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Sensing-enhanced Therapy System for Assessing
Children with Autism Spectrum Disorders: A

Feasibility Study
Haibin Cai, Yinfeng Fang, Zhaojie Ju, Cristina Costescu, Daniel David, Erik Billing, Tom Ziemke, Serge Thill,

Tony Belpaeme, Bram Vanderborght, David Vernon, Kathleen Richardson and Honghai Liu

Abstract—It is evident that recently reported robot-assisted
therapy systems for assessment of children with autism spectrum
disorder (ASD) lack autonomous interaction abilities and require
significant human resources. This paper proposes a sensing
system that automatically extracts and fuses sensory features such
as body motion features, facial expressions, and gaze features,
further assessing the children behaviours by mapping them
to therapist-specified behavioural classes. Experimental results
show that the developed system has a capability of interpreting
characteristic data of children with ASD, thus has the potential
to increase the autonomy of robots under the supervision of a
therapist and enhance the quality of the digital description of
children with ASD. The research outcomes pave the way to a
feasible machine-assisted system for their behaviour assessment.

Index Terms—Sensing-enhanced, autonomy, autism spectrum
disorders, Therapy

I. INTRODUCTION

AUtism spectrum disorder (ASD) refers to a group of
psychological conditions characterised by highly repet-

itive behaviour, severely restricted interests and widespread
abnormalities in social interactions and communication [1].
It has received much attention in recent years due to its
increasing prevalence, and has become an urgent public health
concern [2, 3]. One way to alleviate the impact of ASD
is the employment of early therapeutic interventions. Recent
research showed that early behavioural therapies could result
in a significant maintained improvement in IQ, language,
social behaviours [4]. With early behavioural therapies, indi-
viduals with ASD are expected to gain completely or almost-
completely independent lives at a later stage. However, it has
been found to be too expensive and time-consuming to provide
associated care of individuals of ASD [5, 6].
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Fig. 1. An illustration of the standard behavioural therapy, robot assisted
therapy and sensing-enhanced therapy. The dotted lines in sensing-enhanced
therapy mean that the robot can be removed. Thus, the developed system can
also be applied in the standard behavioural therapy to reduce the burden for
therapists.

Many researchers have suggested ways to reduce the costs
and increase the effectiveness of traditional standard be-
havioural therapies. Robot assisted therapy (RAT) is one of
the promising solutions to improve social skills for children
with ASD as they exhibit a preference for interacting with
non-human agents [7, 8]. Compared to humans, robots are
more predictable in repeating specific behaviours and simpler
to interact with and thus can be served as an intermediate
for human-human interaction [9]. In addition, the robots also
have the advantage of being the physical technology which
attracts more attention of children with ASD than a human
[10]. Consequently, robots have been employed to interact
with children with ASD in different ways such as play therapy
[11, 12], social communication [13] and joint attention [8].

In a general RAT intervention such as the Wizard of Oz
(WoZ) [14], the robot is mostly controlled by an extra operator,
hence can not respond autonomously according to children’s
behaviour. The requirement of the extra operator not only
introduces extra costs for the intervention but also increases
the complexity to infer the behaviour of children since their
information such as facial expression and gaze is mostly non-
visible to the operator. Furthermore, extra efforts are needed
to analysis children’s performance after the intervention. As a
result, there is a need to increase the autonomy of the robots
to reduce the burden for therapists and get a better consistent
therapeutic intervention experience [15].

This paper presents a novel sensing-enhanced therapy (SET)
system to improve existing systems of both standard and robot
assisted therapy by providing the multi-model data sensing and
analysis results. Fig. 1 shows an illustration of the standard be-
havioural therapy, robot assisted therapy and sensing-enhanced
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Fig. 2. The framework of the sensing-enhanced therapy system.

therapy. In the developed SET system, the child-robot inter-
action, sensory processing, behaviour assessment, and social
robot control can be integrated into a closed loop. Therefore,
the robot can operate autonomously according to children’s
response for a certain time and transfer control to therapists
whenever circumstances require. Thus, therapists can not only
be released from manually annotating the children’s reactions
but also benefit from extra data for a better understanding of
the children’s behavioural state.

