Supporting Information

Screening out the transition metal single atom supported on

onion-like carbon (OLC) for the hydrogen evolution reaction

Jiguang Du^{1□}, Jun Chen², Chuanyu Zhang³, Gang Jiang⁴ ¹College of Physical Science and Technology, Sichuan University, Chengdu 610064, China ²Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China ³School of mathematics and physics, Chengdu University of Technology, Chengdu, 610059, China ⁴Insitute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

[·] Corresponding author. E-mail: dujg@scu.edu.cn (Jiguang Du)

Figure S1. The relaxed geometries of free 3d TM₁/OLC complexes (TM=Sc-Cu).

Figure S2. The relaxed geometries of free 4d TM₁/OLC complexes (TM=Y-Ag).

Figure S3. The relaxed geometries of free 5d TM_1/OLC complexes (TM=Hf-Au).

Figure S4. The relaxed geometries of 3d TM_1 /OLC complexes (TM=Sc-Cu) with one hydrogen adsorption.

Figure S5. The relaxed geometries of 4d TM_1 /OLC complexes (TM=Y-Ag) with one hydrogen adsorption.

Figure S6. The relaxed geometries of 5d TM_1/OLC complexes (TM=Hf-Au) with one hydrogen adsorption.

W-H=1.689Å W-H=1.698Å

W-O=1.974Å W-O=1.920Å

Mo-H=1.683Å Mo-H=1.682Å Mo-O=1.993Å Mo-O=1.945Å Mo-C=1.922Å

Ta-H=1.739Å Ta-H=1.774Å Ta-O=2.024Å Ta-O=1.940Å Ta-C=2.025Å

Re-H=1.666Å Re-H=1.672Å Re-O=1.989Å Re-O=1.977Å Re-C=1.886Å

OS-O=2.031Å Os-O=1.984Å Os-C=1.890Å

Os-H=1.630Å Os-H=1.618Å

Ir-H=1.580Å Ir-H=1.598Å Ir-O=2.090Å Ir-O=2.185Å Ir-C=1873Å

Pt-H=1.556Å Pt-H=1.559Å Pt-O=2.090Å Pt-O=2.135Å Pt-C=1.989Å

Figure S7. The relaxed geometries of TM_1/OLC complexes (TM=Mo, Ta, W, Re, Os, Ir, and Pt) with 2^{nd} hydrogen adsorption.

Мо-H=1.701Å Мо-H=1.689Å Мо-H=1.694Å Мо-О=2.064Å Мо-О=2.047Å Мо-С=1.939Å

Ta-H=1.787Å Ta-H=2.280Å Ta-H=2.339Å Ta-O=1.890Å Ta-O=1.945Å Ta-C=1.983Å

W-H=1.700Å W-H=1.701Å W-H=1.705Å W-O=2.055Å W-O=2.041Å W-C=1.945Å

Re-H=1.654Å Re-H=1.668Å Re-H=1.671Å Re-O=2.042Å Re-O=2.062Å Re-C=1.889Å

Pt-H=1.543Å Pt-H=1.548Å Pt-H=1.600Å Pt-O=2.147Å Pt-O=2.196Å Pt-C=2.125Å

 Os-H=1.613Å
 Os-H=1.615Å
 Ir-H=1.5

 Os-H=1.634Å
 Os-O=2.213Å
 Ir-H=1.5

 Os-O=2.047Å
 Os-O=2.13Å
 Ir-H=1.5

Ir-H=1.583Å Ir-H=1.586Å Ir-H=1.598Å Ir-O=2.039Å Ir-O=2.124Å Ir-C=1.973Å

Figure S8. The relaxed geometries of TM₁/OLC complexes (TM=Mo, Ta, W, Re, Os, Ir, and Pt) with 3rd hydrogen adsorption.

Table S1. The binding energies (E_b) of TM₁/OLC species, the difference between binding energy and cohesion energy (E_{coh}) of TM, and Mulliken charge of TM.

Species	E _b (eV)	E _{b-} E _{coh} (eV)	Q(M)(e)
Sc	11.67	7.77	1.32
Ti	11.29	6.44	1.54
V	10.34	5.03	1.40
Cr	7.81	3.71	1.15
Mn	7.35	4.43	1.19
Fe	7.36	3.08	1.09
Co	7.90	3.51	0.85
Ni	7.92	3.48	0.85
Cu	6.19	2.70	0.71
Y	10.65	6.28	1.59
Zr	11.98	5.73	1.88
Nb	12.08	4.51	1.52
Mo	7.97	1.15	1.25
Tc	8.84	1.99	1.04
Ru	8.67	1.93	0.79
Rh	7.36	1.61	0.89
Pd	5.42	1.53	0.64
Ag	3.67	0.72	0.67
Hf	11.65	5.21	1.88
Та	11.31	3.21	1.65

W	13.65	4.75	1.45
Re	9.55	1.52	1.21
Os	7.82	-0.35	0.98
Ir	7.96	1.02	1.06
Pt	6.35	0.51	0.74
Au	4.35	0.54	0.44

Figure S9. The binding energies (E_b) of TM_1/OLC species, the difference between binding energy energy and cohesion energy (E_{coh}) of TM were also given, in which the positive values (E_b-E_{coh}) indicate that E_b values are higher than E_{coh} .

Figure S10. The linear relation between the binding energies (E_b) of TM₁/OLC and Mulliken charges of TM atoms.

Figure S11. Volcanic curve of the exchange current (i_0) as a function of the average $\Delta G_{\text{H*}}$ of TM supported OLC with one H adsorbed.

Figure S12. Volcanic curve of the exchange current (i_0) as a function of the average ΔG_{H^*} of TM supported OLC with 2nd or 3rd H adsorbed.

Figure S13. ALIE maps on the vdW surface of Pt_1/OLC with H adsorbed.