuclear norm is

15



unitarily invariant, we can switch rows of Ai �Aj such that it becomes

2

6666664

(Ai)Ri⇤

�(Aj)Rj⇤

0

3

7777775
,

where AR⇤ consists of the rows of A that are in R. Then by Lemma 9, we have

kAi �Ajk⇤ � k(Ai)R⇤
i
k⇤ = ra.

Therefore we have

logM
�
F0, k · kF,

p
ra
�
� c

0
1rsu log

✓
ep

su

◆
,

logM
�
F0, k · k⇤, ra

�
� c

0
1rsu log

✓
ep

su

◆
.

Similarly for the case of su = 1, we have

logM
�
F0, k · kF,

p
ra
�
� c

0
1rsv log

✓
eq

sv

◆
,

logM
�
F0, k · k⇤, ra

�
� c

0
1rsv log

✓
eq

sv

◆
.

Combining both cases completes the proof.

Now let F0 be the same subclass as constructed in Lemma 7. Then for any A1,A2 2 F0,

we have by Condition 3 with an arbitrary ⇠ and m = rsu that

D(PA1kPA2) =
1

2
kXA1 �XA2k

2
F 

1

2
nupperkA1 �A2k

2
F  2nupperra

2
.

Thus the KL diameter is dKL(F0)  2nuppernra
2
. In Lemma 6, take

✏ =
p

ra, a
2 =

c
0(su log (ep/su) + sv log (eq/sv))

n
.

16



where c
0 only depending on upper. Now setting c

0 to be small enough such that

dKL(T ) + log 2

logM(T, k · kF, ✏)


1

2
,

we obtain

inf
bA
sup
A

EkbA�A
⇤
k
2
F � cr

✓
su log

✓
ep

su

◆
+ sv log

✓
eq

sv

◆◆
,

where c is a constant only depending on upper. In a similar argument, we shall obtain

inf
bA
sup
A

EkbA�A
⇤
k
2
⇤ � cr

2

✓
su log

✓
ep

su

◆
+ sv log

✓
eq

sv

◆◆
.

where c is a constant only depending on upper.

Combining the oracle case and sparse case, we finish the proof.

D.1 Technical Lemmas

We present two technical lemmas in the appendix. Our first result is a generalized Gordon’s

inequality.

Lemma 8 (A Generalized Gordon’s Inequality). Let r � 1 and ZA 2 Rrsu⇥rsv be a random

matrix with entires in A following i.i.d. standard normals while all entries in A
c are zeroes.

We have

EkZAk2  4
p

su log r + 4
p

sv log r.

Proof of Lemma 8. This is proved using the Slepian inequality and the properties of Chi-

square distributions. The proof follows a similar strategy for proving Gordon’s inequality

and thus is omitted.

The following lemma is taken from Bhatia (2013).

Lemma 9. For any unitarily invariant norm k · k, we have

k[A,B]k � kAk _ kBk.

17



E Proof of Lemmas in Appendix C

E.1 Proof of Lemma 2

Proof. To obtain an upper bound for krL⌧ (A⇤)k1,1, we first obtain an upper bound for

a single element of the gradient and then use a union bound argument to obtain an upper

bound for the max norm. Recall from (19) that L⌧ (A⇤) = `⌧ (Y � XA
⇤)/n and note

that Eik = Yik �X
T
i·A

⇤
·k, where Xi· and A

⇤
·k are the ith row of X and kth column of A

⇤,

respectively. Taking the gradient of L⌧ (A⇤) with respect to A
⇤
jk
, we obtain

{rL⌧ (A
⇤)}jk = �

1

n

nX

i=1

Xij {Eik1(|Eik|  ⌧) + ⌧1(Eik > ⌧)� ⌧1(Eik < �⌧)} . (31)

It remains to obtain an upper bound for (31). To this end, we define the quantity

 (u) = u1(|u|  1) + 1(u > 1)� 1(u < �1).

We will consider two cases: (i) 0 < �  1 and (ii) � > 1. When 0 < �  1, it can be

verified that  (u) has the following lower and upper bounds for all u 2 R

� log
⇣
1� u + |u|

1+�

⌘
  (u)  log

⇣
1 + u + |u|

1+�

⌘
. (32)

Using the notation  (u), the gradient can be rewritten as

{rL⌧ (A
⇤)}jk = �

⌧

n

nX

i=1

Xij (Eik/⌧).

