figshare
Browse
- No file added yet -

Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns

Download (490.49 kB)
journal contribution
posted on 2023-06-10, 02:13 authored by Jagan Singh Meena, Tran Duc Khanh, Seung-Boo Jung, Jong-Woong Kim
The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals’ health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns. However, several challenges remain to be addressed in order to fulfill the requirements for self-healing ability, air permeability, energy harvesting, and suitable sensing materials. These materials must possess high flexibility, be lightweight, and have excellent triboelectric charging effects in both electropositive and electronegative layers. In this work, we investigated self-healable electrospun polybutadiene-based urethane (PBU) as a positive triboelectric layer and titanium carbide (Ti3C2Tx) MXene as a negative triboelectric layer for the fabrication of an energy-harvesting TENG device. PBU consists of maleimide and furfuryl components as well as hydrogen bonds that trigger the Diels–Alder reaction, contributing to its self-healing properties. Moreover, this urethane incorporates a multitude of carbonyl and amine groups, which create dipole moments in both the stiff and the flexible segments of the polymer. This characteristic positively influences the triboelectric qualities of PBU by facilitating electron transfer between contacting materials, ultimately resulting in high output performance. We employed this device for sensing applications to monitor human motion and breathing pattern recognition. The soft and fibrous-structured TENG generates a high and stable open-circuit voltage of up to 30 V and a short-circuit current of 4 μA at an operation frequency of 4.0 Hz, demonstrating remarkable cyclic stability. A significant feature of our TENG is its self-healing ability, which allows for the restoration of its functionality and performance after sustaining damage. This characteristic has been achieved through the utilization of the self-healable PBU fibers, which can be repaired via a simple vapor solvent method. This innovative approach enables the TENG device to maintain optimal performance and continue functioning effectively even after multiple uses. After integration with a rectifier, the TENG can charge various capacitors and power 120 LEDs. Moreover, we employed the TENG as a self-powered active motion sensor, attaching it to the human body to monitor various body movements for energy-harvesting and sensing purposes. Additionally, the device demonstrates the capability to recognize breathing patterns in real time, offering valuable insights into an individual’s respiratory health.

History

Usage metrics

    ACS Applied Materials & Interfaces

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC