Semisynthesis, anti-oomycete and anti-fungal activities of ursolic acid ester derivatives

Lina Zhu ${ }^{\text {a }}$, Yuee Tian* ${ }^{\text {a }}$, Tiewei Wang ${ }^{\text {c }}$, Xiaobo Huang ${ }^{\text {a }}$, Lin Zhou ${ }^{\text {b }}$, Shengming Liu ${ }^{\text {a }}$, Genqiang Chen*a ${ }^{\text {a }}$ Zhiping Che* ${ }^{\text {a }}$
${ }^{a}$ Laboratory of Pesticidal Design \& Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
${ }^{b}$ College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
${ }^{c}$ ShanDong New Power Biology Science \&Technology Co., Ltd., Jinan 250101, China

[^0]
Abstract

Using ursolic acid (UA) as the lead compound, thirteen UA ester derivatives ($\mathbf{3}$ and $\mathbf{7 a - 1}$) were synthesized by modifying their C-3 and C-28 positions, respectively, and their structures were well characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS and melting points. Furthermore, we evaluated the anti-oomycete and anti-fungal activities of these compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that compound 7h exhibited prominent anti-oomycete and anti-fungal activities, and the median effective concentration (EC_{50}) values of $\mathbf{7 h}$ against P. capsici and F. graminearum were 70.49 and $113.21 \mathrm{mg} / \mathrm{L}$, respectively. This study suggested that the anti-oomycete and anti-fungal activities of esters synthesized by introducing acyloxy group at C-3 position of UA was more conspicuous than that of esters synthesized by introducing benzyloxy group at C-28 position. This result will pave the way for further modification of UA to develop potential new fungicides.

Keywords: Natural product, ursolic acid, esterification, anti-oomycete activity, anti-fungal activity

Table of Contents

1.0 Chemistry S4
2.0 Tables S5
3.0 Structural characterization of compounds 3 and 7a-I S7
4.0 Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 3 and 7a-l S15
5.0 Copies of HRMS spectra of compounds 3 and 7a-I S28
6.0 Bioassay Method S41

1.0 Chemistry

Ursolic Acid (1, UA), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC $\cdot \mathrm{HCl}$), 4-dimethylaminopyridine (DMAP), phosphorustribromide $\left(\mathrm{PBr}_{3}\right)$, arylsulfonyl chloride $\left(\mathrm{R}^{1} \mathrm{SO}_{2} \mathrm{Cl}\right)$, carboxylic acid $\left(\mathrm{R}^{2} \mathrm{COOH}\right)$, and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China). Triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$, phenyl tribromomethyl sulfone $\left(\mathrm{Br}_{3} \mathrm{CSO}_{2} \mathrm{Ph}\right)$, benzyl alcohol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}\right)$, and Phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$, were ordered from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) was purchased from Bide Biochemical Co., Ltd. Anhydrous methanol, ethyl acetate, petroleum ether and dichloromethane were analytical grade obtained from Beichen Fangzheng Reagent Factory (Tianjin, China). N, N-Dimethylformamide (DMF) was analytical grade obtained from Damao Chemical Reagent Factory (Tianjin, China). Toluene was analytical grade obtained from Haohua Chemical Reagent Factory (Luoyang, China). Thin-layer chromatography (TLC) was performed with a silica gel plate using silica gel $60 \mathrm{GF}_{254}$ (Qingdao Haiyang Chemical Co., Ltd., Qingdao, China). Column chromatography (CC) was performed with silica gel 200-300 mesh (Qingdao Haiyang Chemical Co., Ltd., Qingdao, China). Melting points were taken on a X-6 microscopic melting point apparatus (Beijing Tech instrument Co., Ltd., Beijing, China) and are uncorrected. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were carried out with a Bruker Avance III 400 MHz instrument (Bruker Daltonik, Bremen, Germany) in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ using tetramethylsilane (TMS) as the internal standard. Electrospray ion trap mass spectrometry (ESI-TRAP-MS) was carried out with a Bruker ESI-TRAP Esquire 6000 plus mass spectrometry instrument (Bruker, Germany).

2.0 Tables

Table S1. Comparison of yields of compounds 7a-l synthesized by two methods.

Compounds	Method 1 (\%)	Method 2 (\%)
$\mathbf{7 a}$	45	52
$\mathbf{7 b}$	46	54
$\mathbf{7 c}$	51	60
$\mathbf{7 d}$	49	59
$\mathbf{7 e}$	39	48
$\mathbf{7}$	40	63
$\mathbf{7 g}$	35	40
$\mathbf{7 h}$	38	75
$\mathbf{7 i}$	34	45
$\mathbf{7 j}$	32	47
$\mathbf{7 k}$	30	45
$\mathbf{7 l}$	20	46

Table S2. Anti-oomycete activity of 1, 3 and 7a-l at 50 and $100 \mathrm{mg} / \mathrm{L}$ concentration against P. capsici in vitro.

Compounds	Concentration $(\mathrm{mg} / \mathrm{L})$	Inhibition rate $(\%)^{a}$
$\mathbf{1}$	$50 / 100$	$25.52 \pm 0.47 / 36.26 \pm 0.47$
$\mathbf{3}$	$50 / 100$	$17.19 \pm 0.82 / 26.37 \pm 1.25$
$\mathbf{7 a}$	$50 / 100$	$38.02 \pm 0.94 / 46.46 \pm 1.25$
$\mathbf{7 b}$	$50 / 100$	$34.90 \pm 0.47 / 41.21 \pm 1.25$
$\mathbf{7} \mathbf{c}$	$50 / 100$	$32.29 \pm 0.94 / 50.00 \pm 0.94$
$\mathbf{7 d}$	$50 / 100$	$38.54 \pm 0.94 / 47.25 \pm 3.27$
$\mathbf{7 e}$	$50 / 100$	$33.33 \pm 0.47 / 42.31 \pm 0.82$
$\mathbf{7}$	$50 / 100$	$35.94 \pm 0.82 / 45.71 \pm 0.94$
$\mathbf{7 g}$	$50 / 100$	$39.06 \pm 1.41 / 50.55 \pm 2.16$
$\mathbf{7 h}$	$50 / 100$	$32.29 \pm 1.89 / 55.49 \pm 0.82$
$\mathbf{7 i}$	$50 / 100$	$39.88 \pm 0.94 / 49.25 \pm 0.47$
$\mathbf{7 j}$	$50 / 100$	$27.60 \pm 1.41 / 53.05 \pm 1.25$
$\mathbf{7 k}$	$50 / 100$	$33.85 \pm 1.70 / 46.90 \pm 0.82$
$\mathbf{7 l}$	$50 / 100$	$26.96 \pm 1.25 / 50.80 \pm 1.70$
Metalaxyl b	$50 / 100$	$83.12 \pm 0.47 / 86.97 \pm 0.94$

${ }^{a}$ Values are means \pm S.D. of three replicates.
${ }^{b}$ Metalaxyl was used as a positive control.

Table S3. Anti-oomycete activity of $\mathbf{7 c}, \mathbf{7 d}, \mathbf{7 g}, \mathbf{7 h}, \mathbf{7 j}$ and $\mathbf{7 k}$ at different concentration gradients against P. capsici in vitro ${ }^{b}$.

Compounds	EC_{50} $(\mathrm{mg} / \mathrm{L})$	Toxicity regression equation	Correlation coefficient	Confidence interval $95 \%(\mathrm{mg} / \mathrm{L})$
$\mathbf{7 c}$	99.95	$\mathrm{y}=3.2397+0.8802 \mathrm{x}$	0.9429	$73.48-135.96$
$\mathbf{7 d}$	107.66	$\mathrm{y}=3.5487+0.7142 \mathrm{x}$	0.9924	$96.20-120.50$
$\mathbf{7 g}$	82.85	$\mathrm{y}=3.0427+1.0203 \mathrm{x}$	0.9683	$67.35-101.90$
$\mathbf{7 h}$	70.49	$\mathrm{y}=3.6212+0.7461 \mathrm{x}$	0.9869	$61.99-80.14$
$\mathbf{7 j}$	74.73	$\mathrm{y}=3.4853+0.8085 \mathrm{x}$	0.9929	$68.01-82.11$
$\mathbf{7 k}$	105.62	$\mathrm{y}=3.3255+0.8274 \mathrm{x}$	0.9229	$72.54-153.77$
Metalaxyl a	4.49	$\mathrm{y}=4.4601+0.8270 \mathrm{x}$	0.9791	$2.55-7.90$

${ }^{a}$ Metalaxyl was used as a positive control.
${ }^{b}$ Regression analysis by IBM SPSS Statistics 22.0, $p<0.05$.

Table S4. Anti-fungal activity of $\mathbf{1 , 3}$ and $\mathbf{7 a - 1}$ at 100 and $200 \mathrm{mg} / \mathrm{L}$ concentration against F. graminearum in vitro.

