Short-term Exposure of PM_{2.5} and Epigenetic Aging: A Quasi-Experimental Study

Xu Gao ^{1,#}, Jing Huang^{1,#}, Andres Cardenas², Yan Zhao¹, Yanyan Sun³, Jiawei Wang¹, Lijun Xue¹,

Andrea A. Baccarelli⁴, Xinbiao Guo¹, Ling Zhang ^{3,*}, Shaowei Wu ^{5,6,7,*}

Number of pages:5

Number of figures:1

Number of tables:4

Table S1 Correlation matrix of the seven epigenetic ages and corresponding accelerations with

chronological age (Spearman's coefficients) -

Table S2 Associations between PM_{2.5} pollution waves (PPWs) and epigenetic ages (z-scored)

Table S3 Sensitivity analyses for the associations between time-weighted personal PM_{2.5} exposure

concentrations during the 0-24h and 24-48h prior to the health examinations and the changes in DNA

methylation aging biomarkers (z-scored) during and post PPWs

Table S4 Estimates of natural direct, natural indirect effects and proportions mediated by blood

coagulation biomarkers, oxidative stress biomarkers, and inflammatory cytokines of personal PM_{2.5}

exposure in 0-24h and 24-48h on the changes of epigenetic ages (z-scored)

Figure S1 Time-varying outdoor and indoor PM_{2.5} concentrations and the dates of blood draws over the

study

Blue line plots indicate 24-h average outdoor PM_{2.5} concentrations based on data obtained from nearby

environmental fixed-site monitoring stations. Green line plots indicate 24-h average indoor PM_{2.5}

concentrations. Red diamonds indicate PM_{2.5} concentrations at the dates of blood draws.

Table S1 Correlation matrix of the seven epigenetic ages and corresponding accelerations with chronological age (Spearman's coefficients) a

Spearman coefficients	Age	DNA methylation age (Horvath)	Age acceleration (Horvarth)	DNA methylation age (Hannum)	Age acceleration (Hannum)	PhenoAge	Age acceleration (PhenoAge)	GrimAge	Age acceleration (GrimAge)	DunedinPoAm	Mortality risk score	epiTOC
Age	1											
DNA methylation age (Horvath)	0.357	1										
Age acceleration (Horvarth)	0.359	0.999	1									
DNA methylation age (Hannum)	0.389	0.689	0.688	1								
Age acceleration (Hannum)	0.386	0.687	0.685	0.999	1							
PhenoAge	0.401	0.722	0.720	0.840	0.839	1						
Age acceleration (PhenoAge)	0.409	0.728	0.726	0.844	0.844	0.999	1					
GrimAge	0.272	0.361	0.359	0.632	0.632	0.608	0.609	1				
Age acceleration (GrimAge)	-0.046	0.175	0.169	0.407	0.409	0.494	0.488	0.857	1			
DunedinPoAm	-0.207	0.399	0.400	0.348	0.349	0.379	0.374	0.433	0.425	1		
Mortality risk score	0.156	0.564	0.560	0.831	0.832	0.815	0.813	0.629	0.536	0.364	1	
epiTOC	-0.016	0.465	0.464	0.653	0.655	0.623	0.623	0.684	0.650	0.517	0.663	1

a: Bolded correlation coefficients were with a p-value <0.05.

 $\textbf{Table S2} \ \, \textbf{Assoc} \underline{\textbf{iations between } PM_{2.5} \ \, \textbf{pollution waves (PPWs) and epigenetic ages (z-scored)} \, ^{a}$

Epigenetic ages	Pre-PPWs	During-PPWs		Post-PPWs	<i>p</i> -trend		
Epigenetic ages	-	Coefficients (SE)	<i>p</i> -value	Coefficients (SE)	<i>p</i> -value	p-uenu	
Age acceleration (Horvarth)		0.165 (0.274)	0.55	0.019 (0.273)	0.95	0.81	
Age acceleration (Hannum)		0.195 (0.258)	0.45	0.119 (0.258)	0.65	0.75	
Age acceleration (PhenoAge)		0.012 (0.247)	0.96	-0.037 (0.247)	0.88	0.97	
Age acceleration (GrimAge)	Ref	0.170 (0.268)	0.53	0.027 (0.268)	0.92	0.79	
DunedinPoAm		0.181 (0.262)	0.49	-0.071 (0.262)	0.79	0.61	
DNA methylation mortality risk score		0.264 (0.268)	0.33	0.029 (0.268)	0.91	0.56	
epigenetic timer of cancer (epiTOC)		0.184 (0.283)	0.52	0.079 (0.283)	0.78	0.81	

a: Model adjusted for age (years), sex (male/female), body mass index (BMI), indoor temperature, and relative humidity; the ID of each participant was controlled for as a random effect.

Table S3 Sensitivity analyses for the associations between time-weighted personal PM_{2.5} exposure concentrations during the 0–24h and 24–48h prior to the health examinations and the changes of DNA methylation aging biomarkers (z-scored) during and post PPWs ^a

Enigonatia agas	0-24h		24-48h		
Epigenetic ages	Coefficients (SE)	<i>p</i> -value	Coefficients (SE)	<i>p</i> -value	
Age acceleration (Horvarth)	0.027 (0.014)	0.0465	0.008 (0.013)	0.5769	
Age acceleration (Hannum)	0.029 (0.011)	0.0368	0.011 (0.012)	0.3679	
Age acceleration (PhenoAge)	0.020 (0.014)	0.1727	0.012 (0.014)	0.4219	
Age acceleration (GrimAge)	0.031 (0.014)	0.0304	0.022 (0.014)	0.1287	
DunedinPoAm	0.040 (0.019)	0.0340	0.040 (0.018)	0.0327	
DNA methylation mortality risk score	0.031 (0.013)	0.0199	0.015 (0.013)	0.2486	
epigenetic timer of cancer (epiTOC)	0.020 (0.010)	0.0442	0.012 (0.010)	0.2232	

a: Model adjusted for age (years), sex (male/female), body mass index (BMI), indoor temperature, relative humidity, and the average 48h average outdoor $PM_{2.5}$ levels at the baseline; the ID of each participant was controlled for as a random effect. Coefficients are corresponding to an increase of $10\mu g/m^3$ in personal $PM_{2.5}$ concentrations. The ΔEAs were estimated separately for during and post PPWs and were then analyzed in one model for each EA.