
106    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2021  |   VOL.  64  |   NO.  2

research highlights 

DOI:10.1145/3441689

Scalable Signal Reconstruction  
for a Broad Range of Applications
By Abolfazl Asudeh, Jees Augustine, Saravanan Thirumuruganathan,  
Azade Nazi, Nan Zhang, Gautam Das, and Divesh Srivastava

Abstract
Signal reconstruction problem (SRP) is an important opti-
mization problem where the objective is to identify a solu-
tion to an underdetermined system of linear equations that 
is closest to a given prior. It has a substantial number of 
applications in diverse areas, such as network traffic engi-
neering, medical image reconstruction, acoustics, astron-
omy, and many more. Unfortunately, most of the common 
approaches for solving SRP do not scale to large problem 
sizes. We propose a novel and scalable algorithm for solving 
this critical problem. Specifically, we make four major con-
tributions. First, we propose a dual formulation of the prob-
lem and develop the Direct algorithm that is significantly 
more efficient than the state of the art. Second, we show 
how adapting database techniques developed for scalable 
similarity joins provides a substantial speedup over Direct. 
Third, we describe several practical techniques that allow 
our algorithm to scale—on a single machine—to settings 
that are orders of magnitude larger than previously studied. 
Finally, we use the database techniques of materialization 
and reuse to extend our result to dynamic settings where the 
input to the SRP changes. Extensive experiments on real-
world and synthetic data confirm the efficiency, effective-
ness, and scalability of our proposal.

1. INTRODUCTION
The database community has been at the forefront of 
grappling with challenges of big data and has developed 
numerous techniques for the scalable processing and 
analysis of massive datasets. These techniques often origi-
nate from solving core data management challenges but 
then find their way into effectively addressing the needs 
of big data analytics. We study how database techniques 
can benefit large-scale signal reconstruction,13 which is of 
interest to research communities as diverse as computer 
networks,15 medical imaging,7 etc. We demonstrate that 
the scalability of existing solutions can be significantly 
improved using ideas originally developed for similarity 
joins5 and selectivity estimation for set similarity queries.3

Signal reconstruction problem (SRP): The essence of 
SRP is to solve a linear system of the form AX = b, where X is 
a high-dimensional unknown signal (represented by an m-d 
vector in Rm), b is a low-dimensional projection of X that can 
be observed in practice (represented by an n-d vector in Rn 
with n  m), and A is an n × m matrix that captures the linear 
relationship between X and b. There are many real-world 
applications that follow the SRP model (see Section 2.1).  
High-dimensional signals such as environmental tem-
perature can only be observed through low-dimensional 
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observations, such as readings captured by a small num-
ber of temperature sensors. End-to-end network traf-
fic, another high-dimensional signal, is often monitored 
through low-dimensional readings such as traffic volume 
on routers in the backbone or edge networks. In these 
applications, the laws of physics or the topology of com-
puter networks reveal the value of A, and our objective is to 
reconstruct the high-dimensional signal X from the obser-
vation b based on the knowledge of A.

As n  m, the linear system is underdetermined. That 
is, for a given A and b, there are an infinite number of fea-
sible solutions (of X) that satisfy AX = b. In order to iden-
tify the best reconstruction of the signal, it is customary 
to define and optimize for a loss function that measures 
the distance between the reconstructed X and a prior 
understanding of certain properties of X. For instance, 
one’s prior belief of X can be specified as an m-d vector 
X′ and define the loss function as the 2-norm of X − X′, 
that is, X − X′2. In other cases, when prior knowledge 
indicates that X is sparse, one can define the loss func-
tion as the 2-norm of X, aiming to minimize the number 
of nonzero elements in the reconstructed signal. For the 
purpose of this paper, we consider the 2-based loss func-
tion of X − X′2, which has been adopted in many appli-
cation-oriented studies such as Grangeat and Amans7 and 
Zhang et al.15

Running example of SRP: SRP has a broad range of 
applications. For the ease of exposition, we use as a run-
ning example based on network tomography (Section 2.1), 
where the objective is to compute the pairwise end-to-end 
traffic in IP networks. Pairwise traffic measures the volume 
of traffic between all pairs of source-destination nodes in an 
IP network and has numerous uses such as capacity plan-
ning, traffic engineering, and detecting traffic anomalies. 
Informally, consider an IP network where various sources 
and destinations send different amounts of traffic to each 
other. The network administrator is aware of the network 
topology and the routing table (from which we can con-
struct matrix A). In addition, the administrator can observe 
the traffic passing through each link in the backbone net-
work (observation b). The goal is to find the amount of 
traffic flow between all source-destination pairs (signal 
X). Note that one cannot directly measure the raw traffic 
between all source-destination pairs due to challenges in 
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that is, AAT, as it is simply too large to be kept in memory. 
We conducted careful theoretical analyses and experimen-
tal evaluation on the number of nonzero elements in this 
matrix that confirm the matrix is sparse in practice. We 
then leverage this sparsity to efficiently solve very large 
systems of equations. Finally, we consider the scenario 
where the input to our problem changes dynamically. We 
pay attention to the observation that the underlying struc-
ture of the system A does not change frequently. Vector b, 
on the other hand, may change often. We utilize the data-
base technique of materialization and reuse a carefully 
constructed signature matrix for dynamic settings.

2. PROBLEM FORMULATION
We consider a special class of SRP that has a number of 
applications in network traffic engineering, tomographic 
image reconstruction, and many others. We are given a sys-
tem of linear equations AX = b where

•	 A ∈ {1, 0}n×m is a sparse binary matrix n  m.
•	 X ∈ Rm is the “signal” to be reconstructed and is a vector 

of unknown values.
•  b ∈ Rn is the vector of observations.

Each row in the matrix A corresponds to an equation 
with each column corresponding to an unknown variable. 
When the number of equations (n) is much smaller than 
the number of unknowns (m), the system of linear equa-
tions is said to be underdetermined and does not have a 
unique solution. The solution space can be represented as 
a hyperplane in an m′ ∈ [2, m] dimensional vector space.a 
Because SRP does not have a unique solution, one must 
have auxiliary criteria to choose the best solution from 
the set of (possibly infinite) valid solutions. A common 
approach in SRP is to provide a prior X′ and the objective 
is to pick the solution X that is closest to X′. We study the 
problem where the objective is to find the point satisfying 
AX = b that minimizes the 2-distance from a prior point X′. 
Formally, the problem is defined as:

min X − X′2

s.t. AX = b� (1)

instrumentation and storage—see Zhang et al.15 for a tech-
nical discussion. In almost all real-world IP networks, the 
number of source-destination pairs is significantly larger 
than the number of links, leading to an underdetermined 
linear system. To reconstruct the pairwise traffic, the net-
work community introduced various traffic models, for 
example, the gravity model,15 as the prior for X′, and used 
the 2-distance between X and the prior as the loss func-
tion. Note that in reconstructing the pairwise distances, 
efficiency is a concern front and center, especially given 
the rise of software designed networks (SDNs) that feature 
much larger sizes and much more frequent topological 
changes, pushing further the scalability requirements of 
signal reconstruction algorithms.

Research gap: Because of the importance of SRP, there 
has been extensive work from multiple communities on 
finding efficient solutions. To solve the problem efficiently, 
methods explored in the recent literature include statisti-
cal likelihood-based iterative algorithms based on expec-
tation-maximization, as well as the use of linear algebraic 
techniques such as computing the pseudoinverse of A13 or 
performing singular value decomposition (SVD) on A, and 
iterative algorithms for solving the linear system.13 Yet even 
these approaches cannot scale to fully meet the require-
ments in practice, especially in settings such as traffic 
reconstruction in large-scale IP networks—which call for a 
more scalable solution.

Our approach: In this paper, we consider a special case 
of SRP where A, X, and b are nonnegative with A being a 
sparse binary matrix. Such a setting finds its applications 
in many domains, as explained in Section 2.1. We present 
an exact algorithm (Direct) based on the transformation 
of the problem into its Lagrangian dual representation. 
Direct already outperforms commonly used approaches 
for SRP, as it avoids expensive linear algebraic opera-
tions required by the previous solutions and scales up to 
medium-size settings. Next, we investigate whether our 
approach can be sped up even further, by replacing exact 
computations with approximation techniques. After a 
careful investigation of Direct, it turns out that the com-
putational bottleneck is a special case of matrix multipli-
cation involving a sparse binary matrix with its transpose. 
We use the observation that a small number of cells in the 
result matrix of the bottleneck operation take the bulk of 
the values and propose a threshold-based algorithm for 
approximating it. Specifically, we reduce the problem to 
computing the dot product of two vectors if and only if 
their similarity is above a user-provided threshold. Our 
key idea here is to leverage various database techniques 
to speed up the multiplication operation. We propose 
a hybrid algorithm based on a number of techniques 
originally proposed for computing similarity joins and 
selectivity estimation of set similarity queries, resulting 
in significant speedup, enabling our proposal to scale to 
large-scale settings.

We push the boundaries to very large systems (VLS) 
with sizes in the order of a million equations with a billion 
unknowns. We identify that the barrier to this extension is 
the output size of the multiplication of A by its transpose, 
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Figure 1. Visualizing the problem.

a  We assume that the problem has at least one solution.
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Figure 1 provides a visualization of the problem in three 
dimensions. The gray plane is the solution space with the 
prior marked as a point X′. The intersection of the perpen-
dicular line to the plane that passes though X′ is the point 
that minimizes X − X′2.

We observe that SRP is a special case of quadratic pro-
gramming where (a) the constraints are only in the form of 
equality, (b) matrix A is sparse, and (c) matrix A is binary (and 
hence unweighted). By leveraging these characteristics, we 
seek to design more efficient solutions compared with the 
baselines that are designed for general cases. In Section 3, 
we use the dual representative of the problem to propose an 
efficient exact algorithm. In Section 4, we show how leverag-
ing similarity joins techniques help in achieving significant 
speedup without sacrificing much accuracy.

2.1. Applications of SRP
SRP covers a broad range of real-world problems that use 
signal reconstruction. In practice, it is popular to observe 
low-dimensional projections in the form of (unweighted) 
aggregates of a high-dimensional signal vector. For example, 
in general network flow applications (such as road traffic 
estimation16), the value on each edge is the summation of the 
flow values that includes this edge as part of the path between 
them. Of course, a requirement to our problem is an “expert-
provided” prior template, such as gravity model15 for the net-
work flow problems. Another major application domain for 
SRP problem over aggregates is image reconstruction, where 
observations are unweighted projections of unknowns. 
Image reconstruction has broad applications ranging from 
medical imaging7 to astronomy14 and physics.10 Some of the 
other applications of SRP, in general, include radar data 
reconstruction9 and transmission electron microscopy,8 to 
name a few. To showcase some applications in more detail, 
we sketch a few examples in the context of network flow 
problems and image reconstruction in the following.