The SET system gives priority to three social interventions
which cover the principle components of therapeutic inter-
ventions and are very common in children with ASD [16].
The three interventions are imitation, joint attention, and turn-
taking. It is generally accepted that imitation lays the foun-
dation for personal skill development and communications.
Numerous experiments [17–19] have established that repeated
imitation training can help children learn new information
from the social environment, improve imitation skills and
enhance social responsiveness. Joint attention is the progress
of following a partner’s instructions to interact with objects,
either by gazing, pointing or speaking. Studies in [20] showed
that the lack of joint attention skills could be seen as an early
sign of autism. Turn-taking is the interchanges of behaviours
between communicative partners [21]. It is frequently targeted
in social skill interventions for children with ASD [7, 22].

Fig. 2 shows the framework of the SET system. Children’s
behaviors in the three interventions are decomposed into
several components (gaze, expression, motion etc.) calculated
by the multi-sensory sensing and interpretation module. Based
on the outputs of each component, the child behaviour as-
sessment module can provide therapists with useful analysed
behaviour information for the diagnosis, care, and treatment
of children with ASD, replacing current labour intensive
techniques involving papers and pencils, or manual video
analysis. Meanwhile, the autonomy of the robot can also be
improved by feed this information to the robot social controller
module. The therapy module allows users to take back control
of the system at any time.

This work fits in a broad project called DREAM to increase
the autonomy level of social robots in therapy to move
beyond WoZ [23] and fits in a personalized and platform-
independent behavior control system for social robots [24].
Unlike our previous work [24] which focused on planning an
holistic interaction system and ignored practical challenges of
sensory multi-modal data acquiring, fusing and interpreting,

Fig. 3. An illustration of the SET system. The developed sensorized
intervention table employs three RGB cameras and two Kinect RGBD sensors.
The three cameras are placed in the right, middle and left side of the
intervention table. The right and left cameras are hidden by black curtains
to avoid distracting the attention of the ASD child. The Kinects are placed
on the middle bar and top bar of the intervention table. The width of the
middle bar is around 70cm. Its distance to the table is around 60cm to avoid
the occlusion of the sensors when a robot is standing on the table.

this paper proposes a workable sensing system configuration
with experimental validation on the recorded data of children
with ASD. Our contributions are listed as follows:

1. The development of several components for children’s
behaviour analysis. These components include gaze estima-
tion, action recognition, facial expression recognition, object
tracking, object recognition, sound direction detection and
speech recognition.

2. The design of a multi-sensory system configuration which
contains a data synchronization strategy and a calibration
procedure to address practical challenges and further enable
an efficient and effective fusion of the multi-modal data.

3. Experimental results on each component validate the
performance of the SET system in analysing the behaviour
of children with ASD.

The rest of this paper is organised as follows: an intro-
duction of the SET system and the multi-sensory system
configuration is given in Section II. Section III describes the
details of each component. Section IV presents the experi-
mental evaluation of each component for assessing children’s
behaviour. Finally, the paper is concluded with discussions in
Section V.

II. SET SYSTEM CONFIGURATION

The SET system aims to infer the psychological disposition
of children with ASD and assess their behaviour in joint
attention, imitation and turn taking interventions. Fig. 3 shows
an example configuration of the system which mainly includes
an intervention table, a Nao robot, multiple sensors, fixing
accessories and a computer workstation. Three narrow field-
of-view cameras with a resolution of 1280∗960 and two
RGBD sensors mounted on the intervention table are used for
the multi-modal data sensing of the children and therapeutic
environment.

The functional structure of the system is shown in Fig. 4.
The three cameras faced towards the middle of the intervention
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Fig. 4. The overall functional structure of the sensors.

table can capture valid face images even under large head
poses. The captured face images can then be used for face
analysis purposes such as gaze estimation and facial expression
recognition. The front-mounted Kinect 1 aims to capture the
child’s movement information and audio information. The
captured RGBD information is further fused with the images
captured by the three cameras for gaze estimation. The top-
mounted Kinect 2 used for object tracking and recognition can
provide necessary objects’ information during the intervention.

The multi-sensor configuration requires the system to ad-
dress significant challenges of multi-sensory data sensing and
fusing. These challenges are addressed by designing a data
synchronisation strategy and a calibration procedure.

A. Data Synchronisation

One of the great challenges in multi-modal data sensing is
the data synchronisation problem. For example, Funes Mora
et al. [25] claimed that one of the main difficulties when con-
structing a system with a Kinect and a high-resolution camera
to capture the eye gaze information is the data synchronisation
problem. They proposed to enhance the synchronisation ability
by placing several LED lights in the joint view of each sensor.
However, this approach requires extra hardware configuration
and is not suitable when the views of sensors are not over-
lapped to a large extent.

To deal with the synchronisation problem, this paper pro-
poses a multi-thread programming framework, in which each
sensor owns a separate thread triggered by a central thread.
Unlike common multi-thread programming functionalities,
each camera thread in this framework has only one loop
inside. The target of each camera thread is to capture only one
image for gaze estimation and facial expression recognition.
Similarly, the Kinect 2 thread aims to capture only one
RGB image and one depth image for object tracking and
recognition. Compared to the Kinect 2 thread, the Kinect 1
thread needs to capture extra skeleton information for the
action recognition component. The central thread is used to
repeatedly create these sensing threads and wait for their
termination. In this way, we can not only assure a fixed
frame numbers for each video but also keep a minimum
time difference for the same set of video frames during the
recording procedure. Unlike the video processing threads, the
audio recording and processing tasks operate separately since

Fig. 5. The Graphical User Interface (GUI) component used by the therapist
to control the sensory system. On the right bottom side, the control button
panel can be used to control the preview and record function. The ”Show3D”
button is used to present all sensitised data in a unified 3D world coordinate.

they are not measured by video frame numbers. To balance the
speech recognition performance and other tasks, a separate
thread is constructed for receiving the results of the speech
recognition. In the constructed thread, the speech recognition
function and a 100 ms sleep operation is repeatedly executed.

Apart from the data sensing and recording, the SET system
needs to simultaneously conduct data analysis for the robot
system described in [23, 24] to interact with children with
ASD. This brings great challenges since the algorithms for
gaze estimation, facial expression recognition, object tracking
and face alignment require much computational time, which
will be presented in detail in Section IV. In the developed
multi-thread programming framework, the priority is given to
the real-time data sensing and recording by using the afore-
mentioned central thread to repeatedly trigger each sensor’s
thread. The adopted camera sensors can capture 25 fps and the
Kinect sensor has a high speed of 30 fps. This time difference
is also utilized by directly integrating the efficient action
recognition algorithm into the Kinect 1 sensor’s thread. The
rest of the algorithms are packaged into an interface function,
which will only be executed once required and thus do not
affect the performance of data sensing and recording. During
the intervention, the interface function is repeatedly called and
the results are transferred to the robot system through the Yarp
platform [26].

Fig. 5 shows the developed Graphical User Interface (GUI)
component. To facilitate the user operation, the SET system
provides two modes, namely, a previewing mode and a record-
ing mode. The difference between the two modes is that the
recording mode requires an extra saving operation in each
thread. The SET system can effectively collect and analyse
multi-sensory data in a real-time performance at 25 fps. Some
of the analysed results such as detected skeletons, recognised
motion, face identification, facial landmarks, facial expression,
head pose and gaze are directly shown in the images. The right
bottom part of the GUI is a panel to control the system.

B. System Calibration

Due to the multi-sensory configuration, the detected infor-
mation such as eye centres, object locations, and skeletons
are all in the local coordinate of the individual sensors. To
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effectively fuse multi-modal data, a coordinate transformation
module, which can transfer data from different sensor coordi-
nate systems to a global world coordinate system, is proposed.
By doing so, all the collected sensory data can be shown in
the global world coordinate system. The centre of the world
coordinate system is located at the base of Kinect 1. The
vertical axis is defined as the y axis, and the desk plane is
defined as the plane of x axis and z axis. The following part
of this section shows the methods to calibrate the Kinect 1
with three cameras and the two Kinects respectively.

1) Kinect-Camera calibration: The system places the three
cameras at three different locations to capture faces under
large head poses. The large angle difference of the three
cameras brings challenges for the calibration progress. We
have proposed a joint Kinect-Camera calibration framework to
simultaneously calibrate relative poses of a Kinect and three
cameras. By weighting each camera, a single cost function
is constructed to jointly calibrate the Kinect with the three
cameras [27]. Fig. 6 shows an illustration of the captured
colour images and the reconstructed 3D point clouds. It should
be noted that in the reconstructed image, the upper body
point clouds are rendered by the high-resolution camera while
the rest of the point clouds are rendered by the Kinect. The
correct alignment of the point clouds demonstrates the accurate
calibration of the sensors.

(a) (b) (c)

Fig. 6. An illustration of the Kinect-Camera calibration result. (a) An image
captured by one of the cameras. (b) An image captured by the Kinect 1. (c)
The reconstructed 3D point clouds using the camera and the Kinect 1.

2) Kinect-Kinect calibration: The SET system uses two
Kinects to capture both the 3D information of the child and
the objects. The relative positions of two Kinects are calibrated
by minimising the following equation:

minR,T = ||RP1 + T − P2|| (1)

where P1 and P2 represent the coordinates of the image
corners detected from the RGB images of the Kinect 2 and the
Kinect 1 respectively. R and T are the rotation matrix and the
translation matrix for the coordinate transformation between
two sensors. Due to the limitation of depth sensors, some
of the detected corners might not contain depth information.
After removing these points, the iterative closest points (ICP)
algorithm is used for the optimisation of R and T. Fig. 7 shows
an illustration of the detected corners and the calibration result.

Once the sensors are calibrated, we can transform the
coordinates of the objects from one sensor to another sensor
via the following equation:

uc−u0

X = vc−v0

Y = f
Z

Pt = RP0 + T
P = (X,Y, Z)

(2)

(a) (b) (c)

Fig. 7. An illustration of the Kinect-Kinect calibration result. (a) An image
captured by the middle Kinect. (b) An image captured by the top Kinect. (c)
The calibration result of two Kinects.

where (uc, vc) represent the position of detected corners in
RGB images and (u0, v0) denote the cameras’ image centre.
Pt, Po represent the recovered 3D coordinates in the target
world coordinate and the local coordinate respectively.

III. PERCEPTION COMPONENTS

The developed perception components in the SET system
are gaze, actions, facial expressions, object positions, object
identifications, sound direction, and speeches. The algorithms
for these components are explained in detail in the following
subsections.

A. Gaze Estimation Component

Gaze is an essential part of human’s attention system. Al-
though accurate gaze can be obtained using commercial head-
mounted eye tracking devices, the uncomfortable wearing
experience limits their application for the children with ASD.
Apart from the non-wearable requirement, the joint attention
tasks also require the SET system to estimate the 3D gaze
of children with ASD under large head movements, so that
they can freely move their heads while doing motions. These
requirements bring extra challenges such as large head move-
ments, occlusions, and various eye appearances. To handle
these challenges, we have proposed a gaze estimation method
using a single sensor [28] and further developed a multi-
sensory configuration to cover large head movements.

As the first step, the boosted cascade face detector [29]
is employed to find the rough location of the child’s face.
Once the face is detected, the supervised descent method
proposed by [30] is used to locate the feature points in the
facial region. For the detection of eye centre locations, we
proposed an accurate convolution based integro-differential
method [31] to localise the eye centre even in low-resolution
images. The proposed method takes advantage of the drastic
intensity changes between the iris and the sclera and localises
the eye centre via searching the maximum ratio derivative of
the neighbour curve magnitudes in the convolution image.

Once the facial points are located, the Pose from Orthog-
raphy and Scaling with ITerations (POSIT) proposed by [32]
is used to calculate the head pose. To handle the large head
movement challenge, we have proposed a real-time gaze esti-
mation method by constructing a multi-sensory fusion system
[33]. For those facial points that the camera and Kinect 1 can
both capture, it is feasible to find their global 3D coordinates.
However, it is sometimes hard for both devices to capture the
same facial points in many situations because of the large head
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movements. Thus a 2D to 3D coordinate transformation for
these located 2D facial points is necessary. The transformation
can be performed using the following equation:

PC = R−1 ∗ PW −R−1 ∗ T
X
′
C

u−u0
=

Y
′
C

v−v0
=

Z
′
PC

f

Z
′

C = Z
′

PC

(3)

where PW and PC represent the head centre positions in
the world coordinate system and the local coordinate system
respectively. (u0, v0) and f denote the cameras’ image centre
and focal length respectively; X

′

C , Y
′

C , Z
′

C which indicate
the 3D coordinate of a point in the local coordinate system
correspond to the 2D point (u, v) in the image. The depth
value of the head centre point Z

′

PC is used as a replacement
of the missing depth value of those facial landmarks for the
calculation of their 3D points in the local coordinate system.

