
106 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

research highlights

DOI:10.1145/3441689

Scalable Signal Reconstruction
for a Broad Range of Applications
By Abolfazl Asudeh, Jees Augustine, Saravanan Thirumuruganathan,
Azade Nazi, Nan Zhang, Gautam Das, and Divesh Srivastava

Abstract
Signal reconstruction problem (SRP) is an important opti-
mization problem where the objective is to identify a solu-
tion to an underdetermined system of linear equations that
is closest to a given prior. It has a substantial number of
applications in diverse areas, such as network traffic engi-
neering, medical image reconstruction, acoustics, astron-
omy, and many more. Unfortunately, most of the common
approaches for solving SRP do not scale to large problem
sizes. We propose a novel and scalable algorithm for solving
this critical problem. Specifically, we make four major con-
tributions. First, we propose a dual formulation of the prob-
lem and develop the Direct algorithm that is significantly
more efficient than the state of the art. Second, we show
how adapting database techniques developed for scalable
similarity joins provides a substantial speedup over Direct.
Third, we describe several practical techniques that allow
our algorithm to scale—on a single machine—to settings
that are orders of magnitude larger than previously studied.
Finally, we use the database techniques of materialization
and reuse to extend our result to dynamic settings where the
input to the SRP changes. Extensive experiments on real-
world and synthetic data confirm the efficiency, effective-
ness, and scalability of our proposal.

1. INTRODUCTION
The database community has been at the forefront of
grappling with challenges of big data and has developed
numerous techniques for the scalable processing and
analysis of massive datasets. These techniques often origi-
nate from solving core data management challenges but
then find their way into effectively addressing the needs
of big data analytics. We study how database techniques
can benefit large-scale signal reconstruction,13 which is of
interest to research communities as diverse as computer
networks,15 medical imaging,7 etc. We demonstrate that
the scalability of existing solutions can be significantly
improved using ideas originally developed for similarity
joins5 and selectivity estimation for set similarity queries.3

Signal reconstruction problem (SRP): The essence of
SRP is to solve a linear system of the form AX = b, where X is
a high-dimensional unknown signal (represented by an m-d
vector in Rm), b is a low-dimensional projection of X that can
be observed in practice (represented by an n-d vector in Rn
with n  m), and A is an n × m matrix that captures the linear
relationship between X and b. There are many real-world
applications that follow the SRP model (see Section 2.1).
High-dimensional signals such as environmental tem-
perature can only be observed through low-dimensional

The original version of this paper was entitled
"Leveraging Similarity Joins for Signal Reconstruction"
and was published in PVLDB 10, 11 (2018), 1276–1288.

observations, such as readings captured by a small num-
ber of temperature sensors. End-to-end network traf-
fic, another high-dimensional signal, is often monitored
through low-dimensional readings such as traffic volume
on routers in the backbone or edge networks. In these
applications, the laws of physics or the topology of com-
puter networks reveal the value of A, and our objective is to
reconstruct the high-dimensional signal X from the obser-
vation b based on the knowledge of A.

As n  m, the linear system is underdetermined. That
is, for a given A and b, there are an infinite number of fea-
sible solutions (of X) that satisfy AX = b. In order to iden-
tify the best reconstruction of the signal, it is customary
to define and optimize for a loss function that measures
the distance between the reconstructed X and a prior
understanding of certain properties of X. For instance,
one’s prior belief of X can be specified as an m-d vector
X′ and define the loss function as the 2-norm of X − X′,
that is, X − X′2. In other cases, when prior knowledge
indicates that X is sparse, one can define the loss func-
tion as the 2-norm of X, aiming to minimize the number
of nonzero elements in the reconstructed signal. For the
purpose of this paper, we consider the 2-based loss func-
tion of X − X′2, which has been adopted in many appli-
cation-oriented studies such as Grangeat and Amans7 and
Zhang et al.15

Running example of SRP: SRP has a broad range of
applications. For the ease of exposition, we use as a run-
ning example based on network tomography (Section 2.1),
where the objective is to compute the pairwise end-to-end
traffic in IP networks. Pairwise traffic measures the volume
of traffic between all pairs of source-destination nodes in an
IP network and has numerous uses such as capacity plan-
ning, traffic engineering, and detecting traffic anomalies.
Informally, consider an IP network where various sources
and destinations send different amounts of traffic to each
other. The network administrator is aware of the network
topology and the routing table (from which we can con-
struct matrix A). In addition, the administrator can observe
the traffic passing through each link in the backbone net-
work (observation b). The goal is to find the amount of
traffic flow between all source-destination pairs (signal
X). Note that one cannot directly measure the raw traffic
between all source-destination pairs due to challenges in

http://dx.doi.org/10.1145/3441689

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 107

that is, AAT, as it is simply too large to be kept in memory.
We conducted careful theoretical analyses and experimen-
tal evaluation on the number of nonzero elements in this
matrix that confirm the matrix is sparse in practice. We
then leverage this sparsity to efficiently solve very large
systems of equations. Finally, we consider the scenario
where the input to our problem changes dynamically. We
pay attention to the observation that the underlying struc-
ture of the system A does not change frequently. Vector b,
on the other hand, may change often. We utilize the data-
base technique of materialization and reuse a carefully
constructed signature matrix for dynamic settings.

2. PROBLEM FORMULATION
We consider a special class of SRP that has a number of
applications in network traffic engineering, tomographic
image reconstruction, and many others. We are given a sys-
tem of linear equations AX = b where

•	 A ∈ {1, 0}n×m is a sparse binary matrix n  m.
•	 X ∈ Rm is the “signal” to be reconstructed and is a vector

of unknown values.
•  b ∈ Rn is the vector of observations.