Next, we obtain an upper bound for Xij (Eik/⌧). By (32), we have

Xij (Eik/⌧)  1(Xij � 0)Xij log
⇣
1 + Eik/⌧ + |Eik/⌧ |

1+�

⌘

� 1(Xij < 0)Xij log
⇣
1� Eik/⌧ + |Eik/⌧ |

1+�

⌘
.
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Since only one of the two terms on the upper bound is nonzero, we have

exp{Xij (Eik/⌧)}



⇣
1 + Eik/⌧ + |Eik/⌧ |

1+�

⌘1(Xij�0)Xij

+
⇣
1� Eik/⌧ + |Eik/⌧ |

1+�

⌘�1(Xij<0)Xij

 1 +
⇣
Eik/⌧ + |Eik/⌧ |

1+�

⌘
Xij ,

where the last inequality follows from the inequality (1 + u)v  1 + uv for u � �1 and

0 < v  1. Using the above inequality, we obtain

E
"
exp

(
nX

i=1

Xij (Eik/⌧)

)#
=

nY

i=1

E [exp {Xij (Eik/⌧)}]



nY

i=1

E
hn

1 + (Eik/⌧)Xij + |Eik/⌧ |
1+�

Xij

oi



nY

i=1

E
hn

1 + |Eik/⌧ |
1+�

oi

=
nY

i=1

n
1 + v�/⌧

1+�

o

 exp
⇣
nv�/⌧

1+�

⌘
,

(33)

where the second inequality holds using the fact that E[Eik] = 0 and that maxi,j |Xij | = 1,

and the last inequality holds by the fact that 1 + u  exp(u).

Recall that {rL⌧ (A⇤)}jk = �⌧n�1Pn

i=1 Xij (Eik/⌧). By the Markov’s inequality

and (33), for any z > 0, we have

P (�{rL⌧ (A
⇤)}jk � v�⌧z) = P

 
nX

i=1

Xij (Eik/⌧) � nv�z

!


E {exp (

P
n

i=1 Xij (Eik/⌧))}

exp(nv�z)

 exp
n
�nv�(z � ⌧

�(1+�))
o

 exp {�nv�z/2} ,

where the last inequality holds by picking ⌧ � (2/z)1/(1+�). Similarly, it can be shown that
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P ({rL⌧ (A⇤)}jk � v�⌧z)  exp {�nv�z/2}. Then, by the union bound, we have

P (krL⌧ (A
⇤)k1,1 � v�⌧z) 

pX

j=1

qX

k=1

P (|{rL⌧ (A
⇤)}jk| � v�⌧z)

 2pq exp(�nv�z/2).

(34)

Picking z = (6/v�) log(pq)/n and ⌧ � {(nv�)/(3 log(pq))}1/(1+�) , we obtain

P (krL⌧ (A
⇤)k1,1 � v�⌧z) 

1

pq
,

implying

krL⌧ (A
⇤)k1,1  6�/(1+�)(2v�)

1/(1+�)

✓
log(pq)

n

◆
�/(1+�)

with probability at least 1� (pq)�1.

For � > 1, instead of the inequality in (32), we use

� log
�
1� u + |u|

2
�
  (u)  log

�
1 + u + |u|

2
�
.

Following a similar argument, we arrive at

krL⌧ (A
⇤)k1,1  121/2v1/2

�

✓
log(pq)

n

◆1/2

with probability at least 1� (pq)�1. We obtain the desired results by combining both cases

when 0 < �  1 and � > 1.

E.2 Proof of Lemma 3

Proof. Recall that S is the support of A⇤. Under the condition that krL⌧ (A⇤)k1,1  �/2,

we will show that

��(bA�A
⇤)Sc

��
1,1


2� + 5

2� � 5

��(bA�A
⇤)S

��
1,1

.
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By the first order optimality condition of (4), there exists eN 2 @kbAk⇤ and e� 2 @kbAk1,1

such that

hrL⌧ (bA) + �( eN + �e�), bA�A
⇤
i = 0. (35)

From (21), we have D
s

L(
bA,A

⇤) = hrL⌧ (bA)�rL⌧ (A⇤), bA�A
⇤
i � 0, implying

hrL⌧ (bA), bA�A
⇤
i � hrL⌧ (A

⇤), bA�A
⇤
i. (36)

Substituting (36) into (35), we obtain

hrL⌧ (A
⇤) + �( eN + �e�), bA�A

⇤
i  0,

or equivalently,

hrL⌧ (A
⇤), bA�A

⇤
i| {z }

I1

+�h eN, bA�A
⇤
i| {z }

I2

+��he�, bA�A
⇤
i| {z }

I3

 0, (37)

It remains to obtain lower bounds for I1, I2, and I3.

Lower bound for I1: By the Holder’s inequality and the condition that krL⌧ (A⇤)k1,1 

�/2, we can lower bound I1 by

I1 � �krL⌧ (A
⇤)k1,1kbA�A

⇤
k1,1 � �(�/2)kbA�A

⇤
k1,1. (38)

Lower bound for I2: Similarly, by the Holder’s inequality, we have

I2 � ��k eNk1,1kbA�A
⇤
k1,1 � ��k

eNk2kbA�A
⇤
k1,1 � �2�kbA�A

⇤
k1,1, (39)

were the second inequality holds using the fact that k eNk1,1  k eNk2 and the last inequality

holds by k eNk2  2.

Lower bound for I3: By the definition of the subgradient of an `1 norm, we have he�, bAi =
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kbAk1,1 and that ke�k1,1  1. Thus, we have

I3 = ��he�S , (bA�A
⇤)Si+ ��he�Sc , (bA�A

⇤)Sci

� ���k(bA�A
⇤)Sk1,1 + ��he�Sc , (bA�A

⇤)Sci

� ���k(bA�A
⇤)Sk1,1 + ��k(bA�A

⇤)Sck1,1,

(40)

where the second inequality follows from Holder’s inequality and the last inequality follows

from the fact that he�Sc , bASci = kbASck1,1 and that A
⇤
Sc = 0.

