
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Shape and scale dependent diffusivity of colloidal nanoclusters and
aggregates

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1140/epjst/e2015-50263-y

PUBLISHER

© EDP Sciences, Springer Verlag

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Alcanzare, Maria M., Santtu T. Ollila, Vaibhav Thakore, Aleena M. Laganapan, Arnaud Videcoq, Manuella
Cerbelaud, Riccardo Ferrando, and Tapio Ala-Nissila. 2019. “Shape and Scale Dependent Diffusivity of
Colloidal Nanoclusters and Aggregates”. figshare. https://hdl.handle.net/2134/28201.

https://lboro.figshare.com/
https://doi.org/10.1140/epjst/e2015-50263-y


Shape and Scale Dependent Diffusivity of Colloidal

Nanoclusters and Aggregates

Maria Michiko T. Alcanzare,† Santtu T. T. Ollila,† Vaibhav Thakore,∗,† Aleena Maria

Laganapan,‡ Arnaud Videcoq,‡ Manuella Cerbelaud,‡ Riccardo Ferrando,¶ and

Tapio Ala-Nissila†,§

COMP CoE at the Department of Applied Physics, Aalto University School of Science,

FIN-00076 Aalto, Espoo, Finland, SPCTS, UMR 7315, ENSCI, CNRS, Centre Européen

de la Céramique, 12 rue Atlantis, 87068 Limoges, France, Dipartimento di Fisica,

Università degli Studi di Genova, Via Dodecaneso, 33, 16146 Genova, Italy, and

Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA

E-mail: vaibhav.thakore@aalto.fi

KEYWORDS: nanoscale colloidal diffusion, fluctuating lattice Boltzmann method, shape

and size dependent diffusivity, Stokes-Einstein diffusion, Brownian limit, no-slip and full-slip

microscopic boundary conditions, hydration layer volume fraction

∗To whom correspondence should be addressed
†Aalto University
‡Science des Procédés Céramique et de Traitements de Surface
¶University of Genoa
§Brown University

1

vaibhav.thakore@aalto.fi


Abstract

Diffusion of colloidal nanoparticles and nanomolecular aggregates plays an impor-

tant role in various biophysical and physicochemical phenomena of interest in several

engineering applications. While the diffusive transport of submicron colloidal particles

is well characterized, the diffusive behavior of nanoscale colloids is not well under-

stood. Here, we present results for the shape and size dependent diffusion of colloidal

nanoparticles, fused nanoclusters and nanoaggregates using a fluctuating lattice Boltz-

mann method. We use physically realistic parameters characteristic of an aqueous

solution, with explicitly implemented microscopic no-slip and full-slip velocity bound-

ary conditions at the colloid-fluid interface. Results from nanocolloids of various sizes

below 10 nm demonstrate how increased volume fraction of the hydration layer signifi-

cantly influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip

particles. We also characterize the shape dependent anisotropy of the diffusion coef-

ficients of nanoclusters through the Green-Kubo relation. Finally, we also study the

size dependence of the diffusion of nanoaggregates comprising N ≤ 108 monomers and

demonstrate that the diffusion coefficient approaches the expected continuum scaling

limit of N−1/3.

Understanding the dynamics and transport properties of colloidal nanoparticles and

nanomolecular aggregates is crucially important for several applications in chemical, me-

chanical, materials and biomedical engineering. Important examples include the possible

enhancement of heat transfer in nanofluids,1–4 the use of functionalized nanoparticles or

bioengineered macromolecules for targeted drug and genetic material delivery in therapeu-

tics, micro or nanofluidics based biomolecular sensor devices,5,6 nanoscale self-assembly of

colloidal crystals,7 ceramic processing,8,9 and coatings. Colloidal dynamics in slowly evolv-

ing systems, such as biological fluids or suspensions under quasi-equilbrium conditions, are

characterized by diffusive transport in the presence of solvent mediated hydrodynamic in-

teractions. The diffusive behavior of submicron (100 − 1000 nm) colloidal particles in such

systems has been extensively studied theoretically, and is now well understood also exper-
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imentally due to recent advances in the microscale self-assembly of spherical colloids.10–12

However, the most interesting size or scale dependent physicochemical phenomena become

emergent at much smaller length scales. Recent advances in size-selective controlled syn-

thesis have made nanoscale (1 − 10 nm) particles commercially available, but their precise

characterization in solvents remains complicated due to their small size.