Compounds	Concentration $(\mathrm{mg} / \mathrm{L})$	Inhibition rate $(\%)^{a}$
$\mathbf{1}$	$100 / 200$	$10.83 \pm 0.94 / 25.96 \pm 1.25$
$\mathbf{3}$	$100 / 200$	$16.87 \pm 0.47 / 26.96 \pm 0.94$
$\mathbf{7 a}$	$100 / 200$	$23.50 \pm 0.47 / 33.67 \pm 1.70$
$\mathbf{7 b}$	$100 / 200$	$24.04 \pm 6.24 / 28.06 \pm 0.82$
$\mathbf{7 c}$	$100 / 200$	$20.22 \pm 1.70 / 31.63 \pm 0.47$
$\mathbf{7 d}$	$100 / 200$	$17.21 \pm 1.25 / 35.20 \pm 0.47$
$\mathbf{7 e}$	$100 / 200$	$22.40 \pm 0.47 / 32.14 \pm 0.94$
$\mathbf{7}$	$100 / 200$	$21.31 \pm 0.00 / 33.67 \pm 1.70$
$\mathbf{7 g}$	$100 / 200$	$27.32 \pm 0.47 / 39.29 \pm 1.70$
$\mathbf{7 h}$	$100 / 200$	$45.90 \pm 0.94 / 60.71 \pm 0.47$
$\mathbf{7 i}$	$100 / 200$	$20.22 \pm 0.47 / 30.61 \pm 0.94$
$\mathbf{7 j}$	$100 / 200$	$20.77 \pm 1.25 / 26.00 \pm 0.82$
$\mathbf{7 k}$	$100 / 200$	$18.58 \pm 2.05 / 35.20 \pm 0.94$
$\mathbf{7 l}$	$100 / 200$	$26.23 \pm 0.82 / 27.04 \pm 1.25$
Triadimefon ${ }^{b}$	$100 / 200$	$78.97 \pm 1.25 / 84.62 \pm 0.41$

${ }^{a}$ Values are means \pm S.D. of three replicates.
${ }^{b}$ Triadimefon was used as a positive control.

Table S5. Anti-fungal activity of 7h at different concentration gradients against F. graminearum in vitro ${ }^{b}$.

Compound	$\mathbf{E C}_{\mathbf{5 0}}$ $(\mathbf{m g} / \mathrm{L})$	Toxicity regression equation	Correlation coefficient	Confidence interval $\mathbf{9 5 \%}(\mathbf{m g} / \mathrm{L})$
7h	113.21	$\mathrm{y}=2.9392+1.0034 \mathrm{x}$	0.9715	$89.98-142.43$
Triadimefon a	6.29	$\mathrm{y}=4.5307+0.5875 \mathrm{x}$	0.9734	$3.68-10.74$

${ }^{a}$ Triadimefon was used as a positive control.
${ }^{b}$ Regression analysis by IBM SPSS Statistics 22.0, $p<0.05$.

3.0 Structural characterization of compounds 3 and 7a-I

Data for 3: Yield $=85 \%$, White solid, m.p. 193-194 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.28-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=11.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24-2.28 (m, 1H), 1.96-2.04 (m, $1 \mathrm{H}), 1.77-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.53(\mathrm{~m}, 4 \mathrm{H})$, $1.25-1.38(\mathrm{~m}, 6 \mathrm{H}), 0.72(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07,0.98,0.93,0.89,0.85$, 0.77, 0.64 (s, each 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.28, 138.09, 136.37, 128.38, 128.13, 127.92, 125.69, 79.03, 65.97, 55.21, 52.88, 48.12, 47.55, 42.03, 39.52, 39.09, $38.83,38.74,38.62,36.95,36.63,33.03,30.66,28.13,27.96,27.23,24.25,23.56$, 23.26, 21.17, 18.30, 17.01, 16.99, 15.62, 15.44. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{O}_{3}{ }^{+}$, 547.4146; found, 547.4150.

Data for 7a: Yield $=52 \%$, White solid, m.p. $211-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.04(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.32(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.17 (m, 1H), 1.94-2.02 (m, 3H), 1.78-1.89 (m, 3H), 1.49-1.68 (m, 9H), $1.31-1.44(\mathrm{~m}, 5 \mathrm{H}), 1.17-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.13,0.99,0.97,0.92,0.90,0.87,0.78$ (s, each 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 172.52, 162.55, 137.60, 134.17, 130.38, 129.39, $128.70,126.40,79.03,55.25,52.85,49.95,47.59,42.26,39.65,39.16,38.81,38.75$, $38.70,36.97,35.80,33.13,30.54,28.14,28.04,27.23,24.43,23.47,23.38,21.10$, 18.29, 17.28, 16.94, 15.62, 15.52. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{O}_{4}{ }^{+}, 561.3938$; found, 561.3941.

Data for 7b: Yield $=54 \%$, White solid, m.p. $147-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.91(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08-2.15 (m, 1H), $1.97(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.68(\mathrm{~m}$, $10 \mathrm{H}), 1.33-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.16-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.12,0.99,0.97,0.93,0.89,0.87,0.78(\mathrm{~s}$, each 3 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 173.00, 162.79, 142.53, 137.61, 133.34, $132.12,131.24,128.10,126.38,125.86,79.04,55.26,52.82,49.74,47.60,42.27$,
39.67, 39.18, 38.80, 38.76, 38.71, 36.97, 35.76, 33.17, 30.56, 28.15, 28.02, 27.24, 24.40, 23.44, 23.38, 21.97, 21.11, 18.31, 17.36, 16.94, 15.63,15.53. HRMS (ESI): Calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}{ }^{+}, 575.4095$; found, 575.4096.

Data for 7c: Yield $=60 \%$, White solid, m.p. 197-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{q}, ~ J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 1 \mathrm{H})$, $1.95-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.13,0.99,0.97,0.92,0.89,0.87,0.78$ (s, each $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.64, 162.77, 138.56, 137.75, 134.98, 130.95, $129.32,128.57,127.55,126.31,79.03,55.26,52.83,49.93,47.59,42.26,39.65,39.17$, 38.81, 38.76, 38.69, 36.98, 35.77, 33.12, 30.54, 28.15, 28.01, 27.23, 24.41, 23.49, 23.38, 21.31, 21.11, 18.30, 17.30, 16.95, 15.63, 15.51. HRMS (ESI): Calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}^{+}, 575.4095$; found, 575.4099.

Data for 7d: Yield $=59 \%$, Yellow solid, m.p. 213-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=13.6$ $\mathrm{Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.57$
$(\mathrm{m}, 5 \mathrm{H}), 1.31-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.12,0.99,0.97,0.92,0.90,0.87,0.78$ (s, each 3 H$).{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.66, 162.60, 145.23, 137.66, 130.47, 129.43, 126.65, $126.35,79.03,55.26,52.84,49.89,47.60,42.26,39.65,39.17,38.82,38.75,38.70$, $36.97,35.82,33.14,30.55,28.14,28.03,27.23,24.42,23.47,23.38,21.81,21.11$, 18.30, 17.29, 16.94, 15.62, 15.52. HRMS (ESI): Calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}{ }^{+}$, 575.4095; found, 575.4095.

Data for 7e: Yield $=48 \%$, White solid, m.p. $161-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.96-8.00(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{q}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.89$ $(\mathrm{m}, 3 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 9 \mathrm{H}), 1.31-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.12,0.99,0.97$, $0.92,0.89,0.87,0.78$ (s, each 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.77, 164.39, 162.27, 137.71, 132.68, 126.31, 121.67, 114.01, 79.03, 55.57, 55.26, 52.84, 49.83, $47.60,42.26,39.65,39.17,38.82,38.75,38.70,36.97,35.86,33.14,30.56,28.14$, 28.03, 27.24, 24.42, 23.47, 23.39, 21.11, 18.30, 17.29, 16.95, 15.62, 15.52. HRMS (ESI): Calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{5}{ }^{+}, 591.4044$; found, 591.4046.

Data for 7f: Yield $=63 \%$, White solid, m.p. $181-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta: 7.97$ (dd, $J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{t}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}$, $3 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 9 \mathrm{H}), 1.36-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.12,0.99,0.97,0.93,0.89,0.87,0.78(\mathrm{~s}$, each 3 H$)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $172.44,162.33,157.95,137.44,130.16,126.40,126.18$, 125.54, 78.85, 55.08, 52.65, 49.70, 47.42, 42.07, 39.46, 38.98, 38.64, 38.57, 38.52, $36.79,35.64,35.08,32.95,30.86,30.37,27.96,27.84,27.05,24.24,23.29,23.21$, 20.92, 18.12, 17.11, 16.76, 15.44, 15.33. HRMS (ESI): Calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{4}{ }^{+}$, 617.4564; found, 617.4565.

7 g
Data for 7g: Yield $=40 \%$, White solid, m.p. $181-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.85-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.99(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.32-1.39 (m, 5H), 1.16-1.19 (m, 1H), 1.11, 0.99, 0.96, 0.93, 0.89, 0.87, 0.78 (s, each $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.27, 161.26, 137.35, 134.69, 133.64, 132.22, $131.49,128.91,126.71,126.49,79.04,55.26,52.76,49.80,47.60,42.25,39.66,39.17$, $38.75,38.71,36.96,35.50,33.16,30.51,28.14,28.05,27.23,24.34,23.38,21.09$, 18.30, 17.33, 16.92, 15.63, 15.54. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{ClO}_{4}{ }^{+}$, 595.3549; found, 595.3553.

Data for 7h: Yield $=75 \%$, White solid, m.p. $220-221{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (q, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.98(\mathrm{~m}, 7 \mathrm{H})$, $1.48-1.67(\mathrm{~m}, 8 \mathrm{H}), \quad 1.18-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.13,0.99,0.96,0.92,0.89,0.86,0.78$ (s, each $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.25, 161.74, 140.82, 137.63, 131.67, 129.13, 127.84, 126.41, 79.02, 55.25, 52.88, 50.02, 47.56, 42.27, 39.63, 39.15, 38.80, 38.75, $38.69,36.96,35.77,33.12,30.50,28.14,28.03,27.22,24.44,23.46,23.38,21.08$, 18.28, 17.28, 16.93, 15.62, 15.53. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{ClO}_{4}{ }^{+}$, 595.3549; found, 595.3551.

Data for 7i: Yield $=45 \%$, White solid, m.p. 224-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.80-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.24 (q, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.14(\mathrm{~m}, 1 \mathrm{H})$, 1.92-1.99 (m, 3H), 1.86 (dd, $J=5.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.82$ (m, 2H), 1.59-1.68 (m, $4 H), 1.48-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.15-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.11,0.99,0.96,0.93$, $0.88,0.87,0.78$ (s, each 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.26, 161.67, 137.37, $134.83,133.56,132.08,130.92,127.26,126.49,122.56,79.05,55.25,52.78,49.83$, $47.59,42.26,39.66,39.17,38.75,38.71,36.97,35.52,33.17,30.51,28.14,28.06$,
27.23, 24.34, 23.38, 21.08, 18.30, 17.36, 16.92, 15.63, 15.54. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{BrO}_{4}{ }^{+}, 639.3043$; found, 639.3048.

Data for 7j: Yield $=47 \%$, White solid, m.p. $175-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.86-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.64(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (dd, $J=9.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.76-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.68(\mathrm{~m}, 9 \mathrm{H}), 1.32-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.17-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.12$, $0.99,0.97,0.92,0.89,0.85,0.78$ (s, each 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.22, 161.90, 137.62, 132.14, 131.74, 129.58, 128.30, 126.41, 79.02, 55.24, 52.88, 50.03, 47.56, 42.27, 39.63, 39.15, 38.80, 38.75, 38.69, 36.96, 35.76, 33.12, 30.49, 28.14, 28.02, 27.22, 24.44, 23.46, 23.38, 21.07, 18.28, 17.28, 16.93, 15.62, 15.53. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{BrO}_{4}{ }^{+}$, 639.3043; found, 639.3044.

Data for 7k: Yield $=45 \%$, White solid, m.p. 232-233 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97$ (dd, $J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.74$ (m, $2 \mathrm{H}), 5.27(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 3 \mathrm{H})$, $1.58-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.08$, $0.98,0.94,0.94,0.92,0.85,0.79,0.78$ (s, each 3 H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
171.34, 161.29, 147.79, 137.08, 133.21, 132.41, 130.43, 127.05, 126.52, 124.04, $79.10,55.23,52.65,49.99,47.56,42.19,39.58,39.12,38.74,38.69,38.62,36.95$, 35.32, 33.09, 30.44, 28.13, 28.01, 27.19, 24.21, 23.34, 23.32, 21.05, 18.29, 17.08, 16.85, 15.63, 15.53. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{NO}_{6}{ }^{+}, 606.3789$; found, 606.3792 .

Data for 71: Yield $=46 \%$, Yellow solid, m.p. $225-226{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.46$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.39(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.19(\mathrm{~m}$, $1 \mathrm{H}), 1.99$ (dd, $J=9.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.69(\mathrm{~m}, 9 \mathrm{H}), 1.31-1.44(\mathrm{~m}, 5 \mathrm{H}), 1.19-1.24(\mathrm{~m}, 1 \mathrm{H})$, 1.13, $0.99,0.97,0.93,0.89,0.84,0.78$ (s, each 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 171.57, 159.97, 148.05, 137.74, 134.16, 133.08, 132.69, 129.35, 127.04, 126.59, $79.05,55.22,52.92,50.32,47.53,42.28,39.62,39.13,38.78,38.74,38.63,36.97$, 35.65, 33.02, 30.39, 28.14, 27.94, 27.20, 24.42, 23.52, 23.31, 21.04, 18.27, 17.27, 16.91, 15.61, 15.43. HRMS (ESI): Calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{ClNO}_{6}{ }^{+}$, 640.3399; found, 640.3403.

4.0 Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 3 and 7a-1

$3{ }^{1} \mathrm{H}$ NMR

$3{ }^{13} \mathrm{C}$ NMR

$7{ }^{1}{ }^{1} \mathrm{H}$ NMR

7a ${ }^{13} \mathrm{C}$ NMR

7b ${ }^{1} \mathrm{H}$ NMR

7b ${ }^{13} \mathrm{C}$ NMR

7c ${ }^{1} \mathrm{H}$ NMR

7d ${ }^{1} \mathrm{H}$ NMR

7e ${ }^{1} \mathrm{H}$ NMR

$7 f{ }^{1} \mathrm{H}$ NMR

$7 f{ }^{13} \mathrm{C}$ NMR

7g ${ }^{1} \mathrm{H}$ NMR

$7 \mathrm{~g}{ }^{13} \mathrm{C}$ NMR

7h ${ }^{1} \mathrm{H}$ NMR

7h ${ }^{13}$ C NMR
LLN-44/7
ZLN-44 13 CDCL 3

$7{ }^{1}{ }^{1} \mathrm{H}$ NMR

7j ${ }^{1} \mathrm{H}$ NMR

$7{ }^{13}{ }^{13} \mathrm{C}$ NMR

7k ${ }^{1} \mathrm{H}$ NMR

$7 k{ }^{13} \mathrm{C}$ NMR

$71{ }^{1} \mathrm{H}$ NMR

5．0 Copies of HRMS spectra of compounds 3 and 7a－l

3 HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry

Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1231
Sample Serial Number：ZLN－94
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $m / z=547.4146 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：	Exact Mass：	Min：	Max：
C	12.000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer Minimum DBE $=0$

Search Results：

Number of Hits $=4$

m / z	Delta m / z	DBE	Formula
547.41506	0.00199	37.0	$\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{O}_{3}+1$
547.41592	-0.00042	22.0	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{3}{ }^{+1}$
547.41800	0.00140	17.5	$\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+1}$
547.41692	-0.00020	41.5	$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+1}$

7a HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1232
Sample Serial Number：ZLN－52
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=561.3938 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：Exact Mass：Min：Max

C	12.000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer
Minimum DBE $=0$

Search Results：

Number of Hits $=3$

m / z	Delta m / z	DBE	Formula
561.39766	0.00010	27.0	$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{5}{ }^{+1}$
561.39411	-0.00123	31.0	$\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{O}_{4}{ }^{+1}$

7b HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences
High Resolution MS DATA REPORT

Instrument: IonSpec 4.7 Tesla FTMS
Card Serial Number: WIll 1233
Sample Serial Number: ZLN-42
Date: 2022/12/20
Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target $\mathrm{m} / \mathrm{z}=575.4095 \pm 0.003$
Charge $=+1$
Possible Elements:

Element:	Exact Mass:	Min:	Max
C	12.0000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions:

DBE Limit Mode $=$ Both Integer and Half-Integer
Minimum DBE $=0$
Search Results:
Number of Hits $=4$

m / z	Delta m / z	DBE	Formula
575.40961	0.00112	37.0	$\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}{ }^{+1}$
575.40632	-0.00128	22.0	$\mathrm{C}_{37} \mathrm{H}_{69} \mathrm{NO}_{3}{ }^{+1}$
575.40914	0.00140	17.5	$\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+1}$
575.40711	-0.00156	41.5	$\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{+1}$

7c HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1234

Sample Serial Number：ZLN－40
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=575.4095 \pm 0.003$
Charge $=+1$

Possible Elements

Element：Exact Mass：Min：Max

C	12.000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer
Minimum DBE $=0$

Search Results

Number of Hits＝ 5

m / z	Delta m／z	DBE	Formula
575.40996	-0.00056	26.0	$\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}{ }^{+1}$
575.40850	0.00070	37.5	$\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{ClFN}_{3} \mathrm{O}^{+1}$
575.40004	-0.00084	45.5	$\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+1}$
575.40823	0.00097	18.0	$\mathrm{C}_{29} \mathrm{H}_{6} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+1}$
575.40598	-0.00171	22.5	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+1}$

7d HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT
 $\bigcup_{2 \rightarrow 4}$

Instrument: IonSpec 4.7 Tesla FTMS
Card Serial Number: WI11 1235

Sample Serial Number: ZLN-43
Date: 2022/12/20
Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:
Target $\mathrm{m} / \mathrm{z}=575.4095 \pm 0.003$
Charge $=+1$
Possible Elements:

Element:	Exact Mass:	Min:	Max
C	12.0000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer
Minimum DBE $=0$

Search Results

Number of Hits = 3

m / z	Delta m / z	DBE	Formula
575.40950	0.000050	37.5	$\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{4}{ }^{+1}$
575.40598	-0.00076	26.0	$\mathrm{C}_{37} \mathrm{H}_{69} \mathrm{NO}_{3}{ }^{+1}$
575.40823	0.00077	18.0	$\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{2}{ }^{+1}$

7e HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: IonSpec 4.7 Tesla FTMS

Card Serial Number: WIll 1236

Sample Serial Number: ZLN-50

Date: 2022/12/20

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target $\mathrm{m} / \mathrm{z}=591.4044 \pm 0.003$
Charge $=+1$
Possible Elements:

| Element: | Exact Mass: | Min: | Max |
| :--- | :--- | :--- | :--- | :--- |
| C | 12.000000 | 0 | 100 |
| H | 1.007825 | 0 | 100 |
| O | 15.994915 | 0 | 9 |

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer
Minimum DBE $=0$
Search Results:
Number of Hits $=3$

m / z	Delta m/z	DBE	Formula
591.40466	0.00127	23.0	$\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{5}{ }^{+1}$
591.40721	-0.00044	17.0	$\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+1}$
591.40633	0.00032	14.5	$\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+1}$