Network tomography. Traffic matrix computation (the 
running example): Consider an IP network with n traf-
fic links and m source-destination traffic flows (SD flow) 
between the ingress and egress points, where n  m. The 
ingress/egress points can be points of presence (PoPs) or 
routers or even IP prefixes depending on the level of granu-
larity required. The network has a routing policy and pre-
scribes a path for each of the SD flows that can be captured 
in a#links(n)×#flows(m) binary matrix A, where the entry 
A[i, j] = 1 if the link i is used to route the traffic of the jth SD 
flow. The matrix A is sparse and “fat” with more SD flows 
(columns) than number of links (rows). Note that, one can-
not directly measure each of the SD flows on a link owing 
to efficiency reasons. However, one can easily measure the 
total volume of the network traffic that passes through a 
given link using network protocols such as SNMP. Thus, 
the load on each link i becomes the observed vector b. To 
obtain a prior X′, one can use any traffic model such as 
the popular and intuitive gravity model.15 It assumes inde-
pendence between source and destination and states that 
traffic between any given source s and destination d is pro-
portional to the product of network traffic entering at s and 
that exiting at d.

Traffic analysis attack in P2P networks: In traffic analy-
sis attack, the information leak on traffic data is exploited 
to expose the user traffic pattern in P2P networks. Here, 
we propose the following traffic analysis attack that can be 
modeled to our problem: consider an adversary who moni-
tors the link level traffics in a P2P network. Applying SRP, 
one can directly identify the volume of traffic between any 
pair of users in a P2P network.

Image reconstruction. Image reconstruction7 has a wide 
range of applications in different fields such as medical 
imaging,7 and physics.10 Given a set of (usually 2D) projec-
tion of a (usually 3D) image, the objective is to reconstruct 
it. The reconstruction is usually done with the help of some 
prior knowledge. For example, knowing that the 2D projec-
tions are taken from a human face, one may use a template 
3D face photo and, among all possible 3D reconstructions 
from the 2D images, find the one that is the closest to the 
template, making the image reconstruction more effective.

CT scan: A popular application of SRP is tomographic 
reconstruction, which is a multidimensional linear inverse 
problem with wide range of applications in medical imag-
ing7 such as CT scans (computed tomography). A CT scan 
takes multiple 2D projections (vector b) through X-rays from 
different angles (matrix A) and the objective is to reconstruct 
the 3D image from the projections. Many 3D images may 
produce the same projections necessitating the use of priors 
to choose an appropriate reconstruction.

Radio astronomy: In astronomy, SRP has application 
for reconstructing interferometric images where the astro-
physical signals are probed through Fourier measurements. 
The objective is to reconstruct the images from the obser-
vations—forming an SRP scenario. Also, the specific prior 
information about the signals plays an important role in 
reconstruction, as mentioned in Wiaux et al.14

3. EXACT SOLUTION FOR SOLVING SRP
We begin by describing two representative approaches for 
solving SRP from prior research and highlight their short-
comings. We then propose a dual representation of the prob-
lem that can be solved exactly in an efficient manner and 
already outperforms the baselines. This alternate formula-
tion allows one to leverage various database techniques for 
speeding it up.

3.1. Lagrangian formulation of SRP
We leverage the Lagrangian dual form of SRP as a special 
case of quadratic programming and design an efficient 
exact solution for it. For SRP as specified in Equation 1, 

 and g(X) = AX.b Thus, our problem can 
be rewritten as:

� (2)

b  Note that min  is the same as min X − X′2.

c  Because, looking at Figure 1, Equation 1 has a single optimal point, Equa-
tion 2 has one stationary point that happens to be the saddle point.
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it in a manner that allows efficient matrix multipli-
cation. Because A is binary (and hence unweighted), 
a natural representation is to store only the indi-
ces of nonzero values. Figures 2a and 2b show the 
nonsparse and sparse representation of a matrix A.  
Note that AAT is symmetric as t[i, j] and t[j, i] are obtained 
by the dot product of rows i and j of A. Let l be the number of 
nonzero elements in each row. Because A is sparse, l  m,  
one can design a natural matrix multiplication algorithm 
with time complexity of O(nml) that is orders of magni-
tude faster than algorithm such as Strassen algorithm.

4. TRADING OFF ACCURACY WITH EFFICIENCY
In many applications of SRP, m is often in O(n2), thereby 
making the computational complexity of Direct to be 
O(n4). The key bottleneck is the computation of AAT. On 
the other hand, for large problem instances, the user may 
accept trading off accuracy with efficiency and prefer a 
close-to-exact solution that is computed quickly, rather 
than the expensive exact solution. Our objective is to speed 
up Direct by computing the bottleneck step, that is, com-
puting AAT, approximately. We show how to leverage a 
threshold-based approach by only computing the values 
of matrix AAT that are larger than a certain threshold. We 
describe the connection between this problem variant and 
similarity joins and propose a hybrid method by adopting 
two classical algorithms designed for similarity estimation, 
which results in an efficient solution for computing AAT.

4.1. Bounding values in matrix AAT

We begin by showing that one can efficiently compute the 
bound for each cell value in matrix AAT. Figure 3 shows a 
sparse matrix A with 183 rows and 495 columns, in which the 

Next, we find the stationary pointc of Equation 2 in the 
general form by taking the derivatives with regard to X and 
λ, and setting them to zero, we get:

X = X′ − AT (AAT)−1 (AX′ − b)� (3)

Solving SRP in dual form. The stationary point of Equation 2 
is the optimal solution for our problem (Equation 1). In 
contrast to prior work, we solve the SRP problem by directly 
solving Equation 3. We make two observations. First, the 
matrix AAT ∈ Zn × n always has an inverse as it is full rank. 
From Figure 1, one can note that the problem has a unique 
solution that minimizes the distance from the prior. It 
means that AAT is full rank, because otherwise the problem 
was not feasible and would not have a solution. Second, 
Equation 3 does have a matrix inverse operator that is 
expensive to compute. However, one can avoid taking the 
inverse of AAT by computing ξ in Equation 4 and replacing 
(AAT)−1(AX′ − b) by it in Equation 3.

� (4)

Algorithm 1 provides the pseudocode for Direct.

Algorithm 1 Direct
Input: A, b, and X′
Output: X

1:  t = AAT

2:  t2 = AX′ − b
3:  Solve system of linear equations: t ξ = t2

4:  X = X′ − AT ξ
5:  return X

Performance analysis of Direct. Let us now investi-
gate the performance of our algorithm. Recall that A is a 
fat matrix with n  m, whereas X and X′ are m-dimensional  
vectors, and b is a n-dimensional vector. Line 1 of Algorithm 
1 takes O(n2m), whereas Line 2 takes O(nm). Line 3 involves 
solving a system of linear equations. A naive way would 
be to compute the inverse of t that can take as much as 
O(n3). However, by observing that t is sparse, one can use 
approaches such as Gauss-Jordan elimination or other iter-
ative methods that are practically much faster for sparse 
matrices. Finally, the computation of Line 4 is in O(nm). 
Looking at Direct holistically, one can notice that its com-
putational bottleneck is Line 1, thereby making the overall 
complexity to be O(n2m).

An additional approach to speedup Direct is to 
observe that matrix A is sparse and thereby to store 

0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0

(a)

〈3, 7〉
〈2〉

〈5, 7, 9〉
〈1, 6〉

(b)

Figure 2. Illustration of the sparse representation of A. (a) Nonsparse 
representation and (b) sparse representation.

Figure 3. An example of the binary sparse matrix A183×495.

Figure 4. The nonzero elements in AAT for the example of Figure 3.
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5:  end for
6:  for every pair i, j ∈ F do
7:    t[i, j] = t[j, i] = SIM(A[i],A[j], τ)
8:  end for
9:  return t

4.3. Leveraging similarity joins for Oracle SIM
The database community has extensively studied mecha-
nisms for computing set similarity for applications such 
as data cleaning5 where the objective is to efficiently iden-
tify the set of tuples that are “close enough” on multiple 
attributes. We next describe how to implement the oracle 
SIM by leveraging prior research on computing set similar-
ity. Especially, we propose a hybrid method that combines 
the threshold-based similarity joins with the sketch-based 
methods to resolve their shortcomings.

Oracle SIM through set similarity. Given two rows A[i] and 
A[j], and the threshold τ, SIM should find the dot product 
of A[i] and A[j] if it is not less than τ. We can make an inter-
esting connection between SIM and set similarity problems 
as follows. Let every column in matrix A be an object o in a 
universe U of m elements. Every row A[i] represents a set Ui 
in U, where ∀oj ∈ U, oj ∈ Ui iff A[i, j] = 1. Equivalently, each row 
corresponds to a set Ui that stores the indices of the nonzero 
columns similar to Figure 2b. Using this transformation, we 
can see that our objective is to compute |Ui ∩ Uj| for all pairs 
of sets Ui and Uj where |Ui ∩ Uj| ≥ τ. Note that we represent  
|Ui ∩ Uj| by ∩i,j and |Ui ∪ Uj| by ∪i,j, respectively.

Due to its widespread importance, different versions of 
this problem have been extensively studied in the DB com-
munity. We consider one exact approach and two approxi-
mate approaches based on threshold-based algorithms5 and 
sketch-based methods.3, 6 We then compare and contrast the 
two approximate approaches, describe the scenarios when 
they provide better performance, and propose a hybrid algo-
rithm based on these scenarios.

Exact approach: set intersection. One can see that when  
τ = 1, the problem boils down to computing AAT exactly. This 
in turn boils down to computing the intersection between 
two sets as efficiently as possible. The sparse representa-
tion of the matrix often provides the nonzero columns in an 
ordered manner. The simplest approaches for finding the 
intersection of ordered sets is to perform a linear merge by 
scanning both the lists in parallel and leveraging the ordered 
nature similar to the merge step of merge sort. One can also 
speedup this approach by using sophisticated approaches 

nonzero elements are highlighted in white. Figure 4 shows 
the nonzero elements in matrix AAT. We can notice that AAT 
is square and also sparse due to the fact that every element 
of AAT is the dot product of two sparse vectors (two rows of 
matrix A). Furthermore, one can also observe a more subtle 
phenomenon that we state in Theorem 1, which could be 
used to design an efficient algorithm.

Theorem 1. Given   a sparse binary matrix A, considering the 
elements on the diagonal of AAT, that is, t[i, i], ∀0 ≤ i < n:

•	 t[i, i] = |A[i]|, where |A[i]| is the number of nonzero 
elements in row A[i].

•  t[i, i] is an upper bound for the elements in the row t[i] and 
the column t[, i]; formally, ∀0 ≤ j < n: t[i, j] ≤ t[i, i] and  
t[i, j] ≤ t[j, j].

The proof can be found in Asudeh et al.2

Consider two representations of AAT of the example matrix 
given in Figure 3. Figure 4 shows all the nonzero elements of 
AAT, whereas Figure 5 shows a magnitude-weighted variant 
wherein cells with larger values are plotted in brighter col-
ors. Figure 5 visually shows that the elements on the diago-
nal are brighter than the ones in the same row and column 
as predicted by Theorem 1. One may notice that most of the 
nonzero elements of AAT (in Figure 4) are small values (in 
Figure 5). Although there are a reasonable number of non-
zero elements, the number of elements with higher magni-
tude is often much smaller. Next, we use this insight along 
with Theorem 1 for speeding up Direct.

4.2. Threshold-based computation of AAT

By developing a bound on the cell values in AAT, we can see 
that a small number of elements in AAT take the bulk of the 
value. This is the key in designing a threshold-based algo-
rithm for computing AAT wherein we only compute values of 
AAT that are above a certain threshold. Specifically, we use 
the elements on the diagonal as an upper bound and only 
compute the elements for which this upper bound is larger 
than a user-specified threshold. Note that, if the threshold is 
equal to 1, the algorithm will compute the values of all ele-
ments. However, the user-specified threshold allows addi-
tional opportunities for efficiency.

Algorithm 2 provides the pseudocode for the threshold-
based multiplication of sparse binary matrix A with its 
transpose. This algorithm depends on the existence of an 
oracle called SIM that given two rows A[i] and A[j], and the 
threshold τ, returns the dot product of A[i] and A[j] if the 
result is not less than τ.

Algorithm 2 Approx AAT

Input: Sparse matrix A, Threshold τ
Output: t

1:  F = {}
2:  for i = 0 to n − 1 do
3:    t[i, i] = |A[i]|
4:    if |A[i]| ≥ τ then add i to F

Figure 5. Magnitude of weights in AAT for the example of Figure 3.



 

FEBRUARY 2021  |   VOL.  64  |   NO.  2  |   COMMUNICATIONS OF THE ACM     111

such as binary search on one of the lists or using sophisti-
cated data structures such as treaps or skip lists. Each of 
these approaches allows one to “skip” some elements of a 
set when necessary.

Approximate approach: threshold-based algorithms. 
Threshold-based algorithms, such as Chaudhuri et al.,5 
identify the pair of sets such that their similarity is more 
than a given threshold. This has a number of applica-
tions such as data cleaning, deduplication, collaborative 
filtering, and product recommendation in advertise-
ment where the objective is to quickly identify the pairs 
that are highly similar. The key idea is that if the intersec-
tion of two sets is large, the intersection of small subsets 
of them is nonzero.5 More precisely, for two sets Ui and 
Uj with size h, if ∩i,j ≥ τ, any subset  and  
of size h − τ + 1 will overlap; that is, . Using 
this idea, while considering an ordering of the objects, 
the algorithm first finds the set of candidate pairs that 
overlap in a subset of size h − τ + 1. In the second step, 
the algorithm verifies the pairs, by removing the false 
positives.

One can see that the effectiveness of this method 
highly depends on the value of τ and, considering the 
target application, it works well for the cases where τ is 
large. For example, consider a case where h = 100. When 
τ = 99 (i.e., 99% similarity), the first filtering step needs to 
compare the subsets of size 2 and is efficient, whereas if τ 
= 10, the filtering step needs to compare the subset pairs 
of size 91, which is close to the entire set. The latter case 
is quite possible in our problem. To understand it better, 
let us consider matrix A in Figure 3, while setting τ equal 
to 5 in Algorithm 2. Even though the size of many of the 
rows is close to the threshold, there are rows A[i] where 
|A[i]| is significantly larger than it. For example, for two 
rows A[i] and A[j] where |A[i]| ≥ 50 and |A[j]| ≥ 50, to sat-
isfy the condition that the dot product should not be less 
than τ, the filtering step needs to compare the subsets of 
size ≥ 44, which is close to the exact comparison of A[i] 
and A[j].

Approximate approach: sketch-based algorithms. 
Sketch-based methods such as Beyer et al.3 and Cohen and 
Kaplan6 use a precomputed synopsis such as a minhash 
for answering different set aggregates such as Jaccard 
similarity. The main idea behind the minhashing-4based 
algorithms is as follows: consider a hash (ordering) of the 
elements in U. For each set Ui, let hmin(Ui) be the element 
o ∈ Ui that has the minimum hash value. Two sets Ui and 
Uj have the same minhash, when the element with the 
smallest hash value belongs to their intersection. Hence, 
it is easy to see that the probability that hmin(Ui) = hmin(Uj) 
is equal to , that is, Jaccard similarity of Ui and Uj. 
Bottom-k sketch,6 a variant of minhashing, picks the hash 
of the k elements in Ui with the smallest hash value, as its 
signature. The Jaccard similarity of two sets Ui and Uj is 
estimated as , where k∩(i, j) is |hk(Ui) ∩ hk(Uj)|. Beyer 
et al.3 use the bottom-k sketch for estimating the union 
and intersection of the sets. Let hi,j [k] be the hash value 
of the kth smallest hash value in hk(Ui) ∪ hk(Uj). The idea is 
that the larger the size of a set is, the smaller the expected 

value of the kth element in hash is. Using the results of 
Beyer et al.,3 is an unbiased estimator for ∪i,j. Hence, 
the estimation for ∩i,j is as provided in Equation 5.

� (5)

Estimating ∪i,j with Equation 5 performs well when ∪i,j  1,3  
that is, the larger sets. Hence, we combine the threshold-
based and sketch-based algorithms to design the oracle 
SIM, as a hybrid method that, based on the sizes of the 
rows A[i] and A[j], adopts the threshold-based computa-
tion with sketch-based estimation for computing the 
dot product of A[i] and A[j]. We consider log(m) as the 
threshold to decide which strategy to adopt. Considering 
the effectiveness of threshold-based approaches when Ui 
and Uj are small and, as a result, the two sets need a large 
overlap to have the intersection larger than τ, if |Ui| and 
|Uj| are less than log(m), we choose the threshold-based 
intersection computation. However, if the size of Ui or Uj 
is more, then we use the bottom-k sketch, while consid-
ering k to be log(m). For each element oj ∈ U, we set h(oj) 
= j. Hence, for each vector Ui, the index of the first log(m) 
elements in it is its bottom-k sketch. Using this strategy, 
Algorithm 3 shows the pseudocode of the oracle SIM.

Given two sets Ui and Uj (corresponding to the rows 
A[i] and A[j]) together with the threshold τ, the algorithm 
aims to compute the value of ∩i, j, if it is larger than τ. 
Combining the two aforementioned methods, if |Ui| and 
|Uj| are more than a value α, the algorithm uses sampling 
to estimate ∩i, j; otherwise, it applies the threshold-based 
method to compute it. During the sampling, rather than 
sampling from U, the algorithm samples from Ui to reduce 
the underestimation of probability. In this case, in order 
to compute ∩i, j, the algorithm, for each sample, picks a 
random object from Ui and checks its existence in Uj. It 
is easy to see it is an unbiased estimator for ∩i, j, where its 
expected value is ∩i, j. If |Ui| or |Uj| is less than α, the algo-
rithm applies threshold-based strategy for computing ∩i, 

j. As discussed earlier in this subsection, in order for ∩i, 

j to be more than τ, the subsets of size ∩i, j − τ +1 should 
intersect. Hence, the algorithm first applies the threshold 
filtering, and only if the two subsets intersect, it contin-
ues with computing ∩i, j.

Algorithm 3 SIM
Input: The sets Ui and Uj, Threshold τ
Output: c

  1:  if |Ui| ≥ log(m) and |Uj| ≥ log(m) then
  2:    hi = the first k elements in Ui

  3:    hj = the first k elements in Uj

  4:    k∩(i, j) = |hi ∩ hj|
  5:    hi, j [k] = the first k elements in hi ∪ hj

  6:  

  7:  else
  8:    c = 0
  9:    if |Ui| > |Uj| then swap Ui and Uj
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Gauss-Jordan. Finally, we only limit the calculations to the 
variables of interest, or even if the computation of all vari-
ables is required, in an iterative manner, we move a load-
able bucket of them to the memory, compute their values, 
and move to the next bucket.

6. DYNAMIC SIGNAL RECONSTRUCTION
So far, we focused on the static variant of the SRP, where the 
objective is to find the point in the answer space that mini-
mizes the distance to the prior X′. We next investigate a prac-
tical scenario where the input to SRP changes. The naive 
solution is to invoke our algorithms from scratch whenever 
the input changes. We observed that in many instances of 
SRP, not all the inputs of a signal reconstruction change. 
Hence, it is possible to materialize some results from the 
previous iterations and reuse them to compute the solution 
for the current iteration.

Consider our running example of SRP where the objec-
tive is to compute the end-to-end traffic between the source-
destination pairs in an IP network. Although the actual 
traffic between the pairs may change quickly, the underly-
ing network topology changes infrequently. Hence, the 
binary matrix A is also unchanged. The changes in the traffic 
affect the observation vector b and possibly the prior point 
X′. Reconstructing the signal X every few minutes based 
on current observations when there is no change in net-
work topology is an extremely important scenario in traffic 
engineering.

Recall that computing AAT is the performance bottleneck 
of Direct. Interestingly, because the underlying topology of 
the graph does not change, the computation of AAT can be 
considered as an amortized preprocessing step that can be 
materialized and reused for dynamic changes. Also remem-
ber that Line 3 of Algorithm 1 uses Gaussian elimination for 
finding ξ in (AAT)ξ = AX′ − b. We observed that this is the sec-
ond performance bottleneck after the computation of AAT. 
We propose a novel approach1 to speedup this computation 
by materializing (and maintaining) an n × (n + 1) signature 
matrix S that enables the computation of ξ in O(n2), instead 
of O(n3) for the recomputation.d

Constructing the signature matrix. For ease of explana-
tion, let R = AAT and t = AX′ − b. Now the objective is to find ξ in:

R ξ = t

Note that in the above equation, R is fixed as AAT does not 
change. At a high level, in order to generate the signature 
matrix, we apply Gaussian elimination for a general form 
of t and maintain the delayed operation in the signature 
matrix. Later on, upon the arrival of an update, we use the 
signature matrix to updates on t and compute ξ accord-
ingly. We would like to highlight the similarity of our sig-
nature matrix with LU decomposition, where the matrix 
AAT is decomposed into two matrices L and U.12 Compared 
to our proposal,1 the update using the L and U matrices as 