The fundamental quantity that characterizes colloidal dynamics is the Brownian diffusion

coefficient D, which follows the canonical Stokes-Einstein (SE) relation,

D =
kBT

γ6πηR
, (1)

for a spherical particle of radius R. Here kBT and η are the thermal energy and viscosity of

the fluid, respectively. The SE relation has also been extended to non-spherical particles with

shapes corresponding to regular geometric objects, such as oblate and prolate spheroids, and

cylinders.13 The Brownian limit of colloidal diffusion, applicable to regimes where the SE

relation is valid, assumes that a colloid is massive and slow as compared to the surrounding

solvent particles.14–16 Additionally, it further assumes that the colloids undergo uncorrelated

random motion in a quiescent fluid continuum as described by the Stokes equation. However,

while the single particle Brownian dynamics is well characterized, the simulation of the

many-particle dynamics of dense Brownian supensions remains a challenge due to many-

body hydrodynamic interaction and correlation effects.17

The simple SE relation in eq (1) contains a subtlety related to the prefactor γ in the

denominator, which takes values of unity and 2/3 corresponding to no-slip and full-slip ve-

locity boundary conditions at the colloid-fluid interface, respectively. The no-slip boundary

condition is typically considered to arise as a consequence of the roughness resulting from

molecular scale irregularities on the surface of a colloid.18,19 The use of the no-slip boundary

condition, however, has no firm theoretical basis and its use over the years has been justi-

fied on the basis of experiments with colloids in the Brownian limit.19–22 However, recent
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Figure 1: (A) Fused submicron colloids synthesized using 80 nm polystyrene particles12∗.
(B-D) A graphical representation of the colloidal nanoparticles and aggregates used in the
FLB simulations. (B) Spherical monomers represented by nodes placed at the vertices of
a 320−icosahedron, dimer, trimer and tetramer comprising two, three and four spherical
monomers, respectively. (C) Implementation of the no-slip (top) and the full-slip (bottom)
velocity boundary conditions with arrows representing the collisions between a surface node
of the colloid and a fluid volume element. The no-slip boundary condition is set such that
the initial relative velocity of the colloid surface node and the fluid volume element reverses
its direction after a collision. The full-slip boundary condition is set by forcing the initial
and final tangential components of the relative velocity of the colloid surface node and the
fluid volume element to be equal. (D) (top-bottom) Colloidal aggregates with 55, 80 and
101 non-overlapping spherical monomers.

∗Reproduced from “3D Brownian Diffusion of Submicron-Sized Particle Clusters”, Martin
Hoffmann, Claudia S. Wagner, Ludger Harnau, and Alexander Wittemann ACS Nano 2009
3 (10), 3326-3334. Copyright (2009) American Chemical Society.

experimental studies involving diffusion of mesoscale colloids have revealed a more complex

dependence of the velocity boundary condition on the nature of the solute-solvent physico-

chemical interactions, that gives rise to boundary conditions ranging from no-slip to partial
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and full-slip.20,23–27 The strength and the nature of the interactions between the colloid sur-

face and the solvent molecules not only influence the velocity boundary condition at the

colloid-fluid interface, but also simultaneously determine the thickness of the hydration layer

associated with the surface of the colloid. The dynamics of the solvent molecules within

hydration layers associated with the surfaces of colloidal macromolecules and the thickness

of the hydration layer have been a subject of intense investigation and debate recently, as a

result of advances in terahertz and NMR spectroscopies.28–32 However, the role of hydration

layer in the diffusion of nanoscale colloids, wherein the volume of the colloidal nanoparticle

becomes comparable to the volume of the hydration layer associated with its surface, has

not been considered.