B. Facial Expression Recognition Component

Facial expressions are important aspects of human be-
haviours. It has also been shown that children with ASD can
improve their social skills by participating facial expression
related interventions [34]. The SET system aims to recognise
five facial expressions which are neutral, angry, fear, happy
and sad. We have proposed a face frontalization method [35]
to register frontal facial appearances from unconstrained non-
frontal facial images. Then we use Local Binary Patterns to
represent facial appearance cues and apply a SVM for facial
expression classification.

In the proposed approach [35], five different templates
are manually designed to match facial expressions. The five
templates are constructed by averaging the shape of five
manually grouped facial images from the SFEW dataset [36].
For each query image and the detected facial landmarks, the
best template will be assigned to it according to the similarity
calculated by the geometric distance. In order to reconstruct
frontal facial appearances, Active Appearance Model instanti-
ation [37] can be used by minimising:

∑
x

‖F − I(W (x; p+4p))‖, s.t.F =
m∑
i=1

λiAi(x) (4)

where F is the frontal face which is obtained by a linear
combination of a set of pre-defined eigenfaces Ai(x). The
input image is warped to the selected template through piece-
wise affine warp I(W (x; p + 4p)). The algorithm works
iteratively with the update rule p← p+ δp.

C. Action Recognition Component

Correctly recognising children’s body actions is one of
the most important aspects of the imitation tasks. The SET
system described in this paper aims to recognise 11 actions
as defined in Fig. 8. The actions are wave hands, hands on
eyes, hands over head, open arm, move toy car, drink, knock
door and other four complex movements. These actions are
defined according to therapists’ view in the imitation tasks for
children with ASD.

Fig. 8. Defined actions for children with ASD.

Skeleton information is appealing for human action recog-
nition in that it is invariant to illumination conditions and
body appearances. We have proposed a novel skeleton based
method [38] for human action recognition. The 3D Moving
Trend and Geometry property (3DMTG) from skeleton joints
(totally 10 joints from the up-body) are extracted to recognise
the behaviour of children with ASD. The moving trend is
firstly computed by accumulating all the moving directions
in 3D space. Then the geometry property of joints in each
frame is modelled by the relative motion information. Finally,
the feature descriptor is constructed by integrating the two
features for action recognition.

Eq. 5 shows the modelling of the 3D moving trend feature.
3D moving directions are partitioned into m bins vj. Then
the cosine similarity is applied to describe the similarity
between vi

t and vj. The quantization of moving directions
is implemented using a soft voting strategy.



vi
t = {xpi

t
− xpi

t−1
, ypi

t
− ypi

t−1
, zpi

t
− zpi

t−1
}

cosθij(t) =
vj·vi

t

‖vi
t‖‖vj‖

, j ∈ [1,m]

binj =
∑

i ‖vi
t‖ ×max{cosθij(t)}, j ∈ [1,m]

H(i) = bin1, ..., binm

4dit = {xrit − xri1 , yrit − yri1 , zrit − zri1 }
G(t) = {4d1t , ...,4dNt }

(5)

where xpi
t
, ypi

t
, zpi

t
represent the coordinate of the ith joint.

H(i) and G(t) mean the extracted moving trend feature
and geometry feature. To eliminate the influence of different
initial poses, the displacement between the relative joints
in the current frame and the joints in the initial frame is
utilised to reflect the geometry property. After extracting the
3DMTG feature descriptor, a SVM classifier is used for action
recognition. In practice, a sliding window strategy is used to
classify online video streams.

D. Object Tracking and Recognition Component

During the imitation intervention, the child is required to
pick up an object on the table and imitate the behaviour related
to the object. Thus, there is a need to track and recognise
the object. There has been active research in the literature
for these tasks. The SET system described in this paper
employs the GM-PHD tracker [39] due to its good balance
of accuracy and time efficiency for multi-objects tracking. For
the object classification, the classic Histogram of Oriented
Gradient and SVM are used, and achieve a good performance
since the white background of the intervention table reduces
the challenge to a large extent.
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TABLE I
THE DEMOGRAPHICS OF THE PARTICIPATION.

Participant No.1 No.2 No.3 No.4 No.5
Gender M M M F F

Age 5 years
4 month

5 years
1 month

3 years
9 month

3 years
8 month

4 years
8 month

ADOS 16 12 23 23 25

LF moderate
level

high
level

low
level

low
level

low
level

CS 7 4 15 10 11
SIC 9 8 8 12 12
PS 2 1 2 4 4

SBS 4 2 3 6 6
1 LF = Level of functioning based on the category developed by Gotham
et. al [40]; ADOS = Autism Diagnostic Observation Scale [41]; LF =
Level of functioning; CS = Communication subscale of ADOS; SIS =
Social interaction subscale of ADOS; PS = Play subscale of ADOS; SBS =
Stereotype behaviors subscale of ADOS.

E. Sound Direction Detection and Speech Recognition Com-
ponent

The speech recognition and sound direction localisation
can help the SET system better understand the psychological
disposition of the children in imitation tasks. Their implemen-
tations are based on the Microsoft Kinect SDK. In the defined
intervention scene, we mainly focus on eleven pre-defined
onomatopoeias, which are recognised by manually scripted
similar pronunciation words into an XML file. Although the
simulation of these 11 sounds for common kids is simple, it is
hard for the children with ASD to accomplish. The recognised
speech will also be identified by the system to see if the
speech actually comes from the child by using the detected
sound direction since the child will always sit in front of
the intervention table during the experiment. Based on the
analysed information, the system can determine whether to
give a positive feedback or encourage the child to do another
try.

IV. PERFORMANCE EVALUATION

Participants included in the study are children with a di-
agnosis of ASD between the ages of 3 to 6 years old. A
psychological examination takes place before the intervention
to evaluate the presence of autistic symptoms. This diagnosis
is given based on scores obtained at Autism Diagnostic Ob-
servation Schedule (ADOS), corroborated by the scores form
Social Communication Questionnaire (SCQ) and a previous
diagnosis. The children with scores that are not in a clinical
range are excluded. Table I shows the demographics of five
of the recruited participants. Experiments were conducted
in a lab where therapists from different organizations and
institutions are recruited to provide psychotherapeutic services
to children with ASD. Both therapist-based interventions and
robot-based interventions were conducted for each child. The
sequence order of therapist-based interventions and robot-
based interventions is randomized.

Each intervention presented to the child begins with the
partner’s verbel instructions. For example, the instructions for
the imitation, joint attention, and turn taking interventions are
“Do it like me!”,“Please, pay attention to what I am look-
ing!”,“First is your turn. What’s your favorite .../Now is my

(a) (b)

Fig. 9. Gaze estimation results on an ASD child under small head movements.
The white line indicates the gaze direction.

turn.”, respectively. In the imitation intervention, the system
will check if the child imitates the partner’s actions correctly
and recognize the child’s positive emotions (happy or neural)
or negative emotions (angry, fear or sad) in order to assess
their engagement. It should be noted that the partner is not
required to perform a specific expression in this intervention.
In the joint attention intervention, the partner will indicate one
of the two objects on the table by looking at and pointing to
the object. The gaze of the Nao robot is represented by its head
pose since its eyes always look forward. Then, the system will
detect whether the child pays attention to the same object or
not by using the gaze estimation result and hand movement
detection result. In the turn taking intervention, the system
will check if the child makes eye contact with the partner
and correctly follows the partner’s instructions to respect the
turns by detecting his/her gaze and hand movement. Readers
are suggested to refer to [42] for more details about the three
interventions.

Although many algorithms have been proposed for each
component, their performance remains unclear when applying
to children with ASD. Besides, as shown in table II, the
calculation of the behaviour scores is a direct sum operation of
the results from each component. For example, in the imitation
intervention, the child will receive a high score if the action
of the partner is imitated with positive emotions. Thus, this
section firstly conducts function level assessments for each
component to give an insight view of the system’s performance
and then provides a behaviour level evaluation by comparing
the behaviour scores obtained using the system with the
manually annotated ground truth scores. Since the children
don’t actively perform the speech tasks and only limited data
is collected, the audio-related tasks are not evaluated.

A. Gaze Estimation

In this subsection, we report the experimental evaluation of
the proposed multi-sensory based gaze estimation on interac-
tion with children with ASD. Fig. 9 and Fig. 10 show some
snapshots of the performance of gaze estimation under small
head movements and large head movements respectively. The
3D point clouds are constructed by both the Kinect 1 mounted
on the middle bar and the Kinect 2 mounted on the top bar.
The white line is the estimated gaze of the child. Thanks to
the employment of the multi-sensory configuration, it can even
deal with the situation when the attention is entirely away from
the intervention table.

