figshare
Browse

Reversible Ion Transportation Switch by a Ligand-Gated Synthetic Supramolecular Ion Channel

Download (7.44 MB)
journal contribution
posted on 2014-11-05, 00:00 authored by Takahiro Muraoka, Takahiro Endo, Kazuhito V. Tabata, Hiroyuki Noji, Satoru Nagatoishi, Kouhei Tsumoto, Rui Li, Kazushi Kinbara
Inspired by the regulation of cellular activities found in the ion channel proteins, here we developed membrane-embedded synthetic chiral receptors 1 and 2 with different terminal structures, where receptor 1 has hydrophobic triisopropylsilyl (TIPS) groups and receptor 2 has hydrophilic hydroxy groups. The receptors have ligand-binding units that interact with cationic amphiphiles such as 2-phenethylamine (PA). Conductance study revealed that the receptors hardly show ion transportation at the ligand-free state. After ligand binding involving a conformational change, receptor 1 bearing TIPS termini displays a significant current enhancement due to ion transportation. The current substantially diminishes upon addition of β-cyclodextrin (βCD) that scavenges the ligand from the receptor. Importantly, the receptor again turns into the conductive state by the second addition of PA, and the activation/deactivation of the ion transportation can be repeated. In contrast, receptor 2 bearing the hydroxy terminal groups hardly exhibits ion transportation, suggesting the importance of terminal TIPS groups of 1 that likely anchor the receptor in the membrane.

History