In principle, it is possible to model colloidal dynamics by using full-scale molecular dy-

namics (MD) simulations that take into account all possible interactions between solvent

molecules and colloidal particles. However, this turns out to be computationally prohibitively

expensive for the calculation of the Brownian transport coefficients because of the disparate

time and length scales involved in solvent relaxation and colloidal motion mediated through

many-body hydrodynamic interactions.33 This has led to the development of hybrid methods

such as Brownian dynamics (BD) that incorporates hydrodynamic interactions using either

the analytic Oseen or the Yamakawa-Rotne-Prager (YRP) tensor in the Stokes limit,34 and

mesoscopic methods that model fluid dynamics using stochastic coarse-grained hydrody-

namics.35 Unlike BD, the stochastic coarse-grained hydrodynamics solvers are designed to

recover the full Navier-Stokes equations in the continuum limit while conserving mass and

momentum locally. Such recently developed mesoscopic methods coupled to MD simulation

of colloidal motion include dissipative particle dynamics (DPD),36 stochastic rotation dy-

namics (SRD),35,37 and the fluctuating lattice Boltzmann (FLB) method.38,39 A summary

of the relative advantages and disadvantages of these methods in the context of simulating

colloidal dynamics and transport phenomena can be found in a recent article by Tomilov et

al.40
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Our main focus in this work is the shape and size dependent Brownian diffusivity of

fused colloidal nanoclusters and nanoaggregates in a solvent modeled with physically rele-

vant parameters corresponding to an aqueous solution at room temperature. To this end, we

employ the hybrid fluctuating lattice Boltzmann (FLB) - molecular dynamics (MD) method

developed by Ollila et al., implemented in LAMMPS.38,41,42 Unlike other multiscale methods

discussed above, the FLB method uses spatially extended particles and explicitly imple-

mented microscopic no-slip and full-slip velocity boundary conditions at the colloid-fluid

interface. The method incorporates full non-linear hydrodynamic interactions between the

colloidal particles and a realistic coupling of the thermal fluctuations to the particles through

a fluctuating solvent in accordance with the Brownian limit.38

Using FLB, we study the diffusive behavior of fused colloidal nanoclusters (spheres,

dimers, trimers and tetramers) to understand the role of the hydration layer in the shape

and size dependent diffusivity of colloids; the differences in their diffusivities corresponding

to no-slip and full-slip velocity boundary conditions; the effect of the variations in the degree

of overlap of the spherical monomer constituents on the diffusivity of the fused nanoclusters;

and, the anisotropic diffusivity along their axes of symmetry. Additionally, we also investi-

gate the size-dependent scaling of the diffusivities of the larger nanocluster aggregates as a

function of the increase in the number N of the spherical nanoparticles comprising them.

The colloidal particles in the 1−10 nm range are represented by using evenly distributed

nodes on their surface (see Figure 1 B-D) with an approximate area of 0.29 nm2 per node

equivalent to an internode spacing of 0.4∆x on the colloid surface, smaller than the prescribed

minimum of 0.5∆x.39,41 These nodes interact with the fluid through a consistent coupling

scheme based on a conservative interaction.41 The node masses are fixed such that the mass

of the colloid equals twice the mass of the volume of the fluid displaced by the colloid. The

density and viscosity of the fluid are set to 9.98×102 kgm−3 and 1.0×10−3 Pa s, respectively.

The simulation domain is discretized using a lattice spacing of 1.2 nm and a time step of

2.25× 10−4 ns is employed in all simulations.
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Single particle diffusion is simulated by placing the colloid in a cubic box with periodic

boundaries and a side of length L. The mean square displacement (MSD) of the colloidal

particle is tracked and the relation

D = lim
∆t→∞

〈|~r(t+ ∆t)− ~r(t)|2〉
6∆t

, (2)

is used to calculate the diffusion coefficient. In practice, D is obtained by calculating the slope

of the MSD when it begins to vary linearly with time. Periodic boundary conditions give

rise to finite-size effects due to the hydrodynamic interactions.14,38,43–46 They are quantified

to first-order using44

DNS(L) =
kBT

6πη

(
1

RH

− B

L

)
, (3)

for no-slip and

DFS(L) =
kBT

4πη

(
1

RH

− 2B

3L

)
. (4)

for full-slip spherical colloids of hydrodynamic radius RH . Here B is a dimensionless constant.