The lack of mutual gaze with social partners is one of the
most conspicuous features of ASD. During the interventions,
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TABLE II
EVALUATION OF THE CHILDREN’S BEHAVIOUR

Imitation
High Score: The child imitates the movement made by the partner with enthusiasm (positive emotions);
Middle Score: The child only finishes part of the behaviour, for example, the movement is imitated without enthusiasm;
Low Score: The child does not react or does something else.

Joint Attention
High Score: The child shows something to the partner by using gazing and pointing;
Middle Score: The child shows something to the partner by using only part of behaviour;
Low Score: The child has no attempts to initiate any joint attention episode.

Turn taking
High Score: The child plays, makes eye contact and respects turns when playing with the partner;
Middle Score: The child plays, makes eye contact without considering the partners answers;
Low Score: The child does not react or does something else.

(a) (b)

Fig. 10. Gaze estimation results on an ASD child under large head move-
ments. The white line indicates the gaze direction.

TABLE III
MUTUAL GAZE DETECTION PERFORMANCE

aaaaaaa
Predicted

Actual
Positive Negative

Positive 86.53% 13.47%
Negative 5.13% 94.87%

the children are guided by the partner’s gaze instructions to
look at the robot or human therapist for several times. This
system detects mutual gaze by checking if the gaze vector
has passed the predefined head area. In the experiment, we
randomly extract 1500 images from the recorded videos which
consist of 7 children with ASD with individual sample ranging
from 98 to 311. Table III shows the mutual gaze recognition
performance. The overall accuracy of mutual gaze detection
is around 90.7%, which is a good performance considering
the large head movement challenge. The performance of
mutual gaze detection is affected by the eye center localization
algorithm, the gaze estimation algorithm and the head pose
estimation algorithm.

The skill to perform joint attention, which is the shared
focus of two individuals on an object, plays a critical role
in the social development. The impaired development of the
joint attention skill is also a prominent feature of children
with ASD. Many researchers claim that children with ASD
might gain significant maintained improvement in social skills
via early intervention therapy of joint attention [43]. During
the joint attention section, the partner will look at one of the
objects on the table and wait for the child’s response. The
adopted objects includes a toy car, a toy plane, a cup and a
toy flower. Each time, the therapist puts two of the objects on
the table ahead and then the partner starts to give indications
to the child sitting in front of the table. For the evaluation

(a) (b)

Fig. 11. Performance of multi-sensory based gaze estimation algorithm in
joint attention intervention; (a) recognition performance regarding to the 4
different objects; (b) the recognition performance among different children.

of the gaze estimation algorithm, we extract 10 successful
joint attention samples for each object and each child. The
constructed dataset has 10 children and 4 objects, thus the
total size of the samples is 400. The algorithm treat it as a
successful joint attention if the child’s gaze passes through
the area of the detected object rectangle.

Fig.11 shows the performance of multi-sensory based gaze
estimation algorithm during the joint attention interventions.
The proposed algorithm achieves an average recognition rate
of 89.5%. The cup object achieves high recognition rate of
96%, which is mainly due to the big size of the object. On
the other hand, the small car object achieves a relatively
low recognition rate of 83%. In terms of the recognition
performance on each child, the proposed algorithm has an
maximum accuracy of 95% and a minimum accuracy of 85%.

B. Facial Expression Recognition

The face database is created by manually extracting some
frames from recorded videos, which includes 437 images of 5
emotional categories (Angry, Fear, Happy, Neutral and Sad).
This dataset contains 7 children with ASD and it is labelled
by looking at the video sequence around the specific image
to infer the currently status. Fig. 12 shows some snapshots of
the performance of the recognition results. It can be intuitively
seen that this method has tolerance to small head poses and
occlusions.

For facial expression recognition on children’s database, the
performance is shown in Fig. 13. The overall recognition rate
is 63.71%. It is challenging to achieve a clear partition of
negative facial expressions as the child tends to perform a
combination of emotions (most frequently a combination of
fear and angry which is hard to distinguish even by human
beings).
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Fig. 12. Snapshots of expression recognition results.

Fig. 13. Expression recognition results on children ASD.

C. Action Recognition

The action database contains 13 participants with various
clothing colours and body sizes. It has 11 actions defined
specifically for the imitation interventions, as shown in Fig.
8. Each action is repeated for three times. Thus, the data
set contains 429 action segments in total. The starting time
and ending time of the actions are manually extracted for the
evaluation purpose.