Substituting (38), (39), and (40) into (37), we obtain

�(�/2)kbA�A
⇤
k1,1 � 2�kbA�A

⇤
k1,1 � ��k(bA�A

⇤)Sk1,1 + ��k(bA�A
⇤)Sck1,1  0.

After rearranging the terms, we have

k(bA�A
⇤)Sck1,1 

2� + 5

2� � 5
k(bA�A

⇤)Sk1,1.

E.3 Proof of Lemma 4

Proof. From (35)–(38) in the proof of Lemma 3, there exists eN 2 @kbAk⇤ and e� 2 @kbAk1,1

such that

hrL⌧ (A
⇤), bA�A

⇤
i+ �h eN, bA�A

⇤
i+ ��he�, bA�A

⇤
i  0.

Moreover, by monotonicity of subdi↵erentials of convex functions, h��( eN�N), bA�A
⇤
i  0,

where N 2 @kA
⇤
k⇤. Combining the above inequalities, we have

�hN, bA�A
⇤
i| {z }

II1

+��he�, bA�A
⇤
i| {z }

II2

+ hrL(A⇤), bA�A
⇤
i| {z }

II3

 0. (41)

Lower bound for II1: Recall the sub-di↵erential of the nuclear norm in (20). From (20),

the subdi↵erential N can be written as

N = UV
T + PU?WPV? , where kWk2  1.
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We choose W such that hPU?WPV? , bA�A
⇤
i = kPU? bAPV?k⇤, and this implies that

II1 = �
⌦
UV

T + PU?WPV? , bA�A
⇤↵

= �
⌦
UV

T
, PU (bA�A

⇤)PV
↵
+ �

⌦
PU?WPV? , bA

↵

� �
��PU? bAPV?

��
⇤ � �

��PU (bA�A
⇤)PV

��
⇤.

Lower bound for II2: using a similar argument to the proof of Lemma 3, we have

II2 � ���k(bA�A
⇤)Sk1,1 + ��k(bA�A

⇤)Sck1,1.

Lower bound for II3: using a similar argument to the proof of Lemma 3, we obtain that

II3 � �
��rL⌧ (A

⇤)
��
1,1

��bA�A
⇤��

1,1
� �

�

2

��bA�A
⇤��

1,1
.

Therefore, combining the lower bounds for II1, II2 and II3 into (41), we obtain

�
��PU?(bA�A

⇤)PV?
��
⇤ � �

��PU (bA�A
⇤)PV

��
⇤ � ��

���bA�A
⇤�

S
��
1,1

+ ��
���bA�A

⇤�
Sc

��� (�/2)kbA�A
⇤
k1,1  0.

By the assumption that � � 1/2, the above equation simplifies to

��PU?(bA�A
⇤)PV?

��
⇤ 

��PU (bA�A
⇤)PV

��
⇤ + (� + 0.5)

���bA�A
⇤�

S
��
1,1

.

E.4 Proof of Lemma 5

Proof. Recall that

D
s

L(A,A
⇤) = hrL⌧ (A)�rL⌧ (A

⇤),A�A
⇤
i.

Let � = A�A
⇤. It can be shown that

D
s

L(A,A
⇤) � �(H⌧ (A), ⇠, ⌘)kA�A

⇤
k
2
F.
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By Lemma 1, we have �(H⌧ (A), ⇠, ⌘) � lower/2 with probability 1� (pq)�1. Thus,

D
s

L(A,A
⇤) �

lower

2
kA�A

⇤
k
2
F.

F Technical Lemmas

Lemma 10 (Hoe↵ding’s Inequality). Let Z1, . . . , Zn be independent random variables such

that E(Zi) = µ and a  Zi  b. Then, for any z > 0,

P
 
1

n

nX

i=1

Zi � z + µ

!
 exp(�2nz

2
/(b� a)2).

Lemma 11. Let X1, . . . , Xn be independent random variables with

E(Xi) = 0 and v� = max
i

E(|Xi|
1+�) <1 for � > 0.

For any t � 0 and ⌧ > 0, we have

P
 
1

n

nX

i=1

1(|Xi| > ⌧/2) � (2/⌧)1+�
v� +

p
t/n

!
 exp(�2t).

Proof. We first obtain an upper bound for E(n�1Pn

i=1 1(|Xi| > ⌧/2)). By the Markov’s

inequality, we have

E
 
1

n

nX

i=1

1(|Xi| > ⌧/2)

!
=

1

n

nX

i=1

P(|Xi| > ⌧/2) =
1

n

nX

i=1

P
⇣
|Xi|

1+�
> (⌧/2)1+�

⌘
 (2/⌧)1+�

v�.

Let Zi = 1(|Xi| > ⌧/2), µ = E(Zi), and z =
p

t/n. Note that 0  Zi  1. By Lemma 10,

we have

P
 
1

n

nX

i=1

1(|Xi| > ⌧/2) � (2/⌧)1+�
v� +

p
t/n

!
 exp(�2t),

as desired.
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