The SE diffusion coefficient for the colloid is then extrapolated using simulation results

from different sizes L of the cubic simulation domains. The hydrodynamic radius of an

arbitrarily shaped colloidal nanocluster or aggregate calculated from its diffusion coefficient

is characteristic of both its size and shape. Because eqs (3) and (4) depend only on RH , we

employ them to describe the finite size-effects for colloidal particles of all shapes and sizes.

Consistent with the theoretically calculated values for B, our simulation results indicated

values of B = 2.835 ± 0.025 and B = 2.882 ± 0.045 for the no-slip and full-slip colloids

(spheres, dimers, trimers and tetramers) respectively (See Supporting Information, Figures

S1 A and B).

For no-slip colloidal spheres of radii R = 2.718, 4.330 and 7.210 nm, our simulation results

show diffusivities of D = 6.43×10−2, 4.35×10−2 and 2.77×10−2 nm2/ns, respectively. These

values were found to be smaller than the corresponding SE diffusivities of DSE = 8.08×10−2,

5.08 × 10−2, and 3.05 × 10−2 nm2/ns, for the colloids calculated by substituting their bare
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particle radii R in eq (1). Thus the effective hydrodynamic radii of the nanoscale colloids

in FLB simulations are larger than their bare physical radii. This increase in the effective

size of the nanocolloids indicates the presence of an effective boundary layer of thickness δR,

which we define here simply by δR ≡ RH−R = 0.7±0.02 nm. Our model does not explicitly

include any physicochemical interactions between the colloid surface and the solvent. The

microscopic no-slip velocity boundary condition implemented at the colloid-fluid interface in

FLB results in a solvent boundary layer with zero tangential flux of the fluid at the colloid

surface. Within this solvent boundary layer the tangential relative fluid velocity gradually

increases from zero to bulk values away from the surface of the colloid. This layer of fluid

associated with the colloid surface is observed to originate purely as a consequence of the

microscopic no-slip velocity boundary condition implemented at the colloid-fluid interface

and is heretofore referred to as a hydration layer. Since the no-slip boundary condition is

implemented in a similar fashion for all colloids, we expect δR to have the same value for

the fused clusters as well.
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Figure 2: Ratios of the diffusivities of the fused colloidal nanoparticles DN obtained from
FLB simulations to their diffusivitiesDSE calculated from the SE relation using their effective
bare radii RB. Inset: Variation of the volume fraction of the hydration layer δV/VB with
change in the number N of the monomers in the fused clusters, where δV = (4/3)π(R3

H−R3
B)

and VB = (4/3)πR3
B.

Figures 2 and 3 illustrate the effect of an increase in the volume fraction of the hydration

layer δV/VB on the diffusivities of spherical and fused no-slip nanoclusters that are built
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using spherical monomers of radii R = 7.210, 4.330 and 2.718 nm. For fused clusters and

aggregates, similar to the monomers, we define an effective bare radius by RB ≡ RH − δR.

An examination of Figure 2 reveals that the ratios of the diffusivities obtained from FLB

simulations to those calculated from the SE relation by using the effective bare radii RB

tend to approach the Brownian limit of unity with an increase in the size of the constituent

spherical monomers in the fused colloidal nanoclusters. The deviations from the Brownian

limit in Figure 2 also become more pronounced with a reduction in the number N of the

constituent monomer spheres as one moves from colloidal tetramers through trimers and

dimers to a spherical nanocolloid monomer of a given size. This can be attributed to an

increase in the relative volume fraction of the hydration layer resulting from a decrease in

the number N of monomers in the fused nanoclusters (See Figure 2 inset).