Each row in the matrix A corresponds to an equation
with each column corresponding to an unknown variable.
When the number of equations (n) is much smaller than
the number of unknowns (m), the system of linear equa-
tions is said to be underdetermined and does not have a
unique solution. The solution space can be represented as
a hyperplane in an m′ ∈ [2, m] dimensional vector space.a
Because SRP does not have a unique solution, one must
have auxiliary criteria to choose the best solution from
the set of (possibly infinite) valid solutions. A common
approach in SRP is to provide a prior X′ and the objective
is to pick the solution X that is closest to X′. We study the
problem where the objective is to find the point satisfying
AX = b that minimizes the 2-distance from a prior point X′.
Formally, the problem is defined as:

min X − X′2

s.t. AX = b� (1)

instrumentation and storage—see Zhang et al.15 for a tech-
nical discussion. In almost all real-world IP networks, the
number of source-destination pairs is significantly larger
than the number of links, leading to an underdetermined
linear system. To reconstruct the pairwise traffic, the net-
work community introduced various traffic models, for
example, the gravity model,15 as the prior for X′, and used
the 2-distance between X and the prior as the loss func-
tion. Note that in reconstructing the pairwise distances,
efficiency is a concern front and center, especially given
the rise of software designed networks (SDNs) that feature
much larger sizes and much more frequent topological
changes, pushing further the scalability requirements of
signal reconstruction algorithms.

Research gap: Because of the importance of SRP, there
has been extensive work from multiple communities on
finding efficient solutions. To solve the problem efficiently,
methods explored in the recent literature include statisti-
cal likelihood-based iterative algorithms based on expec-
tation-maximization, as well as the use of linear algebraic
techniques such as computing the pseudoinverse of A13 or
performing singular value decomposition (SVD) on A, and
iterative algorithms for solving the linear system.13 Yet even
these approaches cannot scale to fully meet the require-
ments in practice, especially in settings such as traffic
reconstruction in large-scale IP networks—which call for a
more scalable solution.

Our approach: In this paper, we consider a special case
of SRP where A, X, and b are nonnegative with A being a
sparse binary matrix. Such a setting finds its applications
in many domains, as explained in Section 2.1. We present
an exact algorithm (Direct) based on the transformation
of the problem into its Lagrangian dual representation.
Direct already outperforms commonly used approaches
for SRP, as it avoids expensive linear algebraic opera-
tions required by the previous solutions and scales up to
medium-size settings. Next, we investigate whether our
approach can be sped up even further, by replacing exact
computations with approximation techniques. After a
careful investigation of Direct, it turns out that the com-
putational bottleneck is a special case of matrix multipli-
cation involving a sparse binary matrix with its transpose.
We use the observation that a small number of cells in the
result matrix of the bottleneck operation take the bulk of
the values and propose a threshold-based algorithm for
approximating it. Specifically, we reduce the problem to
computing the dot product of two vectors if and only if
their similarity is above a user-provided threshold. Our
key idea here is to leverage various database techniques
to speed up the multiplication operation. We propose
a hybrid algorithm based on a number of techniques
originally proposed for computing similarity joins and
selectivity estimation of set similarity queries, resulting
in significant speedup, enabling our proposal to scale to
large-scale settings.

We push the boundaries to very large systems (VLS)
with sizes in the order of a million equations with a billion
unknowns. We identify that the barrier to this extension is
the output size of the multiplication of A by its transpose,

X3

X1X2

X´

X

AX = b

Figure 1. Visualizing the problem.

a  We assume that the problem has at least one solution.

research highlights

108 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

Figure 1 provides a visualization of the problem in three
dimensions. The gray plane is the solution space with the
prior marked as a point X′. The intersection of the perpen-
dicular line to the plane that passes though X′ is the point
that minimizes X − X′2.

We observe that SRP is a special case of quadratic pro-
gramming where (a) the constraints are only in the form of
equality, (b) matrix A is sparse, and (c) matrix A is binary (and
hence unweighted). By leveraging these characteristics, we
seek to design more efficient solutions compared with the
baselines that are designed for general cases. In Section 3,
we use the dual representative of the problem to propose an
efficient exact algorithm. In Section 4, we show how leverag-
ing similarity joins techniques help in achieving significant
speedup without sacrificing much accuracy.

2.1. Applications of SRP
SRP covers a broad range of real-world problems that use
signal reconstruction. In practice, it is popular to observe
low-dimensional projections in the form of (unweighted)
aggregates of a high-dimensional signal vector. For example,
in general network flow applications (such as road traffic
estimation16), the value on each edge is the summation of the
flow values that includes this edge as part of the path between
them. Of course, a requirement to our problem is an “expert-
provided” prior template, such as gravity model15 for the net-
work flow problems. Another major application domain for
SRP problem over aggregates is image reconstruction, where
observations are unweighted projections of unknowns.
Image reconstruction has broad applications ranging from
medical imaging7 to astronomy14 and physics.10 Some of the
other applications of SRP, in general, include radar data
reconstruction9 and transmission electron microscopy,8 to
name a few. To showcase some applications in more detail,
we sketch a few examples in the context of network flow
problems and image reconstruction in the following.

Network tomography. Traffic matrix computation (the
running example): Consider an IP network with n traf-
fic links and m source-destination traffic flows (SD flow)
between the ingress and egress points, where n  m. The
ingress/egress points can be points of presence (PoPs) or
routers or even IP prefixes depending on the level of granu-
larity required. The network has a routing policy and pre-
scribes a path for each of the SD flows that can be captured
in a#links(n)×#flows(m) binary matrix A, where the entry
A[i, j] = 1 if the link i is used to route the traffic of the jth SD
flow. The matrix A is sparse and “fat” with more SD flows
(columns) than number of links (rows). Note that, one can-
not directly measure each of the SD flows on a link owing
to efficiency reasons. However, one can easily measure the
total volume of the network traffic that passes through a
given link using network protocols such as SNMP. Thus,
the load on each link i becomes the observed vector b. To
obtain a prior X′, one can use any traffic model such as
the popular and intuitive gravity model.15 It assumes inde-
pendence between source and destination and states that
traffic between any given source s and destination d is pro-
portional to the product of network traffic entering at s and
that exiting at d.

Traffic analysis attack in P2P networks: In traffic analy-
sis attack, the information leak on traffic data is exploited
to expose the user traffic pattern in P2P networks. Here,
we propose the following traffic analysis attack that can be
modeled to our problem: consider an adversary who moni-
tors the link level traffics in a P2P network. Applying SRP,
one can directly identify the volume of traffic between any
pair of users in a P2P network.

Image reconstruction. Image reconstruction7 has a wide
range of applications in different fields such as medical
imaging,7 and physics.10 Given a set of (usually 2D) projec-
tion of a (usually 3D) image, the objective is to reconstruct
it. The reconstruction is usually done with the help of some
prior knowledge. For example, knowing that the 2D projec-
tions are taken from a human face, one may use a template
3D face photo and, among all possible 3D reconstructions
from the 2D images, find the one that is the closest to the
template, making the image reconstruction more effective.

CT scan: A popular application of SRP is tomographic
reconstruction, which is a multidimensional linear inverse
problem with wide range of applications in medical imag-
ing7 such as CT scans (computed tomography). A CT scan
takes multiple 2D projections (vector b) through X-rays from
different angles (matrix A) and the objective is to reconstruct
the 3D image from the projections. Many 3D images may
produce the same projections necessitating the use of priors
to choose an appropriate reconstruction.

Radio astronomy: In astronomy, SRP has application
for reconstructing interferometric images where the astro-
physical signals are probed through Fourier measurements.
The objective is to reconstruct the images from the obser-
vations—forming an SRP scenario. Also, the specific prior
information about the signals plays an important role in
reconstruction, as mentioned in Wiaux et al.14

3. EXACT SOLUTION FOR SOLVING SRP
We begin by describing two representative approaches for
solving SRP from prior research and highlight their short-
comings. We then propose a dual representation of the prob-
lem that can be solved exactly in an efficient manner and
already outperforms the baselines. This alternate formula-
tion allows one to leverage various database techniques for
speeding it up.

3.1. Lagrangian formulation of SRP
We leverage the Lagrangian dual form of SRP as a special
case of quadratic programming and design an efficient
exact solution for it. For SRP as specified in Equation 1,

 and g(X) = AX.b Thus, our problem can
be rewritten as:

� (2)

b  Note that min is the same as min X − X′2.

c  Because, looking at Figure 1, Equation 1 has a single optimal point, Equa-
tion 2 has one stationary point that happens to be the saddle point.

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 109

it in a manner that allows efficient matrix multipli-
cation. Because A is binary (and hence unweighted),
a natural representation is to store only the indi-
ces of nonzero values. Figures 2a and 2b show the
nonsparse and sparse representation of a matrix A.
Note that AAT is symmetric as t[i, j] and t[j, i] are obtained
by the dot product of rows i and j of A. Let l be the number of
nonzero elements in each row. Because A is sparse, l  m,
one can design a natural matrix multiplication algorithm
with time complexity of O(nml) that is orders of magni-
tude faster than algorithm such as Strassen algorithm.

4. TRADING OFF ACCURACY WITH EFFICIENCY
In many applications of SRP, m is often in O(n2), thereby
making the computational complexity of Direct to be
O(n4). The key bottleneck is the computation of AAT. On
the other hand, for large problem instances, the user may
accept trading off accuracy with efficiency and prefer a
close-to-exact solution that is computed quickly, rather
than the expensive exact solution. Our objective is to speed
up Direct by computing the bottleneck step, that is, com-
puting AAT, approximately. We show how to leverage a
threshold-based approach by only computing the values
of matrix AAT that are larger than a certain threshold. We
describe the connection between this problem variant and
similarity joins and propose a hybrid method by adopting
two classical algorithms designed for similarity estimation,
which results in an efficient solution for computing AAT.

4.1. Bounding values in matrix AAT

We begin by showing that one can efficiently compute the
bound for each cell value in matrix AAT. Figure 3 shows a
sparse matrix A with 183 rows and 495 columns, in which the

Next, we find the stationary pointc of Equation 2 in the
general form by taking the derivatives with regard to X and
λ, and setting them to zero, we get:

X = X′ − AT (AAT)−1 (AX′ − b)� (3)

Solving SRP in dual form. The stationary point of Equation 2
is the optimal solution for our problem (Equation 1). In
contrast to prior work, we solve the SRP problem by directly
solving Equation 3. We make two observations. First, the
matrix AAT ∈ Zn × n always has an inverse as it is full rank.
From Figure 1, one can note that the problem has a unique
solution that minimizes the distance from the prior. It
means that AAT is full rank, because otherwise the problem
was not feasible and would not have a solution. Second,
Equation 3 does have a matrix inverse operator that is
expensive to compute. However, one can avoid taking the
inverse of AAT by computing ξ in Equation 4 and replacing
(AAT)−1(AX′ − b) by it in Equation 3.

� (4)

Algorithm 1 provides the pseudocode for Direct.

Algorithm 1 Direct
Input: A, b, and X′
Output: X

1:  t = AAT

2:  t2 = AX′ − b
3:  Solve system of linear equations: t ξ = t2

4:  X = X′ − AT ξ
5:  return X

Performance analysis of Direct. Let us now investi-
gate the performance of our algorithm. Recall that A is a
fat matrix with n  m, whereas X and X′ are m-dimensional
vectors, and b is a n-dimensional vector. Line 1 of Algorithm
1 takes O(n2m), whereas Line 2 takes O(nm). Line 3 involves
solving a system of linear equations. A naive way would
be to compute the inverse of t that can take as much as
O(n3). However, by observing that t is sparse, one can use
approaches such as Gauss-Jordan elimination or other iter-
ative methods that are practically much faster for sparse
matrices. Finally, the computation of Line 4 is in O(nm).
Looking at Direct holistically, one can notice that its com-
putational bottleneck is Line 1, thereby making the overall
complexity to be O(n2m).

An additional approach to speedup Direct is to
observe that matrix A is sparse and thereby to store

0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0

(a)

〈3, 7〉
〈2〉

〈5, 7, 9〉
〈1, 6〉

(b)

Figure 2. Illustration of the sparse representation of A. (a) Nonsparse
representation and (b) sparse representation.

Figure 3. An example of the binary sparse matrix A183×495.

Figure 4. The nonzero elements in AAT for the example of Figure 3.

research highlights

110 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

5:  end for
6:  for every pair i, j ∈ F do
7:   t[i, j] = t[j, i] = SIM(A[i],A[j], τ)
8:  end for
9:  return t

4.3. Leveraging similarity joins for Oracle SIM
The database community has extensively studied mecha-
nisms for computing set similarity for applications such
as data cleaning5 where the objective is to efficiently iden-
tify the set of tuples that are “close enough” on multiple
attributes. We next describe how to implement the oracle
SIM by leveraging prior research on computing set similar-
ity. Especially, we propose a hybrid method that combines
the threshold-based similarity joins with the sketch-based
methods to resolve their shortcomings.

Oracle SIM through set similarity. Given two rows A[i] and
A[j], and the threshold τ, SIM should find the dot product
of A[i] and A[j] if it is not less than τ. We can make an inter-
esting connection between SIM and set similarity problems
as follows. Let every column in matrix A be an object o in a
universe U of m elements. Every row A[i] represents a set Ui
in U, where ∀oj ∈ U, oj ∈ Ui iff A[i, j] = 1. Equivalently, each row
corresponds to a set Ui that stores the indices of the nonzero
columns similar to Figure 2b. Using this transformation, we
can see that our objective is to compute |Ui ∩ Uj| for all pairs
of sets Ui and Uj where |Ui ∩ Uj| ≥ τ. Note that we represent
|Ui ∩ Uj| by ∩i,j and |Ui ∪ Uj| by ∪i,j, respectively.

Due to its widespread importance, different versions of
this problem have been extensively studied in the DB com-
munity. We consider one exact approach and two approxi-
mate approaches based on threshold-based algorithms5 and
sketch-based methods.3, 6 We then compare and contrast the
two approximate approaches, describe the scenarios when
they provide better performance, and propose a hybrid algo-
rithm based on these scenarios.

Exact approach: set intersection. One can see that when
τ = 1, the problem boils down to computing AAT exactly. This
in turn boils down to computing the intersection between
two sets as efficiently as possible. The sparse representa-
tion of the matrix often provides the nonzero columns in an
ordered manner. The simplest approaches for finding the
intersection of ordered sets is to perform a linear merge by
scanning both the lists in parallel and leveraging the ordered
nature similar to the merge step of merge sort. One can also
speedup this approach by using sophisticated approaches

nonzero elements are highlighted in white. Figure 4 shows
the nonzero elements in matrix AAT. We can notice that AAT
is square and also sparse due to the fact that every element
of AAT is the dot product of two sparse vectors (two rows of
matrix A). Furthermore, one can also observe a more subtle
phenomenon that we state in Theorem 1, which could be
used to design an efficient algorithm.

Theorem 1. Given a sparse binary matrix A, considering the
elements on the diagonal of AAT, that is, t[i, i], ∀0 ≤ i < n:

•	 t[i, i] = |A[i]|, where |A[i]| is the number of nonzero
elements in row A[i].

•  t[i, i] is an upper bound for the elements in the row t[i] and
the column t[, i]; formally, ∀0 ≤ j < n: t[i, j] ≤ t[i, i] and
t[i, j] ≤ t[j, j].

The proof can be found in Asudeh et al.2

Consider two representations of AAT of the example matrix
given in Figure 3. Figure 4 shows all the nonzero elements of
AAT, whereas Figure 5 shows a magnitude-weighted variant
wherein cells with larger values are plotted in brighter col-
ors. Figure 5 visually shows that the elements on the diago-
nal are brighter than the ones in the same row and column
as predicted by Theorem 1. One may notice that most of the
nonzero elements of AAT (in Figure 4) are small values (in
Figure 5). Although there are a reasonable number of non-
zero elements, the number of elements with higher magni-
tude is often much smaller. Next, we use this insight along
with Theorem 1 for speeding up Direct.

4.2. Threshold-based computation of AAT

By developing a bound on the cell values in AAT, we can see
that a small number of elements in AAT take the bulk of the
value. This is the key in designing a threshold-based algo-
rithm for computing AAT wherein we only compute values of
AAT that are above a certain threshold. Specifically, we use
the elements on the diagonal as an upper bound and only
compute the elements for which this upper bound is larger
than a user-specified threshold. Note that, if the threshold is
equal to 1, the algorithm will compute the values of all ele-
ments. However, the user-specified threshold allows addi-
tional opportunities for efficiency.

Algorithm 2 provides the pseudocode for the threshold-
based multiplication of sparse binary matrix A with its
transpose. This algorithm depends on the existence of an
oracle called SIM that given two rows A[i] and A[j], and the
threshold τ, returns the dot product of A[i] and A[j] if the
result is not less than τ.

Algorithm 2 Approx AAT

Input: Sparse matrix A, Threshold τ
Output: t

1:  F = {}
2:  for i = 0 to n − 1 do
3:   t[i, i] = |A[i]|
4:   if |A[i]| ≥ τ then add i to F

Figure 5. Magnitude of weights in AAT for the example of Figure 3.

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 111

such as binary search on one of the lists or using sophisti-
cated data structures such as treaps or skip lists. Each of
these approaches allows one to “skip” some elements of a
set when necessary.

Approximate approach: threshold-based algorithms.
Threshold-based algorithms, such as Chaudhuri et al.,5
identify the pair of sets such that their similarity is more
than a given threshold. This has a number of applica-
tions such as data cleaning, deduplication, collaborative
filtering, and product recommendation in advertise-
ment where the objective is to quickly identify the pairs
that are highly similar. The key idea is that if the intersec-
tion of two sets is large, the intersection of small subsets
of them is nonzero.5 More precisely, for two sets Ui and
Uj with size h, if ∩i,j ≥ τ, any subset and
of size h − τ + 1 will overlap; that is, . Using
this idea, while considering an ordering of the objects,
the algorithm first finds the set of candidate pairs that
overlap in a subset of size h − τ + 1. In the second step,
the algorithm verifies the pairs, by removing the false
positives.

One can see that the effectiveness of this method
highly depends on the value of τ and, considering the
target application, it works well for the cases where τ is
large. For example, consider a case where h = 100. When
τ = 99 (i.e., 99% similarity), the first filtering step needs to
compare the subsets of size 2 and is efficient, whereas if τ
= 10, the filtering step needs to compare the subset pairs
of size 91, which is close to the entire set. The latter case
is quite possible in our problem. To understand it better,
let us consider matrix A in Figure 3, while setting τ equal
to 5 in Algorithm 2. Even though the size of many of the
rows is close to the threshold, there are rows A[i] where
|A[i]| is significantly larger than it. For example, for two
rows A[i] and A[j] where |A[i]| ≥ 50 and |A[j]| ≥ 50, to sat-
isfy the condition that the dot product should not be less
than τ, the filtering step needs to compare the subsets of
size ≥ 44, which is close to the exact comparison of A[i]
and A[j].

Approximate approach: sketch-based algorithms.
Sketch-based methods such as Beyer et al.3 and Cohen and
Kaplan6 use a precomputed synopsis such as a minhash
for answering different set aggregates such as Jaccard
similarity. The main idea behind the minhashing-4based
algorithms is as follows: consider a hash (ordering) of the
elements in U. For each set Ui, let hmin(Ui) be the element
o ∈ Ui that has the minimum hash value. Two sets Ui and
Uj have the same minhash, when the element with the
smallest hash value belongs to their intersection. Hence,
it is easy to see that the probability that hmin(Ui) = hmin(Uj)
is equal to , that is, Jaccard similarity of Ui and Uj.
Bottom-k sketch,6 a variant of minhashing, picks the hash
of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is
estimated as , where k∩(i, j) is |hk(Ui) ∩ hk(Uj)|. Beyer
et al.3 use the bottom-k sketch for estimating the union
and intersection of the sets. Let hi,j [k] be the hash value
of the kth smallest hash value in hk(Ui) ∪ hk(Uj). The idea is
that the larger the size of a set is, the smaller the expected

value of the kth element in hash is. Using the results of
Beyer et al.,3 is an unbiased estimator for ∪i,j. Hence,
the estimation for ∩i,j is as provided in Equation 5.

� (5)

Estimating ∪i,j with Equation 5 performs well when ∪i,j  1,3
that is, the larger sets. Hence, we combine the threshold-
based and sketch-based algorithms to design the oracle
SIM, as a hybrid method that, based on the sizes of the
rows A[i] and A[j], adopts the threshold-based computa-
tion with sketch-based estimation for computing the
dot product of A[i] and A[j]. We consider log(m) as the
threshold to decide which strategy to adopt. Considering
the effectiveness of threshold-based approaches when Ui
and Uj are small and, as a result, the two sets need a large
overlap to have the intersection larger than τ, if |Ui| and
|Uj| are less than log(m), we choose the threshold-based
intersection computation. However, if the size of Ui or Uj
is more, then we use the bottom-k sketch, while consid-
ering k to be log(m). For each element oj ∈ U, we set h(oj)
= j. Hence, for each vector Ui, the index of the first log(m)
elements in it is its bottom-k sketch. Using this strategy,
Algorithm 3 shows the pseudocode of the oracle SIM.

Given two sets Ui and Uj (corresponding to the rows
A[i] and A[j]) together with the threshold τ, the algorithm
aims to compute the value of ∩i, j, if it is larger than τ.
Combining the two aforementioned methods, if |Ui| and
|Uj| are more than a value α, the algorithm uses sampling
to estimate ∩i, j; otherwise, it applies the threshold-based
method to compute it. During the sampling, rather than
sampling from U, the algorithm samples from Ui to reduce
the underestimation of probability. In this case, in order
to compute ∩i, j, the algorithm, for each sample, picks a
random object from Ui and checks its existence in Uj. It
is easy to see it is an unbiased estimator for ∩i, j, where its
expected value is ∩i, j. If |Ui| or |Uj| is less than α, the algo-
rithm applies threshold-based strategy for computing ∩i,

j. As discussed earlier in this subsection, in order for ∩i,

j to be more than τ, the subsets of size ∩i, j − τ +1 should
intersect. Hence, the algorithm first applies the threshold
filtering, and only if the two subsets intersect, it contin-
ues with computing ∩i, j.

Algorithm 3 SIM
Input: The sets Ui and Uj, Threshold τ
Output: c

  1:  if |Ui| ≥ log(m) and |Uj| ≥ log(m) then
  2:   hi = the first k elements in Ui

  3:   hj = the first k elements in Uj

  4:   k∩(i, j) = |hi ∩ hj|
  5:   hi, j [k] = the first k elements in hi ∪ hj

  6:  

  7:  else
  8:   c = 0
  9:   if |Ui| > |Uj| then swap Ui and Uj

research highlights

112 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

Gauss-Jordan. Finally, we only limit the calculations to the
variables of interest, or even if the computation of all vari-
ables is required, in an iterative manner, we move a load-
able bucket of them to the memory, compute their values,
and move to the next bucket.

6. DYNAMIC SIGNAL RECONSTRUCTION
So far, we focused on the static variant of the SRP, where the
objective is to find the point in the answer space that mini-
mizes the distance to the prior X′. We next investigate a prac-
tical scenario where the input to SRP changes. The naive
solution is to invoke our algorithms from scratch whenever
the input changes. We observed that in many instances of
SRP, not all the inputs of a signal reconstruction change.
Hence, it is possible to materialize some results from the
previous iterations and reuse them to compute the solution
for the current iteration.

Consider our running example of SRP where the objec-
tive is to compute the end-to-end traffic between the source-
destination pairs in an IP network. Although the actual
traffic between the pairs may change quickly, the underly-
ing network topology changes infrequently. Hence, the
binary matrix A is also unchanged. The changes in the traffic
affect the observation vector b and possibly the prior point
X′. Reconstructing the signal X every few minutes based
on current observations when there is no change in net-
work topology is an extremely important scenario in traffic
engineering.

Recall that computing AAT is the performance bottleneck
of Direct. Interestingly, because the underlying topology of
the graph does not change, the computation of AAT can be
considered as an amortized preprocessing step that can be
materialized and reused for dynamic changes. Also remem-
ber that Line 3 of Algorithm 1 uses Gaussian elimination for
finding ξ in (AAT)ξ = AX′ − b. We observed that this is the sec-
ond performance bottleneck after the computation of AAT.
We propose a novel approach1 to speedup this computation
by materializing (and maintaining) an n × (n + 1) signature
matrix S that enables the computation of ξ in O(n2), instead
of O(n3) for the recomputation.d

Constructing the signature matrix. For ease of explana-
tion, let R = AAT and t = AX′ − b. Now the objective is to find ξ in:

R ξ = t

Note that in the above equation, R is fixed as AAT does not
change. At a high level, in order to generate the signature
matrix, we apply Gaussian elimination for a general form
of t and maintain the delayed operation in the signature
matrix. Later on, upon the arrival of an update, we use the
signature matrix to updates on t and compute ξ accord-
ingly. We would like to highlight the similarity of our sig-
nature matrix with LU decomposition, where the matrix
AAT is decomposed into two matrices L and U.12 Compared
to our proposal,1 the update using the L and U matrices as

10:  β = |Ui| − τ
11:  for k = 0 to β do: if Ui[k] ∈ Uj then c = c + 1
12:  if c = 0 then return 0
13:  for k = β to |Ui| − 1 do: if Ui[k] ∈ Uj then c = c + 1
14:  end if
15:  return c

5. SCALING TO VERY LARGE SETTINGS
So far, we considered the scenario where n is not a large
number. Recall that n is the size of the low-dimensional pro-
jection of the unknown variables. We relax this assumption
and extend Direct for handling the cases where n is very
large (and still n  m). For example, n can be in the order of
a million, whereas m is in the order of a billion. A key aspect
of Direct is that it leverages the sparse representation of
the matrix (as against its complete dense representation)
for speedup. However, when n is very large, even fitting the
sparse representation of A into the memory may not be pos-
sible. Even if there is only one nonzero value in every column,
we need O(m) storage for the matrix.

Interestingly, the similarity joins-based techniques pro-
posed in Section 4 do not require to completely materialize
even sparse representation of A for estimating AAT. Also,
there are many scenarios where the user is interested in
knowing the values of a subset of components of the recon-
structed signals such as those corresponding to the largest
values of the reconstructed signal. We now show how to
adapt our algorithms to handle these scenarios.

Consider Algorithm 1 where the critical step is the first
line. Algorithm 3 applies bottom-k sketch for the sets whose
size is more than log m. Thus, choosing the signature size
in the bottom-k sketch to be in O(log m), Algorithm 3 needs
at most O(log m) elements from each row. As a result, Line 1
of Direct needs a representation of size O(n log m) of A. For
instance, in our example of n = 106 and m = 1012, the size of
the representative of A is only in the order of 1 million rows
by 40 columns.

A key assumption for scaling our results to very large
settings is that t = AAT is sparse in practice. In Asudeh et al.,1
we theoretically study the sparsity of t. Specifically, we pro-
vide a lower bound and an upper bound on how sparse
t can be. Using an adversarial example, we show the exis-
tence of cases for which the matrix is not sparse. Still, as
we shall illustrate in Section 7, AAT is sparse in practice.
It even becomes significantly more sparse after applying
thresholding. Therefore, we only store the nonzero values
of matrix t, rather than the complete n by n matrix. Line
2 of Algorithm 1 is the multiplication of matrix A with X′
whose dimensions are m by 1 followed by subtracting the
n-dimensional result vector from the vector b. For this line,
for each row of A, we use a sample of size O(log m) for the
nonzero elements of the row, while using the values of X′ as
the sampling distribution. The result is a representation of
size O(n log m) of A. Also, rather than loading the complete
vector X′ to the memory, in an iterative manner, we bring
loadable buckets of it to the memory, update the calcula-
tion for that bucket, and move to the next one. In Line 4, t
is the nonzero elements of AAT and t′ is an n by 1 vector, and
finding the n by 1 vector ξ is doable, using methods such as

d  We note that one can materialize the inverse matrix (AAT)−1 (or AT (AAT)−1) as
the signature. This however would require more storage and would not give
computational advantage compared to our proposal.1

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 113

First, as shown in Figure 7, Direct significantly outper-
forms the baselines QP and WLSE15 on the small dataset N1.
In addition to comparing with these two baselines, for N1,
we also used compressive sensing for estimating flow val-
ues, which took more than 23 s, even for our smallest set-
ting. We next evaluate the exact version of Direct and its
approximate counterpart (using Algorithm 2) that leverages
techniques from similarity joins to speed up the computa-
tion. We use Direct-e to refer to the exact version of Direct
and Direct-a for its approximate version. We also evaluate
the performance of our algorithms to two different thresh-
old values of (m/1000) and (m/100), where m is the num-
ber of source-destination pairs. Choosing an appropriate
threshold is often domain specific with larger thresholds
providing better speedups. We compare the performance of
the algorithms Direct-e and Direct-a through execution
time and accuracy.

p2p-3 (2M source-destination pairs). This network has
2M source-destination pairs with 7081 edges sampled
from the SNAP p2p dataset. Figure 8 shows that Direct-e
takes much as 1500 s to compute the exact solution. This is
often prohibitive and simply unacceptable for many traffic
engineering tasks. However, our approximate algorithms
can provide the result in as little as 35 s. This is a significant
reduction in execution time with a speedup of as much as
97% over the running time of Direct-e. We would like to
mention that our experiments2 demonstrate negligible

signature needs solving of two (albeit specialized) systems
of linear equations of time complexity O(n2) for computing
ξ. We conducted experiment on validating the effectiveness
of our methods and the results are described in Section 7.

7. EXPERIMENTAL EVALUATION

7.1. Experimental setup
Hardware and platform. All of our small-scale experi-
ments were performed on a Macintosh machine with a 2.6
GHz CPU and 8GB memory. The algorithms were imple-
mented using Python 2.7 and MATLAB. For very large set-
ting experiments, we used a 4.0 GHz, 64GB server that runs
on Ubuntu 18.04 and the code was rewritten in C++ for
scalability and efficiency.

Datasets. We conducted extensive experiments to dem-
onstrate the efficacy of our algorithms over graphs with
diverse values for a number of nodes, edges, and source-
destination pairs. Recall that given a communication net-
work, the size of the routing matrix A is parameterized by
the number of edges and number of source-destination
pairs—and not by the number of nodes and edges. We
used different datasets with different scales for the experi-
ments. We outline a subset of those datasets in Figure
6. Please refer to Asudeh et al.1 for the complete list. For
small- and medium-size datasets (N1 in Figure 6), used
for comparing against the prior work, we use the syn-
thetic datasets. Our large datasets are real datasets that
were derived from a p2p dataset from SNAP repository of
Stanford University.e Each of the derived large datasets is
a subgraph of the overall p2p graph and was obtained by
Forest Fire model. For very large (VLS) datasets, we used
the complete Gnutella dataset, as well as a popular loca-
tion-based social networking platform, Brightkite.

Once we sample the network and obtain a connected
graph, we consider all possible source destination pairs to
be the individual flows. For each source-destination pair,
we calculated the shortest path between them and used
Pareto traffic generation model for generating the flow val-
ues. The prior point for the experiments (X′) was obtained as
a function of gravity model from Zhang et al.15

7.2. Experimental results
We report a representative subset of our experiment results
here. Please refer to Asudeh et al.1, 2 for the complete results.

Network #Nodes #Edges #SD pairs
N1 274 281 827

p2p-3 1438 7081 2M
VLS2 10879 44944 32M
VLS3 8298 104469 32M
VLS4 108300 191886 64M
VLS5 36692 372612 128M
VLS6 58228 43310 6 0.5B

Figure 6. Dataset characteristics.

Direct WLSE QP
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
(s

ec
)

Figure 7. Direct v.s. baselines in N1: n = 281 and m = 827.

Dire
ct-E

Dire
ct-A

(th
=2067)

Dire
ct-A

(th
=20672)

0

500

1000

1500

T
im

e
(s

ec
)

Figure 8. Execution time of Direct-e, Direct-a(τ = 2067), and Direct-a
(τ = 20672) in p2p-3.

e  snap.stanford.edu/data/p2p-Gnutella04.html.

research highlights

114 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

Dynamic signal reconstruction results. Our last set of
experiments is for handling the dynamic updates. The
results for dynamic scenario for p2p-3 are given in Figure 11.
For expounding the effects of our dynamic approach
through signature matrix, we also considered adopting
LU decomposition for signature matrix (LUUpdate). As is
evident, both LUUpdate and SigUpdate perform well and
SigUpdate slightly outperforms the other. This is because
LUUpdate requires solving two systems of linear equations.

8. RELATED WORK
Linear algebraic techniques for solving SRP: There has
been extensive work on solving the system of linear equa-
tions using diverse techniques such as computing the
pseudoinverse of A13 or performing singular value decom-
position (SVD) on A, and iterative algorithms for solv-
ing the linear system.13 However, none of these methods
scale for large-scale signal reconstruction problems. A
key bottleneck in these approaches is the computation
of the pseudoinverse for matrix A. Any matrix B such that
ABA = A is defined as a pseudoinverse for A. It is possi-
ble to identify “the infinitely many possible generalized
inverses,”13 each with its own advantages and disadvan-
tages. Moore-Penrose Pseudoinverse (MPP)11 is one of the
most well-known and widely used pseudoinverse. MPP
is the pseudoinverse that has the smallest Frobenius
norm, minimizes the least-square fit in overdetermined
systems, and finds the shortest solution in the underde-
termined ones. However, none of the pseudoinverse defi-
nitions suits our purpose of finding the solution X that
minimizes the 2-distance from a prior. Furthermore,
computing pseudoinverses is often done by SVD that is
computationally very expensive.

9. CONCLUSION
In this paper, we investigated how a wide ranging problem
of large-scale signal reconstruction can benefit from tech-
niques developed by the database community. Efficiently
solving SRP has a number of applications in diverse
domains such as network traffic engineering, astronomy,
and medical imaging. We propose an algorithm Direct
based on the Lagrangian dual form of SRP. We identify
a number of computational bottlenecks in Direct and

approximation errors, even for threshold value of (m/100),
which is tolerable for many tasks in network traffic engi-
neering such as routing optimization.15

Sparsity and thresholding results of AAT. We chose VLS2
settings to demonstrate the effectiveness of thresholding,
the lower and upper bounds provided by theory for the set-
tings, and an overall reduction in nonzero elements by a
suitable threshold. The results are provided in Figure 9.
We also included the theoretical lower bound and upper
bound in the figure. The number of nonzero values in t = AAT
for this setting is 97M, which is about 4.85% of the total
cells. However, with a modest threshold, τ = 2, this number
quickly dropped to 0.003%, which highlights the effective-
ness of thresholding.

Scalability results. In this experiment, we show the
scalability of our final algorithm. To do so, we com-
pare the performance of Direct-a across different
input scales of n × m, which confirm the scalability of
Direct-a for the very large settings through experi-
ments on VLS2 to VLS6. Figure 10 presents the results
from scalability experiments for very large settings with
varied values of n and m. Note that all the experiments
are run on a single machine. Still, even for the very large
setting of .5M ×.5B, the algorithm finished in a reason-
able time of less than 17 minutes.

2 4 6 8

Threshold ()

104

105

106

107

108

109

N
o.

 o
f c

el
ls

 in

 A
AT 4.8428% non-zero cells

Lower Bound
Actual Size
Upper Bound

Figure 9. AAT sparsity on VLS2.

n:4
0K,m

:3
2M

n:0
.1M

,m
:3

2M

n:0
.2

M
,m

:6
4M

n:0
.3

M
,m

:12
8M

n:0
.5

M
,m

:0
.5

B

Number of columns (m)

102

103

104

T
im

e
(s

ec
)

Figure 10. Scalability on n and m.

Figure 11. Dynamic-update performance on network p2p-3.

Dire
ct

-E

Dire
ct

-A

LUUpdate

Sig
Update

101

102

103

T
im

e
(s

ec
)

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 115

Dark matter maps reveal cosmic
scaffolding. arXiv preprint astro-
ph/0701594 (2007).

	11.	 Penrose, R. A generalized inverse
for matrices. In Mathematical
Proceedings of the Cambridge
Philosophical Society, Volume 51
(1955), 406–413.

	12.	 Trefethen, L.N., Bau III, , D.
Technical report. Numerical Linear
Algebra. Philadelphia: Society for
Industrial and Applied Mathematics.
ISBN 978–0–89871–361–9, 1997.

	13.	 Vogel, C.R. Computational methods
for inverse problems. SIAM, 2002.

	14.	 Wiaux, Y., Jacques, L., Puy, G.,

Scaife, A.M., Vandergheynst, P.
Compressed sensing imaging
techniques for radio interferometry.
Monthly Notices of the Royal
Astronomical Society 3, 395 (2009),
1733–1742.

	15.	 Zhang, Y., Roughan, M., Duffield,
N., Greenberg, A. Fast accurate
computation of large-scale IP
traffic matrices from link loads.
In SIGMETRICS, Volume 31, 2003.

	16.	 Zhu, Y., Li, Z., Zhu, H., Li, M., Zhang, Q.
A compressive sensing approach to
urban traffic estimation with
prob vehicles. IEEE Trans. Mobile
Comput. 11, 12 (2012), 2289–2302.

Abolfazl Asudeh (asudeh@uic.edu),
University of Illinois at Chicago.

Jees Augustine and Gautam Das ( ({jees.
augustine@mavs, gdas@cse}.uta.edu) ),
University of Texas at Arlington.

Saravanan Thirumuruganathan
(sthirumuruganathan@hbku.edu.qa),
QCRI, HBKU.

Azade Nazi (azade.nazi@google.com),
Google Brain.

Nan Zhang (nzhang@american.edu),
Kogod School of Business, American
University.

Divesh Srivastava (divesh@research.att.
com), AT&T Labs-Research.

References
	 1.	 Asudeh, A., Augustine, J., Nazi, A.,

Thirumuruganathan, S., Zhang,
N., Das, G., Srivastava, D. Scalable
algorithms for signal reconstruction
by leveraging similarity joins. VLDB J.
29, 2 (2020), 681–707.

	 2.	 Asudeh, A., Nazi, A., Augustine,
J., Thirumuruganathan, S.,
Zhang, N., Das, G., Srivastava, D.
Leveraging similarity joins for signal
reconstruction. PVLDB 10, 11
(2018), 1276–1288.

	 3.	 Beyer, K., Gemulla, R., Haas,
P.J., Reinwald, B., Sismanis, Y.
Distinct-value synopses for multiset
operations. Commun. ACM 10, 52
(2009), 87–95.

	 4.	 Broder, A.Z. On the resemblance
and containment of documents.
In SEQUENCES (1997), IEEE, 21–29.

	 5.	 Chaudhuri, S., Ganti, V., Kaushik, R.
A primitive operator for similarity
joins in data cleaning. In ICDE
(2006). IEEE.

	 6.	 Cohen, E., Kaplan, H. Tighter
estimation using bottom k sketches.
PVLDB 1, 1 (2008), 213–224.

	 7.	 Grangeat, P., Amans, J.-L. Three-
Dimensional Image Reconstruction in
Radiology and Nuclear Medicine,
Vol. 4. Springer Science & Business
Media, Springer Netherlands, 1996.

	 8.	 Kalinin, S.V., Strelcov, E., Belianinov,
A., Somnath, S., Vasudevan, R.K.,
Lingerfelt, E.J., Archibald, R.K.,
Chen, C., Proksch, R., Laanait, N.,
et al. Big, deep, and smart data
in scanning probe microscopy.
ACS Nano 10, 10 (2016), 9068–9086.

	 9.	 Liu, Z., Shi, Z., Jiang, M., Zhang, J.,
Chen, L., Zhang, T., Liu, G. Using MC
algorithm to implement 3d image
reconstruction for yunnan weather
radar data. J. Comput. Commun.
05, 5 (2017), 50–61.

	10.	 Massey, R., Rhodes, J., Ellis,
R., Scoville, N., Leauthaud, A.,
Finoguenov, A., Capak, P., Bacon,
D., Aussel, H., Kneib, J.-P., et al. Copyright held by authors/owners.

evaluate the use of database techniques such as sam-
pling and similarity joins for speeding them up without
much loss in accuracy. Our experiments on networks that
are orders of magnitude larger than prior work show the
potential of our approach.

ACKNOWLEDGMENTS
This work was supported in part by AT&T, the National
Science Foundation under grants 1343976, 1443858,
1624074, and 1760059, and the Army Research Office under
grant W911NF-15-1-0020.�

