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A B S T R A C T   

Coastal water quality assessment is an essential task to keep “good water quality” status for living organisms in 
coastal ecosystems. The Water quality index (WQI) is a widely used tool to assess water quality but this technique 
has received much criticism due to the model’s reliability and inconsistence. The present study used a recently 
developed improved WQI model for calculating coastal WQIs in Cork Harbour. The aim of the research is to 
determine the most reliable and robust machine learning (ML) algorithm(s) to anticipate WQIs at each moni-
toring point instead of repeatedly employing SI and weight values in order to reduce model uncertainty. In this 
study, we compared eight commonly used algorithms, including Random Forest (RF), Decision Tree (DT), K- 
Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Extra Tree (ExT), Support Vector Machine (SVM), 
Linear Regression (LR), and Gaussian Naïve Bayes (GNB). For the purposes of developing the prediction models, 
the dataset was divided into two groups: training (70%) and testing (30%), whereas the models were validated 
using the 10-fold cross-validation method. In order to evaluate the models’ performance, the RMSE, MSE, MAE, 
R2, and PREI metrics were used in this study. The tree-based DT (RMSE = 0.0, MSE = 0.0, MAE = 0.0, R2 = 1.0 
and PERI = 0.0) and the ExT (RMSE = 0.0, MSE = 0.0, MAE = 0.0, R2 = 1.0 and PERI = 0.0) and ensemble tree- 
based XGB (RMSE = 0.0, MSE = 0.0, MAE = 0.0, R2 

= 1.0 and PERI = +0.16 to − 0.17) and RF (RMSE = 2.0, 
MSE = 3.80, MAE = 1.10, R2 = 0.98, PERI = +3.52 to − 25.38) models outperformed other models. The results of 
model performance and PREI indicate that the DT, ExT, and GXB models could be effective, robust and signif-
icantly reduce model uncertainty in predicting WQIs. The findings of this study are also useful for reducing 
model uncertainty and optimizing the WQM-WQI model architecture for predicting WQI values.   

1. Introduction 

In any aquatic ecosystem, freshwater is an important bio-indicator 
for living organisms and therefore, the new challenge for the world’s 
future is to maintain “good water quality status”. Recently a few studies 
have revealed that around 50 marine species including 48 fish species, 
crustaceans, shellfish, and five types of seaweed living in Irish waters are 
under threat of extinction due to the water quality and functional 
changes of habitat of aquatic system (Fogarty P., 2017). Water quality 
deteriorates over time due to a variety of factors, one of which is human 
intervention. Industrialization and urbanization have accelerated day by 

day to ensure a better quality of life. As a consequence, freshwater 
consumption has significantly increased over many decades (Gikas 
et al., 2020; Uddin et al., 2018). Therefore, both anthropogenic and 
natural events have gradually accumulated, resulting in fast degradation 
of surface and groundwater quality (Aschonitis et al., 2012; Uddin et al., 
2020, 2021). 

Water resources management is a critical process involving various 
components, including institutional framework, skilled labour, legisla-
tion, financial freedom and resource availability. Several countries have 
formulated management and action plans to maintain their good water 
quality. However, due to resource availability, they face a few common 
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problems in implementing or adopting the management program. In 
Europe, Water Framework Directive (WFD) is an effective tool for 
managing water and its ecosystem (Uddin et al., 2022c). It recom-
mended adopting the monitoring program to investigate water quality 
by all member states as already; many countries have been suffering its 
challenges and trying to overcome that issue (Zotou et al., 2019). 

Thus far, several tools and techniques have been developed for 
assessing water quality. The water quality index is one of them. 
Recently, this technique has been extensively used to evaluate water 
quality. Its application has increased rapidly due to its ability to convert 
a vast amount of water quality information into a unitless numerical 
expression using simple mathematical functions. Commonly, this tech-
nique consists of four crucial elements: (i) selecting water quality indi-
cator; (ii) sub-index process; (iii) weighting of water quality indicators; 
and (iv) aggregation function. Further details of the WQI models and 
their uses are available in the literature (e.g., Uddin et al., 2021). 
Recently, several studies have revealed that the WQI model produced 
considerable uncertainty in its modeling process (Abbasi and Abbasi, 
2012; Juwana et al., 2016; Rezaie-Balf et al., 2020; Sutadian et al., 2016; 
Uddin et al., 2021). As a result, the WQI model does not reflect accurate 
water quality attributes. Many researchers have proposed a range of 
modified WQIs for optimizing this issue, but unfortunately, several 
recent studies have revealed that those models have experienced similar 
problems (Abbasi and Abbasi, 2011; Chang et al., 2020; Smith, 1990; 
Stoner, 1978; Yan et al., 2016). 

Also, this method is much more sensitive to eclipsing and ambiguity 
problems. The “eclipsing” problem can be occurred due to inappropriate 
sub-indexing rules, parameter weightings, or inappropriate aggregation 
functions that do not reflect the real information of water quality 
(Sutadian et al., 2016; Uddin et al., 2021; 2022c). Recently, a few studies 
have revealed that the “eclipsing” problem occurs due to overestimation 
of the WQI index by the aggregation function (Uddin et al., 2022c. Like 
eclipsing, ambiguity is another important source of the WQI model 

uncertainty. It hides the actual water quality information by underes-
timation and overestimation of WQI values (Uddin et al., 2021, Uddin 
et al., 2022c). Details of the eclipsing and ambiguity problems discussed 
by Uddin et al., 2022c. In the WQI model, several studies have consid-
ered the effects of ambiguity and eclipsing issues of sub-index and ag-
gregation functions (Smith, 1990; Abbasi and Abbasi, 2012). Details of 
the ambiguity and eclipsing problems, sources and impact on WQI 
model of them can be found in Uddin et al., 2022c. To determine their 
effects, Uddin et al. (2022) compared eight WQI models (four weighted 
and four unweighted) to evaluate the ambiguity and eclipsing problems 
for assessing coastal water quality in his study. This study recommended 
that the WQM-WQI model could be effective and reliable for assessing 
coastal water quality in terms of reducing uncertainty in the WQI model. 

Due to the inconsistency of existing WQI techniques, a few re-
searchers have recently used the ML technique to reduce model uncer-
tainty and attempt to predict WQIs accurately (Babbar and Babbar, 
2017; Bui et al., 2020; Gao et al., 2020; Hassan et al., 2021; Kouadri 
et al., 2021; Rezaie-Balf et al., 2020; Wang et al., 2017). Several studies 
have applied a variety of ML algorithms such as extreme gradient 
boosting, Naïve Bayes, support vector machine, random forest, and de-
cision tree algorithms for the comparison of algorithms performance in 
order to predict WQIs correctly (Ahmad et al., 2017; Bui et al., 2020; 
Deng et al., 2022; Khan and See, 2016; Leong et al., 2019; Othman et al., 
2020). A summary of the various ML techniques in predicting water 
quality is provided in Annex (a). Bui et al. (2020) compare sixteen al-
gorithms to identify the robust model for predicting WQIs accurately. 
They suggest that tree-based algorithms are practical for predicting 
WQIs. Some studies recommend that ensemble tree-based algorithms 
such as extreme gradient boosting (XGB) and random forest (RF) are 
potentially useful for predicting WQIs (Grbčić et al., 2021; Haghiabi 
et al., 2018a; Islam Khan et al., 2021; Khullar and Singh, 2021). More-
over, researchers successfully applied AI-based algorithms like support 
vector machine (SVM), least square SVM (LSVM) and artificial neural 

Fig. 1. Study domain: EPA water quality monitoring sites and effluent treatment plants (ETPs) in Cork Harbour, Ireland.  
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network for predicting WQIs (Aldhyani et al., 2020; Haghiabi et al., 
2018b; Pham et al., 2019; Prasad et al., 2022; Wu and Wang, 2022). 
However, most studies have focused on the river/lake or groundwater 
quality index utilizing the existing WQI models while most studies have 
been carried out on only the prediction of WQIs, no studies have been 
found to improve the WQI model architecture. Compared to other 
studies, the present research widely explores, for the first time, to 
improve the newly developed WQM-WQI model architecture using ML 
techniques in order to reduce the model uncertainity. 

This study aims to identify the robust ML algorithm with optimizing 
the hyperparameters for predicting WQIs correctly at each monitoring 
site in Cork Harbour, Ireland, comparing eight widely used ML algo-
rithms Decision Tree (DT), Extra Tree (ExT), Extreme Gradient Boosting 
(XGB), Random Forest (RF), Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Linear Regression (LR), and Gaussian Naïve Bayes 
(GNB). We use these algorithms to determine outperformed models to 
reduce the WQI model prediction uncertainty and improve the model 
architecture especially coastal WQIs. 

The paper is developed as follows: Section 2 presents the details of 
the nature of Cork Harbour and its environmental significance. Section 3 
describes the details overview of various ML algorithms, validation 
processes and other statistical methods for assessing model, Section 4 
provides in depth of the prediction results and discusses the output of the 
prediction models, and Section 5 summarizes the findings, recommen-
dations, limitations and future direction of this research. 

2. Application domain- a case study in Cork Harbour 

The present study was conducted in Cork Harbour as Special Pro-
tection Area (SPA), that is relatively the deepest and longest (17.72 km) 
surface waterbodies in Ireland (Hartnett and Nash, 2015; Nash et al., 
2011). The Harbour has covered with large surface area (85.85 km2) and 
brackish estuary on the south coast of Ireland (Nash et al., 2011). It is a 
macro-tidal with a typical spring tide range of 4.2 m at the entrance to 
the Harbour (Uddin et al., 2022c). Relatively, the Cork city is the 
well-known as an industrial hub of Ireland and the surrounding hin-
terlands are dominated with extensive agricultural practices which in-
fluence water quality in the region directly due to the using chemical 
fertilizers for developing crops (EPA, 2017). Recently, several annual 
environmental reports of EPA has revealed that the Cork and Donegal 
received the highest raw discharge waste water directly without any 
treatment (EPA, 2017). Moreover, the Cork Harbors’ geological patterns 

are vital for Harbour area’s ecosystem and fresh water quality. It has 
been identified as a Special Protection Area (SPA) under the 1979 Wild 
birds Directive (79/409/EEC). 

3. Methods and materials 

3.1. Data obtaining process 

Water quality data was retrieved from the Irish Environmental Pro-
tection Agency (EPA) water quality monitoring database for Cork 
Harbour. The details of the data are available at https://www.catchment 
s.ie/data. Typically, the EPA monitors the water quality of Habour 
frequently. A total of 29 monitoring locations out of 32 were considered 
for this study. Details of the monitoring sites and their descriptions are 
provided in Annex 1(b). Fig. 1 provides the details of the monitoring 
locations in Cork Harbour. This study uses eleven water quality variables 
for the WQI calculation: temperature (TEMP), total organic nitrogen 
(TON), ammonia (AMN), dissolved oxygen (DOX), ammoniacal nitrogen 
(AMN), pH, salinity (SAL), molybdate reactive phosphorus (MRP), bio-
logical oxygen demand (BOD), transparency (TRAN), and Chlorophyll a 
(CHL). Selected WQ indicators data was considered from 1 m depth at 
each monitoring site in Cork Harbour. Table 1 provides an overview of 
the studied water quality indicators unit; standard threshold and Annex 
1(c) supply the details of the indicator monitoring data at each site, 
respectively. Water quality indicators were considered for this study 
based on the availability of data variables in the monitoring database 
2020, considering the fine dissemination of monitoring sites. For further 
analysis, averaged concentrations (from January 2020 to December 
2020) of indicators were used in this research for further analysis (Annex 
1c). 

3.2. WQI calculation 

A range of WQI models has been used to calculate the WQI values. Its 
application has increased sequentially due to its simple mathematical 
functions and ease of use. However, the existing literature on WQI 
models is extensive and focuses mainly on details of WQI models and 
their services (Gupta and Gupta, 2021; Uddin et al., 2021) without 
checking their statistical accuracy. Hence, this research enhances the 
accuracy of the WQM based WQI model outputs by estimating more 
precise and statistically reliable water quality index scores. Typically, an 
ideal WQI model comprises four components such as water indicators 
selection, sub-index (SI) function, indicators weight generation and 
aggregation function. Details of these components with statistical 
functions are available in the literature (e.g., Rahman and Harding, 
2016; Uddin et al., 2022c; Uddin et al., 2022a, 2022b). In this study, the 
WQIs was calculated based on the improvement methodology proposed 
by Uddin et al., 2022c because this approach is one of the more practical 
and effective for assessing coastal water quality. In details, the weighted 
quadratic mean (WQM) WQI methodology can be found in Uddin et al., 
2022c. 

Table 1 
Water quality parameters, units and standard threshold for coastal water quality 
accordance to Uddin et al., 2022c.  

Parameter Unit Standard threshold 

Lower Upper 

CHLa mg/m3 0.0 14.2 
DOXa % sat 72 128 
MRPa mg/l as P 0.0 0.05 
DINa mg/l 0.0 1.20 
AMNb mg/l 0 1.5 
BODb mg/l 0 7 
pHc – 5 9 
TEMPb ◦C – 25 
TONd mg/l as N 0.0 2 
TRANe m/depth >1 – 
SALb psu 12 38  

a ATSEBI guide values, indicators standard values was obtained based on 
median value of salinity. In this study, SAL median value was found 20.47 (see 
details in Annex 1 d). 

b EPA, Ireland (2001), recommended values for the surface water. 
c pH and Alkalinity Monitoring Manual for estuary, EPA,USA. 
d The European Communities regulations for quality of surface water intended 

for the abstraction of drinking water, 1989 (S.I. No. 294/1989). 
e EPA′ bathing Water Quality Regulations 2008, (Ref. No. 79/2008). 

Table 2 
Classification scheme for coastal water quality.  

Classification 
scheme 

Range of 
score 

Description 

Good 80–100 Water quality is suitable to use for any purposes. 
Fair 50–79 A few indicators meet the guide values and the 

water quality is safe with a minor observation. 
Marginal 30–49 Most of the indicators does not fall into the 

criteria; water quality is unsafe, which may be 
harmful for aquatic life. 

Poor 0–29 Each indicators failed to meet all the criteria; 
water quality is completely unsafe and not 
suitable for many certain uses.  

M.G. Uddin et al.                                                                                                                                                                                                                               
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3.2.1. Evaluation of WQIs 
Currently, various classification schemes are used to evaluate the 

WQIs in literature. Several recent studies have claimed that the WQIs 
model results do not reflect the actual information on water quality due 
to the various classification schemes for similar data attributes (e.g., see 
Uddin et al., 2022c). Uddin et al., 2022c proposed unique classification 
schemes for assessing coastal water quality, and we used these schemes 
in this research. Table 2 provides the details of the classification 
schemes. 

3.3. Data pre-processing 

3.3.1. Data standardization 
Prior to the training of ML algorithms, it is essential to standardize 

data variables. Commonly, in ML technique, this method used for con-
verting all data variables into a uniform scale in order to optimise the 
model training errors (Rahman, 2019, 2020; Solanki et al., 2015). In this 
study, water quality data variables were standardized using z score 
normalization process. Z score can be presented as follows: 

z=
xi − x

σ (1)  

where, z is the standardize score, xi is the ith data variable, x refers to the 
mean of data variable and σ is the standard deviation of data. 

3.3.2. Data splitting 
Before, training the ML algorithms, data was divided into training 

[70% (20 monitoring sites)] and testing [30% (9 monitoring sites)] sets. 
After splitting data, eight ML algorithms were trained and tested using 
training and testing data sets respectively. Model performance was 
evaluated for both phases. 

3.4. Machine learning algorithms 

ML technique is widely used to predict unknown objects. Recently, 
this technique has been utilized in different branches of research. For 
example, research on predicting water quality has revealed that the ML 
algorithm could be more effective in evaluating water quality than other 
traditional methods (Aldhyani et al., 2020; Azrour et al., 2021; Babbar 
and Babbar, 2017; Haghiabi et al., 2018a; Mohammed et al., 2018; 
Prakash et al., 2018; Solanki et al., 2015; Xiong et al., 2020). Several 
studies have effectively used machine learning approaches to predict 
WQI (Ahmad et al., 2017; Bui et al., 2020; Grbčić et al., 2021; Hassan 
et al., 2021; Kadam et al., 2019; Kouadri et al., 2021; Leong et al., 2019; 
Venkata Vara Prasad et al., 2020; Wang et al., 2017). This research 
utilized eight ML algorithms to identify robust algorithms for predicting 
WQM-WQIs. The details methodological procedures of this study are 
presented in Fig. 2. The details of various ML algorithms can be found in 
the supplementary material as a continuation of 3.4.1. 

3.4.1. Model hyper-parameterization 
Hyper-parameters tuning of ML technique is performed to obtain 

higher level model accuracy (Elgeldawi et al., 2021; Villalobos-Arias 
et al., 2020). In ML approaches, numerous methods are used to 
hyper-parameterise the predictive model. Most of the studies in the 
literature used grid search and random search techniques to optimise the 
model hyper-parameters (Shekar and Dagnew, 2019). The grid search 
technique is widely used because this technique evaluates model accu-
racy for each grid position (Elgeldawi et al., 2021; Shekar and Dagnew, 
2019). Compared to the typical hyper-parametrization process, the grid 
search is more efficient method than the random search (Villalobo-
s-Arias et al., 2020). Thus, this research uses the grid search technique to 
optimise the model parameters. Table 3 presents hyper-parameters for 
various ML models the during model training phase. 

3.4.2. Model performance analysis 

3.4.2.1. Cross-validation approaches. Cross-validation (CV) is the most 
common procedures to evaluate the ML models for small datasets. To 
assess the performance of ML predictive model, the present study is used 
the random CV technique to compare the model performance. In this 
study, 10-fold CV technique was utilized including widely used four 
evaluation criteria: mean square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R2). Details technique can be found in Xiong et al. (2020). Except for R2, 

Fig. 2. A comprehensive framework for the assessment of predicting WQIs.  
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the performance criteria expect a predictive model’s performance to be 
as small as possible. In general, the R2 value refers to assessing the 
models how well fitted the model with predicted data. It should be close 
to 1 (He et al., 2015; Sharif et al., 2022). Model evaluation criteria are 
measured as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(8)  

MAE=
1
n

∑n

i=1
|yi − ŷi | (9)  

Table 3 
Optimized hyper-parameters of various ML models during testing period.  

Model parameters XGB RF DT ExT LR KNN SVM GNB 

n_estimators 100 100 100 100 100 – 30 200 
learning_rate 0.2 – – – – – – – 
max.depth 20 10 10 20    – 
gamma 0 – – – – – auto – 
booster gbtree – – – – –  – 
Kernel  – – – – – RBF – 
subsample 1 – – – – – – – 
colsample_bytree 1 – – – – – – – 
base_score 0.5 – – – – – – – 
reg_lamda 1 – – – – – – – 
bootstrap True True – True – – – – 
cv.folds 10  – – – – – – 
random_state 1 1 – 1 – – – – 
Objective reg.linear  – – – – – – 
criterion – Squared_error – Squared_error – – – – 
max_leaf_nodes 5 10 5 – 30 – – 
min_samples_leaf 1 5 1 – – – – 
epsilon – – – – – – 0.1 – 
shrinking – – – – – – True – 
fit_intercept – – – – TRUE – – – 
n_neighbors – – – – – 5 – – 
weight – – – – – uniform – – 
metrics – – – – – minkowski – – 
power_parameters – – – – – 2 – –  

Fig. 3. Physico-chemical attributes of water quality in Cork Harbour.  

M.G. Uddin et al.                                                                                                                                                                                                                               



Journal of Environmental Management 321 (2022) 115923

6

MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (10)  

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷ)2 (11)  

where yi and ŷ are the ith observed and mean of the predicted values 
respectively. N is the number of observations. 

3.4.2.2. Prediction uncertainty analysis. For the purposes of uncertainty 
analysis in the predictive WQIs of various ML models, several techniques 
are used, such as Monte Carlo simulation, ML algorithms, etc. In this 
study, the percent of relative error index (PREI) was utilized to evaluate 
the prediction error at each observation location because this technique 
has recently been used for the assessment of predictive bias in predicting 
ML models (Bui et al., 2020). The result is given in percentage (%). The 
optimal value of PBIAS is 0.0, with low-magnitude values refers accurate 
model simulation. Positive values indicate underestimated bias, whereas 
negative values represent model overestimation bias. Fig. 11 presents 
the prediction percentage of bias and percent of relative error index, 
respectively. The PREI are can be defined as follows: 

PREI=
(

yi − ŷi

yi

)

× 100 (12)  

where yi actual WQIs for ith observation and ŷi is the mean predicted 
WQIs. 

In addition, the present study utilized the inferential error bars 
analysis technique because many studies have utilized this method to 
evaluate the uncertainty of various datasets or groups. The details of the 
methodology can be found in Cumming et al. (2007). Fig. 11 presents 
the uncertainty results of the WQI scores obtained from the various 
prediction models. 

3.4.2.3. Comparative analysis of predictive models. In this study, pre-
dictive model bias was analysed by comparing eight ML models using 
the Tylor diagram. This technique is commonly used to compare various 
methods, techniques, or models in terms of data deviation. It is effective 
to identify an appropriate model because it allows three statistical 
measures, including the correlation between observations and pre-
dictions, the root-mean-square deviation (RMSD) and their standard 
deviations (SD) which help in understanding the model reliability 
(Calim et al., 2018). Recently, several studies have applied this method 

to compare the bias among models (Seifi et al., 2020; Xu et al., 2016). 
Fig. 14 presents the summary of statistics for various ML predictive 
models. 

4. Results 

4.1. Physico-chemical assessment of water quality 

Fig. 3 presents the descriptive statistics for the studied 11 physico- 
chemical water quality indicators in Cork Harbour. Basic statistics 
were obtained using Whisker’s box-plot technique, where a black solid 
line and a red point indicated the median and mean values of water 
quality indicators, respectively. For the determination of correlation 
among water quality indicators, the significant associations among the 
water quality indicators were analysed through the Pearson’s correla-
tion test at a 99% confidence level, and the results of the correlation 
between indicators are presented in Fig. 4. 

In this study, water TEMP, pH, CHL, and AMN were found within the 
standard threshold values of coastal water quality. The details of the 
standard thresholds are provided in Table 1 above. The highest water 
TEMP was found at 16.90 ◦C and the lowest at 13.90 ◦C with a mean and 
median value of 15.58 ◦C and 15.7 ◦C, respectively throughout the study 
period, implying a negative skew (mean < median) within the data 
(Fig. 3). Similarly, water pH also showed a negative skew, having a 
mean value of 8.00 and a median value of 8.05 (Fig. 3). The CHL ranged 
from 1.00 mg/m3 to 10.43 mg/m3 with a mean value of 5.32 mg/m3, 
whereas the AMN’s mean concentration was found to be 0.07 mg/l 
across the monitoring sites in Cork harbour. The values of TRAN were 
ranged from 0.00 m/depth to 5.60 m/depth with a positive skew within 
the dataset (mean > median) and showed a significant moderate posi-
tive relationship with water pH (r = 0.60, p < 0.01) (Fig. 4). A signifi-
cant variation of SAL concentration was observed across the monitoring 
sites in this research. It varied from 0.83 to 30.1 psμ with a mean value of 
16.87 psμ (Fig. 3). It is noted that SAL concentration is only used to 
determine the standard threshold of coastal water quality for MRP, DOX, 
CHL and DIN. The details of the procedures can be found in Uddin et al., 
2022c. Excessive dissolved oxygen concertation is harmful for aquatic 
species (Chiang et al., 2021). DOX concentration was found in the 
North-channel of the upper Harbour, it was 13.61 mg/l (exceed), 
whereas the lowest concentration (6.93 mg/l) was found in River Lee of 
the upper Harbour (Annex 1(c)). The DOX showed a significant, strong 
positive association with water pH (r = 0.86, p < 0.01) (Fig. 4). The data 
for BOD showed a higher median value (1.86 mg/l) than the mean value 
(1.74 mg/l), and it varied between 0.00 mg/l and 3.55 mg/l (Fig. 3). 

More than 40% of monitoring sites’ DIN concentrations exceeded the 
upper threshold limit of 1.20 mg/l, with a mean value of 1.54 mg/l 
(Fig. 3). TON also showed positive skewness across the monitoring sites 
in Harbour while around 34% of the data points exceeded the upper 
guideline value of 2 mg/l (Fig. 3). As shown in Fig. 4, a significant strong 
negative association was found for both DIN and TON with water pH and 
TRAN, respectively (r = − 0.77, p < 0.01) and (r = - 0.70, p < 0.01). 
Likely, MRP concentration exceeded the standard threshold of coastal 
water quality; it ranged from 0.01 mg/l to 0.06 mg/l. The MRP showed a 
moderate positive relationship with both DIN and TON (r = 0.59, p 0.01) 
(Fig. 4). In this research, a positive correlation was observed between 
CHL and water pH (r = 0.82, p < 0.01) and DOX (r = 0.80, p < 0.01), and 
a negative relationship was associated with DIN and TON (r = 0.61, p <
0.01) (Fig. 4). 

4.2. Assessing water quality using WQM-WQI models 

Water resource management is critical for all states to maintain 
“good water quality” status. Now a day, the WQI model is widely used to 
evaluate water quality due to its simple application and easy to evaluate 
the outcomes of the model. Annex 1(c) provide the details WQIs for each 
monitoring sites in Cork Harbour. For the evaluation of coastal water 

Fig. 4. Pearson’s correlation of physico-chemical indicators in Cork Harbour.  
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quality, the present study was utilized the WQM-WQI model to calculate 
the WQIs values. It ranged from 33 to 73, with an average of 56.19. 
Water quality status was evaluated using the coastal water quality 
classification scheme that are provided in Table 2 above. Water quality 
status are provided in Table 4 below. Two types of water quality were 
found in Cork Harbour. These varied from “marginal” to “fair” cate-
gories. From Table 4, it can be obtained that in total, 13 (44.82%) of 
monitoring sites’ water quality was found to be “fair”, whereas 16 
(55.18%) were assessed as “marginal” in Cork Harbour, respectively. 

Fig. 5 presents water quality status at each monitoring location in 
Cork Harbour over the study period. As can be seen from figure below, 
the Harbour water quality was dominated by the “fair” category, most of 
the monitoring locations water quality were evaluated as fair quality. 
The “marginal” class water quality was evaluated in the upper Lee es-
tuary and the upper part of the river Owenacurra (Midleton). The results 
of the WQM-WQIs also in line with our earlier observations, which 
showed that the upper Harbour water quality was worst compared to the 
other parts of the Harbour (Uddin et al., 2022c). 

4.3. Comparative analysis of various ML regression models 

In this study, we applied eight ML regression algorithms to predict 

the WQM-WQIs values in Cork Harbour. Annex 1(e) provides the pre-
dicted WQM-WQIs for various ML models. In order to validate the pre-
dictive results of various ML algorithms, the CV approaches was utilized. 
Fig. 6 presents the CV results (RMSE, MSE and MAE) for the eight ML 
models. According to the cross-validation results, the XGB, RF, DT and 
ExT have the highest prediction perform among the algorithms. The 
lowest prediction errors belonged to the XGB, DT, and ExT algorithms, 
but during the training and testing periods the lowest errors were found 
for the XGB model, whereas the lowest training (RMSE = 3.3, MSE =
10.91, and MAE = 1.67) and testing (RMSE = 0.0, MSE = 0.0, and MAE 
= 0.02) errors were found for the XGB model. Compared to best algo-
rithms, relatively, higher prediction errors were found for the DT (RMSE 
= 3.97, MSE = 15.82 and MAE = 2.62) and the ExT (RMSE = 3.60, MSE 
= 12.96 and MAE = 2.29), respectively during model training period. 
Interestingly, there was no prediction errors (RMSE, MSE and MAE were 
found 0 respectively) during testing period, whereas both algorithms 
were predicted WQI values at each monitoring sites properly. Similar 
finding also revealed by Chicco et al. (2021). Contrary, the RF also had a 
very low prediction error, while the GNB and KNN algorithms had 
higher prediction errors, it ranged from 0.02 to ±3.75. These algorithms 
did not predict each WQI value accurately at each monitoring site in 
Harbour. Compared to other algorithms, the SVM performance had very 
poor over the study period. The large error was found for the SVM 
model, whereas testing (RMSE, MSE and MAE were 13.40, 179.61 and 
12.77 respectively) and training errors also (RMSE, MSE and MAE were 
12.68, 160.93 and 11.59 respectively) had higher than other algorithms 
(Fig. 6). 

For the identification of the best algorithms, the present research was 
also utilized the determination of coefficient (R2) to evaluate the model 
performance. Usually, the R2 refers to the correlation and performance 

Table 4 
Point evaluation of water quality in Cork Harbour using WQM model.  

Model Total monitoring 
locations 

Water quality status 

WQM- 
WQI 

29 Good Fair Marginal Poor 
0 44.82% 

(13) 
55.18% 
(16) 

0  

Fig. 5. Water quality status in Cork Harbour using WQM-WQI model.  
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reliability between predictors and response variables, which helps to 
identify the best algorithm. 

Fig. 7 presents the R2 value for the various ML algorithms. As dis-
cussed above, the XGB, DT and ExT algorithms had lower prediction 
errors. Those algorithms predicted WQI values at each monitoring sites 
properly. For these algorithms, R2 values were found 1, where relative 
close to 1 (0.98) found for the RF (Fig. 7d). It can be seen from Fig. 7g, 
there were no relationship between predictors and response for the SVM 
model whereas the R2 value had less than 50% (0.43). Although, the LR 
algorithm had higher R2 values (0.81) but this algorithm did not predict 
WQI values at each point properly (Fig. 7f). On the other hand, the KNN 
and the GNB showed moderate relationship between actual and pre-
dicted WQI values (Fig. 7b; Fig. 7h). Therefore, results of R2 also in-
dicates that the XGB, DT and ExT algorithms had higher predictive 
capabilities for predicting WQI values. 

However, based on the prediction errors, the XGB, DT and ExT were 
predicted at each WQI values properly. Fig. 8 shows a comparison sce-
nario between actual and predicted WQIs at each monitoring site in Cork 
Harbour. As can be seen from Fig. 8, all algorithms performed well, 
except the SVM. Unlike, it showed the worst performed and did not 
follow the trend to the actual WQI values at each monitoring sites. 

In addition, an overview of statistical summary for the predicted 
WQIs and actual WQIs for various ML models are presented in Fig. 9. 
Whereas boxplots show differences in predicted WQI values among ML 
models in line with the actual WQI (Fig. 9a). Fig. 8 also reveals that there 
has been a slight statistical variation among ML algorithms predicted 
WQIs except XGB, DT and ExT. As shown in Fig. 9a, compared to all 
prediction models, there were no significant statistical variation be-
tween actual and predictive WQI values for the XGB, DT and ExT models 
at p < 0.05. Completely, different trend was found for the SVM predicted 
and actual WQI values over the study period, whereas a slight variation 
was found for the KNN and LR models (Fig. 9a). The Cumulative Dis-
tribution Function (CDF) results of the predicted ML models are shown 
in Fig. 9b. The CDF results indicated that 95% of monitoring sites were 
predicted correctly except the SVM methods. 

Here, we compared several ML models using Tukey’s HSD compar-
ison technique. Fig. 10 presents the overall and pair-wise comparison 
among ML models with a 95% confidence level. The results of Tukey’s 
reveal that there were no statistically significant difference among 
models. Moreover, the 95% individual confidence level also indicates 
that predicted WQI values of all models were found between − 10 and 
+10 that means all pairs of predicted means included zero, which 

Fig. 6. 10-fold cross-validation results of various ML algorithms.  
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indicates that the differences are not statistically significant. 

4.4. Assessment of uncertainty in predicting WQIs 

Based on the CV and HSD analysis, it is hard to determine the best 
algorithm for predicting WQIs. Here, we utilized PREI, whereas PREI 
allows comparing the prediction capabilities of models based on their 
tendency to over or underestimate the WQIs at each observation. It of-
fers an opportunity to examine the prediction power of the model at 
each data point. Fig. 11 presents the PREI of various predictive models at 
each location in Cork Harbour. 

Compared to among ML algorithms, the lowest error was found for 
the DT, ExT, XGB, and RF models, respectively. As shown in Fig. 11, 
underestimating and overestimating biases highly influenced the GNB 
(+14.71 to − 74.9), KNN (+16 to − 93), LR (+22.30 to − 56.1), RF 
(+3.52 to − 25.38), and SVM (+22.7 to − 75) models, respectively. The 
lowest underestimate and overestimate were found for the XGB model. It 
ranged from +0.16 to − 0.17; whereas there was no bias for DT and ExT 
in predicting WQIs at each monitoring site. Except XGB, most of the 
algorithms had overestimated problems in predicting WQIs at moni-
toring sites in the upper-Eastern part of the Harbour. 

However, this study also utilized the 95% confidence interval anal-
ysis of predicted WQIs for various ML models. Above, Fig. 12 reveals 
that similar data discrepancies had the DT, ExT, and XGB models in 
predicting WQIs. It can be easily figured out from the figure above that 
there was no data variation between actual (green error bar) and pre-
dicted WQIs for these models. In contrast, the GBN, KNN, and LR showed 
similar errors in predicting WQIs. Unlike GBN, KNN, and LR, compar-
atively low errors were made in predicting WQIs for the RF model. The 
SVM algorithm shows completely different results from others. It had 
higher data variation between actual and predicted WQIs. 

Based on the model errors, this study found three based (DT and ExT) 
and ensemble tree based (XGB and RF) are more robust and reliable than 
other algorithms. These algorithms perform better when predicting 
WQIs for the coastal water quality. The finding are in line with those 
observed in earlier studies (Bui et al., 2020; Ghorbani et al., 2018; 
Khosravi et al., 2018; Kouadri et al., 2021). As seen from Fig. 13 below, 
DT and ExT models were predicted WQIs correctly at each monitoring 
sites whereas small variation was found between predicted and actual 
WQIs for the XGB and RF models. The results of the predictive WQIs 
indicate that DT and ExT models had overfitting problems because 
tree-based models are developed based on a single tree without any 
control (Biebler et al., 2009; Ying, 2019). 

4.5. Justification of prediction errors of various model 

To justify the model bias in predicting WQIs, the Tylor diagram 
analysis was utilized in this research. Recently, this approach is widely 
used to compare various methods/datasets/models in terms of data 
variances (Kärnä and Baptista, 2016; Xu et al., 2016). Fig. 13 provides 
an insight into how the model performed in terms of three statistical 
measures, where, statistics were obtained from various ML techniques 
by using actual and predicted WQI values in Cork Harbour respectively. 

As can be seen from Fig. 14, a significant statistical difference was 
found among ML models with p < 0.05. As shown in Fig. 10, it can be 
clearly defined that the SVM model significantly differed from the other 
ML algorithms. Comparatively, the lowest RMSD, SD, and higher cor-
relation were found for the XGB, DT and ExT algorithms respectively. In 
addition, relatively the RF algorithms shows well performance compare 
than remaining algorithms. 

However, the present study compared various ML algorithms using 
the cross-validation results, coefficient of determination, analysis. In 

Fig. 7. Scatter plots of actual vs predicted WQI values based on the model testing dataset of different ML regression algorithms for validation purposes.  
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Fig. 8. Comparison of the model testing performance between predicted and actual WQI values at each monitoring sites.  
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terms of bias between actual and predicted WQIs, the results of Tukey’s 
HSD test, and Tylor diagram reveal that there were no statistically sig-
nificant differences between predicted and actual WQI values for all 
algorithms except SVM. In order to evaluate the predictive performance, 
the CV results indicate that the XGB, DT, and ExT algorithms had the 
lowest prediction errors compared to other models. 

Therefore, the results of this research reveal that the DT, ExT, XGB, 
and RF models might be effective and robust for predicting coastal WQIs 
in terms of reducing the WQI model uncertainty. On the other hand, it is 
not easy to conclude which algorithm is “better” or “worst”. The present 
study was observed to perform well for other models except SVM. 

5. Discussion 

WQI model is a widely used tool to assess water quality by employing 
straightforward mathematical functions. Computing WQI values is 
relatively complex using SI and indicator weight values (Leong et al., 
2019). Because, recently, several studies have revealed that these 
components provide a considerable uncertainty to the final assessment 
(Uddin et al., 2021, Uddin et al., 2022c). In this circumstance, many 
studies utilized the ML technique for predicting WQI values, except for 
SI and weight values. In this research, we used eight ML algorithms for 
predicting the newly developed WQM-WQI model in order to identify 
the most robust technique in terms of assessing coastal water quality. In 

Fig. 9. Comparison of predicted WQI from various ML models: (a) Boxplots show a comparison between actual and predicted WQI scores and (b) CDF comparison of 
predicted WQI scores of various ML. 

Fig. 10. Multiple comparison results of pair-wise ML models with 95% CI from Tukey’s HSD, the vertical dashed line indicates the point where the difference 
between the means is equal to zero or similarity of model statistics, the refers to the means are equal of both models. 
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this research, the WQM-WQI revealed that the water quality in Cork 
Harbour can be classified into two categories: “fair” and “marginal” over 
the study period (Table 4). Comparatively, better water quality found in 
the lower and the outer Harbour than in the upper part (Fig. 5). The past 
decade has setup an increase in the use of ETPs in this area. Recently, 
several annual reports of the EPA’s Ireland revealed that the ETPs could 
contribute to raw wastewater discharges into the estuary directly 
without any modification of water attributes (Hartnett and Nash, 2015, 
Fig. 1). As a result, it is expected that the water quality in the upper part 
of the Harbour’s associated with relatively downgraded water quality 

due to the extremely loaded the wastewater. 
In the present study, eight widely used algorithms tested in order to 

identify the most robust model. Details of the prediction results are 
provided in Fig. 8 and Annex (e). Based on the model performance 
metrics, compared to the models, DT and Ext showed the outperformed 
capabilities to predict WQM-WQIs. However, model overfitting prob-
lems were found for these algorithms over the testing period due to the 
small dataset (Song and Lu, 2015; Vabalas et al., 2019). Compared with 
other algorithms like SVM and KNN, the DT provides better results that 
are effective for the prediction (Huynh-Cam et al., 2021). Unlike the 

Fig. 11. WQIs predicting errors of various ML models at each monitoring sites in Cork Harbour.  
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decision tree model, ensemble based bagging RF and boosting XGB al-
gorithms outperformed in predicting WQM-WQIs during both training 
and testing periods. Recently, several studies have also revealed that the 
XGB algorithm is effective for predicting WQIs (Grbčić et al., 2021; Huan 
et al., 2020; Islam Khan et al., 2021; Uddin et al., 2022b). Because the 
ensemble based algorithms combine multiple DTs and consider the 
average of the output of all DTs for the prediction (Malek et al., 2022). In 
contrast, non-parametric KNN, Gaussian based GNB, and LR algorithms 
showed better performance than the SVM model. In this study, the worst 
performance found for the SVM during both the training and testing 
periods (Fig. 6). Mostly, the SVM model performance is influenced by 
the distribution of input variables and the number of inputs (Vabalas 
et al., 2019). As shown in Fig. 3, model inputs DOX, DIN, TON, and CHL 
had a negative left skew data distribution, whereas the remaining inputs 
had a normal distribution. The SVM model performance was worst 

during the testing period due to input variation because the SVM model 
prediction results are highly sensitive to the significant features 
(Kaliappan et al., 2021; Veropoulos et al., 1999). In addition, Akbani 
et al. (2004) point out three causes of performance loss in the SVM 
prediction model: (i) positive points lying further from the ideal 
boundary (Wu and Chang, 2003); (ii) weakness of soft-margins (Ver-
opoulos et al., 1999); and (iii) imbalanced support vector ratio (Wu and 
Chang, 2003). Details of the contorlling factors of the sensitivity of the 
SVM model are discussed by Akbani et al. (2004) and Veropoulos et al. 
(1999). In this study, the SVM model performance dropped during the 
testing period due to the imbalanced support vector ratio. Moreover, the 
lowest prediction errors (PREI) found for the DT, ExT, XGB and RF, 
respectively (Fig. 11). The results of this study show that the DT, EXT, 
XGB, and RF algorithms are efficient for predicting WQM-WQIs in terms 
of the lowest prediction errors when compared to other models. 

Fig. 12. Statistical significance of predicting uncertainty in WQIs for various ML models with 95% CI. Here, 95% CI where n is 29, p < 0.0001. Green error bar 
represent the measured (actual) WQIs using WQM-WQI model. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 13. Comparison among the outperformed machine learning algorithms.  
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However, the findings of this research could be helpful for monitoring 
and assessing coastal water quality using the WQM-WQI model incor-
porating robust ML technique(s). 

6. Conclusion 

The goal of this research was to determine the robust algorithm for 
predicting the coastal water quality index (CWQI) accurately in terms of 
model uncertainty. To achieve this goal, eight ML algorithms (DT, RF, 
XGB, KNN, SVM, ExT, LR, and GNB) were tested and validated for 
predicting CWQI in Cork Harbour. Predictive models were validated 
using a number of validators such as RMSE, MSE, MAE, R2 and PREI. The 
findings of this study can be summarized as follows:  

⁃ Compared to CV results, the XGB showed the best outperformed, 
whereas the lowest training (RMSE = 3.3, MSE = 10.91, MAE = 1.67, 
and R2 = 1.0) and testing (RMSE = 0.0, MSE = 0.0, MAE = 0.02, and 
R2 = 1.0) errors were found, respectively.  

⁃ The lowest prediction errors were found for the DT (PREI = 0), ExT 
(PREI = 0), and XGB (PERI = + 0.1 to - 0.1). They perform better in 
predicting WQIs at each of the monitoring sites in Cork Harbour.  

⁃ Unlike the remaining models, the RF showed better performance; its 
errors ranged from +1.0 to − 25), whereas the remaining models had 
higher underestimate and overestimate problems.  

⁃ Although the Tukey’s HSD family wise multi-comparison results 
reveal that, there were no significant difference between actual and 
predicted WQIs among ML models except the SVM. 

Therefore, it can be concluded, based on the results of this study, that 
tree-based (DT and ExT) and ensemble-based (XGB and RF) algorithms 
could be effective and robust for predicting the CWQI. The findings of 
this research would also have been much more useful in predicting WQIs 
at each monitoring site more accurately in order to reduce the uncer-
tainty in the WQI model. This study’s inadequacy to assess the water 
quality in terms of temporal resolution constitutes one of its limitations. 
Further studies should be carried out in order to validate the other al-
gorithms in terms of predicting WQIs using temporal variability of data 
attributes. 
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