Figure 3 further compares the diffusivity data for fused nanoclusters with results from

a recent experimental study on diffusivities of fused submicron colloidal clusters that are

synthesized with well defined shapes using polystyrene spheres of 80 nm radii (Figure 1 A).12

Regardless of the size of the spherical monomer constituents, the normalized diffusivities

DN/D1 for all fused colloidal clusters are seen to decrease with an increase in the number N

of their monomers (Figure 3). However, the normalized diffusivities obtained from the FLB

simulations for fused nanocolloids are seen to be systematically greater than those obtained

from experiments with the submicron colloids.12 Moreover, the normalized diffusivites for

the fused nanoclusters tend to approach the experimental results with an increase in their

monomer size from R = 2.718 and 4.330 nm to 7.210 nm. These results again indicate

that the diffusion coefficients for the nanoscale colloidal spheres are much smaller than those

obtained from the Stokes-Einstein relation using the bare monomer radii R. This gives

rise to higher values of normalized diffusivities for the fused nanoclusters in contrast to the

experimental results from the fused submicron colloids in the Brownian limit.12

Similar to the hydration layer thicknesses on the order of 0.7 nm observed in our simula-

tions, recent experiments with nanoscale colloids have shown that hydration layers associated
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Figure 3: Diffusivities of the fused colloidal nanoclusters comprising N monomers, nor-
malized by the diffusion coefficient of their spherical monomer constituents. The diamonds
represent the experimental data for similarly shaped fused colloidal clusters synthesized using
80 nm spherical polystyrene particles.12

with colloidal nanoparticles range from 0.3-2.0 nm in thickness.28,30,47 Because hydration

layer thickness depends on the nature of the physicochemical interaction between the colloid

surface and the solvent, it is expected to be largely independent of the colloid size. Also,

the hydration layer thickness accounts for a small fraction of the hydrodynamic radius of

a large Brownian colloid. Thus, for a Brownian colloid its hydrodynamic radius RH ap-

proximately equals its effective bare physical radius RB. The contribution of the hydration

layer to the diffusivity of the larger colloidal particles in the Stokes-Einstein relation there-

fore gets masked. However, as we have shown here, for the smaller nanocolloids (1 − 10

nm in size) the hydration layer contributes significantly to the Stokes-Einstein diffusivity.

Although the hydration layer thickness and thus the volume fraction of the hydration layer

associated with the fused submicron colloids used in the experimental study by Hofmann et

al.12 cannot be inferred directly from their results, a comparison of Figures 2 and 3 clearly

highlights the effect of the increased hydration layer volume fraction on colloidal diffusivity

at the nanoscale.

Synthesis of fused nanoclusters under experimental conditions invariably leads to a dis-

tribution in the degrees of overlap of the spherical monomers fused together to form the

nanoclusters. We characterize this by an overlap parameter λ ≡ 1− d/(2R), where d is the
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distance between the centers of mass of the constituent monomers. Figure 4 shows the diffu-

sion coefficients for the no-slip and full slip fused nanoclusters with varying degrees of overlap

(λ = 0.15, 0.25 and 0.35) of the spherical monomers (R = 2.718 nm). A reduction in the

size of the fused nanoclusters due to an increase in the degree of overlap λ of the monomers

reduces both its effective surface area in contact with the fluid and its hydrodynamic radius.

Thus, an increase in the degree of overlap λ leads to an increase in the diffusivity of the

colloidal nanoclusters (Figure 4). Although this increase is appreciable, it only makes for an

approximately 4% change in the diffusivities of the dimers and the trimers, and a 7% change

in the diffusivity of the tetramers. Additionally, a full-slip velocity boundary condition at

the fluid-colloid interface reduces the effective drag force exerted by the fluid on the colloid

while a no-slip boundary condition serves to enhance it. Thus, on account of the reduced

drag force exerted by the fluid in contact with the colloid surface, the full-slip nanoclusters

diffuse much faster than the identical no-slip clusters (Figure 4).