10:  β = |Ui| − τ
11:  for k = 0 to β do: if Ui[k] ∈ Uj then c = c + 1
12:  if c = 0 then return 0
13:  for k = β to |Ui| − 1 do: if Ui[k] ∈ Uj then c = c + 1
14:  end if
15:  return c

5. SCALING TO VERY LARGE SETTINGS
So far, we considered the scenario where n is not a large 
number. Recall that n is the size of the low-dimensional pro-
jection of the unknown variables. We relax this assumption 
and extend Direct for handling the cases where n is very 
large (and still n  m). For example, n can be in the order of 
a million, whereas m is in the order of a billion. A key aspect 
of Direct is that it leverages the sparse representation of 
the matrix (as against its complete dense representation) 
for speedup. However, when n is very large, even fitting the 
sparse representation of A into the memory may not be pos-
sible. Even if there is only one nonzero value in every column, 
we need O(m) storage for the matrix.

Interestingly, the similarity joins-based techniques pro-
posed in Section 4 do not require to completely materialize 
even sparse representation of A for estimating AAT. Also, 
there are many scenarios where the user is interested in 
knowing the values of a subset of components of the recon-
structed signals such as those corresponding to the largest 
values of the reconstructed signal. We now show how to 
adapt our algorithms to handle these scenarios.

Consider Algorithm 1 where the critical step is the first 
line. Algorithm 3 applies bottom-k sketch for the sets whose 
size is more than log m. Thus, choosing the signature size 
in the bottom-k sketch to be in O(log m), Algorithm 3 needs 
at most O(log m) elements from each row. As a result, Line 1 
of Direct needs a representation of size O(n log m) of A. For 
instance, in our example of n = 106 and m = 1012, the size of 
the representative of A is only in the order of 1 million rows 
by 40 columns.

A key assumption for scaling our results to very large 
settings is that t = AAT is sparse in practice. In Asudeh et al.,1 
we theoretically study the sparsity of t. Specifically, we pro-
vide a lower bound and an upper bound on how sparse 
t can be. Using an adversarial example, we show the exis-
tence of cases for which the matrix is not sparse. Still, as 
we shall illustrate in Section 7, AAT is sparse in practice. 
It even becomes significantly more sparse after applying 
thresholding. Therefore, we only store the nonzero values 
of matrix t, rather than the complete n by n matrix. Line 
2 of Algorithm 1 is the multiplication of matrix A with X′ 
whose dimensions are m by 1 followed by subtracting the 
n-dimensional result vector from the vector b. For this line, 
for each row of A, we use a sample of size O(log m) for the 
nonzero elements of the row, while using the values of X′ as 
the sampling distribution. The result is a representation of 
size O(n log m) of A. Also, rather than loading the complete 
vector X′ to the memory, in an iterative manner, we bring 
loadable buckets of it to the memory, update the calcula-
tion for that bucket, and move to the next one. In Line 4, t 
is the nonzero elements of AAT and t′ is an n by 1 vector, and 
finding the n by 1 vector ξ is doable, using methods such as 

d  We note that one can materialize the inverse matrix (AAT)−1 (or AT (AAT)−1) as 
the signature. This however would require more storage and would not give 
computational advantage compared to our proposal.1
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First, as shown in Figure 7, Direct significantly outper-
forms the baselines QP and WLSE15 on the small dataset N1. 
In addition to comparing with these two baselines, for N1, 
we also used compressive sensing for estimating flow val-
ues, which took more than 23 s, even for our smallest set-
ting. We next evaluate the exact version of Direct and its 
approximate counterpart (using Algorithm 2) that leverages 
techniques from similarity joins to speed up the computa-
tion. We use Direct-e to refer to the exact version of Direct 
and Direct-a for its approximate version. We also evaluate 
the performance of our algorithms to two different thresh-
old values of (m/1000) and (m/100), where m is the num-
ber of source-destination pairs. Choosing an appropriate 
threshold is often domain specific with larger thresholds 
providing better speedups. We compare the performance of 
the algorithms Direct-e and Direct-a through execution 
time and accuracy.

p2p-3 (2M source-destination pairs). This network has 
2M source-destination pairs with 7081 edges sampled 
from the SNAP p2p dataset. Figure 8 shows that Direct-e 
takes much as 1500 s to compute the exact solution. This is 
often prohibitive and simply unacceptable for many traffic 
engineering tasks. However, our approximate algorithms 
can provide the result in as little as 35 s. This is a significant 
reduction in execution time with a speedup of as much as 
97% over the running time of Direct-e. We would like to 
mention that our experiments2 demonstrate negligible 

signature needs solving of two (albeit specialized) systems 
of linear equations of time complexity O(n2) for computing 
ξ. We conducted experiment on validating the effectiveness 
of our methods and the results are described in Section 7.

7. EXPERIMENTAL EVALUATION

7.1. Experimental setup
Hardware and platform. All of our small-scale experi-
ments were performed on a Macintosh machine with a 2.6 
GHz CPU and 8GB memory. The algorithms were imple-
mented using Python 2.7 and MATLAB. For very large set-
ting experiments, we used a 4.0 GHz, 64GB server that runs 
on Ubuntu 18.04 and the code was rewritten in C++ for 
scalability and efficiency.

Datasets. We conducted extensive experiments to dem-
onstrate the efficacy of our algorithms over graphs with 
diverse values for a number of nodes, edges, and source-
destination pairs. Recall that given a communication net-
work, the size of the routing matrix A is parameterized by 
the number of edges and number of source-destination 
pairs—and not by the number of nodes and edges. We 
used different datasets with different scales for the experi-
ments. We outline a subset of those datasets in Figure 
6. Please refer to Asudeh et al.1 for the complete list. For 
small- and medium-size datasets (N1 in Figure 6), used 
for comparing against the prior work, we use the syn-
thetic datasets. Our large datasets are real datasets that 
were derived from a p2p dataset from SNAP repository of 
Stanford University.e Each of the derived large datasets is 
a subgraph of the overall p2p graph and was obtained by 
Forest Fire model. For very large (VLS) datasets, we used 
the complete Gnutella dataset, as well as a popular loca-
tion-based social networking platform, Brightkite.

Once we sample the network and obtain a connected 
graph, we consider all possible source destination pairs to 
be the individual flows. For each source-destination pair, 
we calculated the shortest path between them and used 
Pareto traffic generation model for generating the flow val-
ues. The prior point for the experiments (X′) was obtained as 
a function of gravity model from Zhang et al.15

7.2. Experimental results
We report a representative subset of our experiment results 
here. Please refer to Asudeh et al.1, 2 for the complete results.

Network #Nodes #Edges #SD pairs
N1 274 281 827

p2p-3 1438 7081 2M
VLS2 10879 44944 32M
VLS3 8298 104469 32M
VLS4 108300 191886 64M
VLS5 36692 372612 128M
VLS6 58228 43310 6 0.5B

Figure 6. Dataset characteristics.
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Figure 7. Direct v.s. baselines in N1: n = 281 and m = 827.
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Figure 8. Execution time of Direct-e, Direct-a(τ = 2067), and Direct-a  
(τ = 20672) in p2p-3.

e  snap.stanford.edu/data/p2p-Gnutella04.html.
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Dynamic signal reconstruction results. Our last set of 
experiments is for handling the dynamic updates. The 
results for dynamic scenario for p2p-3 are given in Figure 11.  
For expounding the effects of our dynamic approach 
through signature matrix, we also considered adopting 
LU decomposition for signature matrix (LUUpdate). As is 
evident, both LUUpdate and SigUpdate perform well and 
SigUpdate slightly outperforms the other. This is because 
LUUpdate requires solving two systems of linear equations.

8. RELATED WORK
Linear algebraic techniques for solving SRP: There has 
been extensive work on solving the system of linear equa-
tions using diverse techniques such as computing the 
pseudoinverse of A13 or performing singular value decom-
position (SVD) on A, and iterative algorithms for solv-
ing the linear system.13 However, none of these methods 
scale for large-scale signal reconstruction problems. A 
key bottleneck in these approaches is the computation 
of the pseudoinverse for matrix A. Any matrix B such that 
ABA = A is defined as a pseudoinverse for A. It is possi-
ble to identify “the infinitely many possible generalized 
inverses,”13 each with its own advantages and disadvan-
tages. Moore-Penrose Pseudoinverse (MPP)11 is one of the 
most well-known and widely used pseudoinverse. MPP 
is the pseudoinverse that has the smallest Frobenius 
norm, minimizes the least-square fit in overdetermined 
systems, and finds the shortest solution in the underde-
termined ones. However, none of the pseudoinverse defi-
nitions suits our purpose of finding the solution X that 
minimizes the 2-distance from a prior. Furthermore, 
computing pseudoinverses is often done by SVD that is 
computationally very expensive.

9. CONCLUSION
In this paper, we investigated how a wide ranging problem 
of large-scale signal reconstruction can benefit from tech-
niques developed by the database community. Efficiently 
solving SRP has a number of applications in diverse 
domains such as network traffic engineering, astronomy, 
and medical imaging. We propose an algorithm Direct 
based on the Lagrangian dual form of SRP. We identify 
a number of computational bottlenecks in Direct and 

approximation errors, even for threshold value of (m/100), 
which is tolerable for many tasks in network traffic engi-
neering such as routing optimization.15

Sparsity and thresholding results of AAT. We chose VLS2 
settings to demonstrate the effectiveness of thresholding, 
the lower and upper bounds provided by theory for the set-
tings, and an overall reduction in nonzero elements by a 
suitable threshold. The results are provided in Figure 9. 
We also included the theoretical lower bound and upper 
bound in the figure. The number of nonzero values in t = AAT  
for this setting is 97M, which is about 4.85% of the total 
cells. However, with a modest threshold, τ = 2, this number 
quickly dropped to 0.003%, which highlights the effective-
ness of thresholding.

Scalability results. In this experiment, we show the 
scalability of our final algorithm. To do so, we com-
pare the performance of Direct-a across different 
input scales of n × m, which confirm the scalability of 
Direct-a for the very large settings through experi-
ments on VLS2 to VLS6. Figure 10 presents the results 
from scalability experiments for very large settings with 
varied values of n and m. Note that all the experiments 
are run on a single machine. Still, even for the very large 
setting of .5M ×.5B, the algorithm finished in a reason-
able time of less than 17 minutes.
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Figure 11. Dynamic-update performance on network p2p-3.
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