7f HRMS

Shanghai Mass Spectrometry Center
Shanghai Institute of Organic Chemistry Chinese Academic of Sciences
High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1237

Sample Serial Number：ZLN－53

Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=617.4564 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：	Exact Mass：	Min：	Max
C	12.0000000	0	100
H	1.007825	0	100
O	15.994915	0	9

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer
Minimum DBE $=0$
Search Results：
Number of Hits $=3$

m / z	Delta m / z	DBE	Formula
617.45651	0.00126	42.5	$\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{4}{ }^{+1}$
617.45693	-0.00053	34.0	$\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+1}$

617.45693	-0.00053	34.0	$\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+1}$
617.45754	0.00039	22.5	$\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{3}+1$

7g HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry

Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1238

Sample Serial Number：ZLN－45
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=595.3549 \pm 0.003$
Charge $=+1$
Possible Elements：

Element：	Exact Mass：	Min：	Max：
C	12.0000000	0	100
H	1.007825	0	100
O	15.994915	0	9
Cl	34.968853	0	2

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer
Minimum DBE $=0$
Search Results：
Number of Hits $=4$

m / z	Delta m / z DBE Formula

$\begin{array}{llll}595.35535 & 0.00086 & 37.5 & \mathrm{C}_{37} \mathrm{H}_{52} \mathrm{ClO}_{4}{ }^{+1}\end{array}$

595.35415	0.00114	18.0	$\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+1}$

$595.35080 \quad-0.00154 \quad 22.5 \quad \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+1}$

595.35113	-0.00182	42.0	$\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+1}$

7h HRMS

Shanghai Mass Spectrometry Center

 Shanghai Institute of Organic ChemistryChinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1239
Sample Serial Number：ZLN－44
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=595.3549 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：Exact Mass：Min：Max：

C	12.000000	0	100

$\begin{array}{llll}\mathrm{H} & 1.007825 & 0 & 100\end{array}$
O $\quad 15.994915 \quad 0 \quad 9$

Cl	34.968853	0	2

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer Minimum DBE $=0$

Search Results：

Number of Hits $=4$

m / z	Delta m / z DBE Formula

$595.35444 \quad 0.00056 \quad 37.5 \quad \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{CIN}_{5} \mathrm{~S}^{+1}$
$595.35512 \quad 0.00084 \quad 18.0 \quad \mathrm{C}_{37} \mathrm{H}_{52} \mathrm{ClO}_{4}{ }^{+1}$
$595.35484 \quad-0.00184 \quad 22.5 \quad \mathrm{C}_{36} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{+1}$

| 595.35084 | -0.00212 | 42.0 | $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7i HRMS

Shanghai Mass Spectrometry Center

Shanghai Institute of Organic Chemistry
Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1240
Sample Serial Number：ZLN－47
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass：

Target $\mathrm{m} / \mathrm{z}=639.3043 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：Exact Mass：Min：Max

C	12.000000	0	100
H	1.007825	0	100
O	15.994915	0	9

$\mathrm{Br} \quad 78.918338$－

Additional Search Restrictions：

DBE Limit Mode $=$ Both Integer and Half－Integer Minimum DBE $=0$

Search Results：

Number of Hits $=5$

m / z	Delta m／z	DBE	Formula
639.30486	0.00075	37.5	$\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{Br}_{4} \mathrm{O}_{4}{ }^{+1}$
639.30398	0.00102	18.0	$\mathrm{C}_{44} 5 \mathrm{~N}_{53} \mathrm{~N}_{3} \mathrm{O}^{+1}$
639.30067	-0.00107	26.5	$\mathrm{C}_{4} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+1}$
639.30117	-0.00125	47.0	$\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{8}{ }^{+1}$
639.30133	-0.00126	22.5	$\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}^{+1}$

7g HRMS

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: IonSpec 4.7 Tesla FTMS
Card Serial Number: WI11 1241
Sample Serial Number: ZLN-54
Date: 2022/12/20

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target $\mathrm{m} / \mathrm{z}=639.3043 \pm 0.003$
Charge $=+1$

Possible Elements

Element:	Exact Mass:	Min:	Max:
C	12.0000000	0	100
H	1.007825	0	100
O	15.994915	0	9
Br	78.918338	0	1

Additional Search Restrictions:

DBE Limit Mode $=$ Both Integer and Half-Integer
Minimum DBE $=0$

Search Results

Number of Hits = 5

m / z	Delta m/z	DBE	Formula
639.30444	-0.00028	18.0	$\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{BrO}^{+1}$
639.30385	-0.00055	37.5	$\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5}^{+1}$
639.30377	-0.00247	26.5	$\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}^{+1}$
639.30125	-0.00275	46.0	$\mathrm{C}_{36} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+1}$
639.30518	0.00292	31.5	$\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}^{+1}$

7k HRMS

Shanghai Mass Spectrometry Center
Shanghai Institute of Organic Chemistry
Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument：IonSpec 4．7 Tesla FTMS
Card Serial Number：WIll 1242
Sample Serial Number：ZLN－41
Date：2022／12／20

Operation Mode：MALDI／DHB

Elemental Composition Search Report：

Target Mass

Target $\mathrm{m} / \mathrm{z}=606.3789 \pm 0.003$
Charge $=+1$

Possible Elements：

Element：	Exact Mass：	Min：	Max：
C	12.0000000	0	100
H	1.007825	0	100
N	14.003074	0	1
O	15.994915	0	11

Additional Search Restrictions：

DBE Limit Mode＝Both Integer and Half－Integer
Minimum DBE $=0$

Search Results：

Number of Hits $=3$

m / z	Delta m／z	DBE	Formula
606.37923	0.00157	36.5	$\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{NO}_{6}{ }^{+1}$
606.37818	0.00212	38.5	$\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~S}^{+{ }^{+1}}$
606.37490	0.00240	19.0	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{9}{ }^{+1}$

71 HRMS

Shanghai Mass Spectrometry Center

 Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORTInstrument: IonSpec 4.7 Tesla FTMS
Card Serial Number: WIll 1243
Sample Serial Number: ZLN-51
Date: 2022/12/20

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass:

Target $\mathrm{m} / \mathrm{z}=640.3399 \pm 0.0025$
Charge $=+1$

Possible Elements:

| Element: | Exact Mass: | Min: | Max: |
| :--- | :--- | :--- | :--- | :--- |
| C | 12.0000000 | 0 | 100 |
| H | 1.007825 | 0 | 100 |
| N | 14.003074 | 0 | 1 |
| O | 15.994915 | 0 | 11 |
| Cl | 34.968853 | 0 | 2 |

Additional Search Restrictions

DBE Limit Mode $=$ Both Integer and Half-Integer
Minimum DBE $=0$

Search Results:

Number of Hits = 4

m / z	Delta m / z	DBE	Formula
640.34036	0.00034	47.5	$\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{ClNO}_{6}{ }^{+1}$
640.34487	0.00043	36.5	$\mathrm{C}_{44} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}^{+1}$
640.34575	-0.00045	31.5	$\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{O}_{10}{ }^{+1}$
640.34623	-0.00093	27.5	$\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{CINO}_{9}{ }^{+1}$

6.0 Bioassay Method

The inhibitory activities of one 28-benzyloxy UA derivatives (3) and twelve 3-acyloxy UA derivatives (7a-l) against P. capsici and F. graminearum were screened in vitro. Potato dextrose agar (PDA) medium was prepared in the flasks and sterilized. The target compounds $\mathbf{3}$ and $\mathbf{7 a}$-l were dissolved with dimethyl sulfoxide (DMSO, 1 $\mathrm{mL})$ before mixing with PDA, and Tween $80(0.01 \mathrm{~mL})$ was added to increase water solubility. The concentration ranges for the assays were defined in the preliminary experiments. DMSO was mixed with PDA as a blank control, while two different commercial agricultural fungicides (Metalaxyl and Triadimefon) were used as positive controls. The inhibitory activities of the two tested strains at 50 and $100 \mathrm{mg} / \mathrm{L}$ or 100 and $200 \mathrm{mg} / \mathrm{L}$ concentrations were determined respectively, and some compounds with better activity were selected to determine the value of the median effective concentration $\left(\mathrm{EC}_{50}\right)$. The final concentration of EC_{50} in the medium was determined as $25,50,75,100,200 \mathrm{mg} / \mathrm{L}$. The medium was poured into the sterilized petri dishes, and the mycelial plugs ($7-\mathrm{mm}$ diameter) were cut from the growth edge of a 4-day-old colony and then placed on the PDA plates, and incubated in darkness at $25^{\circ} \mathrm{C}$, respectively. Mycelial growth rate (mm / 4 days) was measured on PDA medium, each compound was evaluated three plates, and the average colony diameter was calculated. The radial growths of colonies were measured and the data were analyzed statistically. Mean colony diameter (minus the diameter of the plug) for each treatment was measured and expressed as a percentage of growth inhibition. The EC_{50} of $\mathbf{7 c}, \mathbf{7 d}, \mathbf{7 g}, \mathbf{7 h}, 7 \mathbf{j}, \mathbf{7 k}$ and metalaxyl for P. capsici and $\mathbf{7 h}$ and triadimefon for F.
graminearum isolate was calculated by linear regression of relative percentage of growth inhibition against log-transformed samples concentration.

[^0]: * Corresponding author at: Laboratory of Pesticidal Design \& Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China.

 E-mail address: tianyuee1985@163.com (Y.E. Tian); genqiangchen@126.com (G.Q. Chen); zhipingche @ 163.com (Z.P. Che).