Table 1: Green-Kubo diffusion coefficients for the diffusive dynamics of the dimers and the
trimers (with constituent monomers of radii R = 2.718 nm) along their perpendicular and
parallel symmetry axes.

dimer (×10−2 nm2/ns) trimer (×10−2 nm2/ns)
no-slip full-slip no-slip full-slip

c⊥ 4.88± 0.01 6.02± 0.01 4.27± 0.01 5.23± 0.01
c‖ 5.44± 0.01 6.38± 0.01 4.65± 0.01 5.51± 0.01
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The shape of a colloidal particle influences its diffusivity in different directions along its

axes of symmetry. To study this in the diffusivity of a fused nanocluster, we calculated the

(anisotropic) Green-Kubo diffusion coefficients48 c⊥(‖) for the diffusing dimers and trimers

(monomer radii, R = 2.718 nm) by resolving their instantaneous velocity v(t) along direc-

tions perpendicular (v⊥) and parallel (v‖) to a chosen axis of symmetry:

c⊥(‖) =

∫ ∞
0

〈v⊥(‖)(t+ t′)v⊥(‖)(t)〉dt′. (5)

For the dimer, the parallel component v‖ was defined to be along the principal axis connecting

the centers of mass of the two spherical monomers, and the perpendicular component v⊥

perpendicular to it. For the trimer, the parallel component v‖ was defined to be along

an axis connecting the center of mass of the trimer and the center of mass of one of the

constituent monomers. The perpendicular axis of the trimer was then defined to be in a

direction perpendicular to the plane of the trimer and passing through its center of mass.

Table 1 presents the calculated Green-Kubo diffusion coefficients c⊥(‖) for the two fused

nanoclusters with no-slip and full-slip boundary conditions. The transport coefficients c⊥

and c‖ for the full-slip boundary condition are larger than those for the no-slip case for

both nanoclusters. Also, c⊥ is observed to be smaller than c‖ for both dimers and trimers

because increased areas of cross-section in a direction perpendicular to the planes containing

the centers of masses of the constituent monomers result in an increased drag force being

exerted by the fluid.

Diffusion of macromolecular structures, such as proteins, glycolipids, etc, and their ag-

glomerates plays an important role in the dynamics of biophysical systems.49 Also, different

experimental conditions during synthesis of colloids and aggregation of colloids in suspen-

sions over time may give rise to colloidal aggregates of various packing fractions, sizes and

shapes characterized by a wide range of diffusivities.17 In all such systems, scaling of dif-

fusivity with particle size is important. Figure 5 shows the normalized diffusivities DN/D1

12



obtained using FLB for rigid close- and loose-packed colloidal cluster aggregates as a function

of the number N of the non-overlapping spherical constituents comprising the aggregates for

N ≤ 108 (see Supporting Information Figure S2 for a schematic of the aggregates and Figure

S3 for the distribution of nearest neighbor distances). For comparison, normalized diffusivi-

ties of aggregates with N ≤ 147 are also presented for results obtained using SRD-MD and

BD-YRP.17 The normalized diffusivities for the colloidal aggregates obtained from either

SRD-MD, BD-YRP or FLB asymptotically follow a power law dependence on the number

N of the constituent monomers. Based on a simple volume argument, with an increase in the

number N of monomers, the normalized diffusivities of the colloidal aggregates are expected

to follow the relation

DN

D1

=
RH1

RHN

≈ N−α (6)

where α → 1/3 in the continuum limit. Here RH1 and RHN are the hydrodynamic radii

of the monomer and the colloidal aggregate, respectively. Results from BD-YRP and FLB

simulations of close-packed colloidal aggregates gave scaling exponent values of α = 0.35 ±

0.01 and 0.35±0.02, respectively, whereas a value of 0.60±0.01 was obtained from the SRD-

MD simulations. Thus, both BD-YRP and FLB results recover values of the scaling exponent

α close to the theoretically expected value of 1/3 obtained in the continuum limit. We note

that both in the SRD-MD and BD-YRP simulations the monomers were held together by

a Lennard-Jones potential, which allows for dynamical fluctuations in the shapes of the

aggregates.17 The cause of the discrepancy in the exponent between SRD-MD and the other

techniques is under investigation. For loose-packed colloidal aggregates, FLB results yielded

a scaling exponent of α = 0.37±0.01 which is close to the value obtained for the close-packed

aggregates. Figure 5 inset further reveals that the diffusivities of the loose-packed aggregates

are slightly lower compared to those obtained for the close-packed aggregates on account of

an increase in the aggregate size. However, there were no significant differences observed
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between the diffusivities of the close- and loose-packed colloidal cluster aggregates.