Fig. 14 shows the confusion matrix of our 3DMTG method
for the 11 actions. It can be seen that most actions can be
correctly recognised by over 80% accuracy. Especially, actions
such as wave hands and open arm, can be 100% recognised by
the proposed descriptor because they are simple and have little
confusion with the other actions. Actions like hands on eyes
and hands over head are easily confused with each other due
to their similar skeleton movement. The recognition accuracies
of actions (e.g. complex 1 and complex 2) with large intra-class
variations are relatively low.

For the online action recognition scenario where no man-
ually labelled information is available, we used a sliding
window strategy with a window size of 26 frames. As a result,
the classifier can produce a recognition result for each frame
except for the first 25 skeleton frames.

Fig. 14. Actions recognition results on children with ASD.

TABLE IV
TIME PERFORMANCE OF THE SET SYSTEM

Algorithm Time (ms)
Face alignment 22.13
Gaze estimation 13.85

Facial expression recognition 34.31
Action recognition 9.82

Object tracking and recognition 32.56

D. Time Performance

This subsection provides a speed evaluation of the SET
system. The SET system achieves a real-time performance for
data sensing and interpretation using the HP Z420 computer
(Intel Xeon E5-1650 processor). Due to the heavy load in data
transferring, each sensor has to be plug-in to a separate USB
controller and the recorded data needs to be saved to a solid-
state drive to ensure the real-time performance. By running
the system and logging the time cost for each algorithm for
100 times, we obtained the average processing time of each
algorithm.

As shown in Table IV, the action recognition has a low
computational cost and thus is directly integrated into the
Kinect 1 thread. During the experiment, it is found that the
build-in speech recognition function consumes less than 0.1
ms. This might due to that a hidden thread, which continuously
performs the recognition task, is constructed by the Kinect
SDK’s speech recognition model. The rest algorithms such as
the face alignment algorithm, the gaze estimation algorithm,
the facial expression recognition algorithm and the object
tracking and recognition algorithm consume more computa-
tional time. By packaging them together into the externally
invoked interface function, the overall performance of data
sensing and recording remains at 25 fps. The drawback is that
the analysed information can only be accessed at 10 fps.

E. Assessment of the SET System

To evaluate the performance of the SET system in the imi-
tation, joint attention and turn taking interventions, 70 videos
have been extracted with manually labelled scores according
to Tabel II. The dataset contains 30 imitation sections, 30 joint
attention sections and 20 turn taking sections. The extracted
videos have no overlap with the training dataset of each
component. The recognition results of different components
are directly used to obtain the final behaviour score. Table V
shows the confusion matrix of the recognition results. It can
be seen from the table that the system achieves 88.24% in
identifying low score behaviours. This might due to the fact
that it is easy to measure the situations where children do
unrelated activities or simply don’t respond to the indications.
The recognition performance of high score behaviours is lower
compared to low score behaviours. The overall recognition
performance of the system achieves 82.86% since the low
score and middle score behaviours occupy a relatively large
proportion (3.7:1) in the testing datasets.
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TABLE V
ASSESSMENT OF THE SET SYSTEM

aaaaaaaaa
Predicted

Ground Truth
Low Score Middle Score High Score

Low Score 88.24% 11.76% 0%
Middle Score 21.74% 71.74% 6.52%
High Score 5.89% 29.41% 58.82%

1 The ground truth of the scores are manually labelled and the predicted
scores are calculated automatically according to table II.

V. CONCLUSION

This paper made an attempt to improve the existing systems
of both standard and robot assisted therapy for children with
ASD via a sensing framework with multi-sensory configu-
ration and fusion. The developed SET system has enhanced
sensing and interpretation abilities in comparison with the state
of the art in the behaviour assessment of children with ASD.
Significant contributions comprising acquiring, fusing, and
interpreting sensory spatio-temporal multi-modal data have
been addressed in the SET system. Experimental evaluations
have demonstrated that the SET system is able to effectively
perceive the children’s behaviour components such as gaze,
facial expression and actions, further assessing the behaviour
children with ASD.

Future research has been targeted as follows: 1) Experiments
for automatic assessment with more children with ASD; 2) Ex-
pansion of the activities associated with the intervention table
to a multi-task multi-scene smart environment; 3) Evaluation
of the effectiveness of SET on improving specific social skills
of children with ASD, further gaining more practical social
skills.
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