Although BD-YRP approaches the scaling exponent of α = 1/3, it makes use of truncated

hydrodynamic interactions between colloidal particles due to the use of the analytic YRP

diffusion tensor, whereas FLB accounts for full nonlinear hydrodynamic interactions between

diffusing particles. Other widely used and successful methods for modeling colloidal diffusion

such as the bead or shell models also make use of analytic diffusion tensors for including

many-body hydrodynamic interactions.50,51 However, these models typically also require an

adjustment of the bead radii through a fitting of the experimental rheology data such as

intrinsic viscosity, sedimentation rate, etc. to obtain an estimate of the colloidal diffusion

coefficient and the hydration layer thickness.52 In contrast, however, FLB simulations do

not employ any adjustible parameters for the simulation of colloidal diffusion and hydration

layers arise solely as a consequence of the velocity boundary conditions employed at the

colloid-fluid interface. Also, among the other mesoscopic methods such as SRD-MD17,33 and

DPD-MD,33 which are based on stochastic coarse-grained Navier-Stokes solvers, FLB is the

only method that employs the use of well-defined extended colloidal particles with explicitly

implemented microscopic no-slip and full slip velocity boundary conditions at the colloid

surface. Further, although results are presented here for the extreme no-slip and full-slip

cases, FLB can be easily modified and extended to include continuously varying partial slip

at the colloid-fluid interface as well.

To summarize, we have employed FLB to simulate and model the shape and size de-

pendent diffusion of nanoscale colloidal particles, clusters and aggregates, with explicitly

implemented microscopic no-slip and full-slip velocity boundary conditions at the colloid-

fluid interface. Consistent with experimental results for similarly sized colloidal particles, we

have obtained effective hydration layer thicknesses associated with colloid surfaces through

the use of physically realistic solvent parameters for aqueous solutions.28–32 Our results show

that the hydration layer contribution to colloidal diffusion at the nanoscale (1− 10 nm) can-

not be ignored because at such length-scales the volume of the hydration layer may be a
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monomers for the FLB and N ≤ 147 for the BD-YRP and SRD-MD) normalized by the
diffusivity of the single spherical nanocolloid. The lines represent the power law N−α for
FLB (rigid close-packed), FLB (rigid loose-packed), BD-YRP and SRD-MD simulations with
α = 0.35± 0.02, 0.37± 0.01, 0.35± 0.01 and 0.60± 0.01, respectively.17 For the largest FLB
clusters the volume fraction of the hydration layer is ≈ 13%.

significant fraction of the colloidal volume. We also observed significant differences in the

diffusion of colloids with no-slip and full-slip velocity boundary conditions, wherein full-slip

colloids were observed to diffuse faster than no-slip particles of similar size and shape. How-

ever, a variation of the degree of overlap of the constituent spherical monomers comprising a

colloidal nanocluster did not give rise to any significant diffferences in the diffusivities of the

nanoclusters. Green-Kubo diffusion coefficients calculated for colloidal nanoclusters revealed

shape dependent anisotropies in diffusivities for both no-slip and full-slip nanocolloids. Fi-

nally, FLB simulations were shown to recover the correct scaling exponent for normalized

diffusivities of the colloidal nanocluster aggregates in the continuum limit.

In conclusion, our results have revealed striking new features in the shape and size depen-

dent diffusivities of 1− 10 nm colloidal nanoparticles and clusters that manifest themselves

only on the nanoscale and had hitherto not been observed for the larger submicron colloids

15



in either experimental or theoretical studies.
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