
Supplementary Material

In this Supplementary Material we give a more detailed description of the cylindrical regression

models and outline the MCMC procedures to fit them. R-code for the MCMC sampler

and the analysis of the teacher data can be found here: https://github.com/joliencremers/

CylindricalComparisonCircumplex. Note that the dimensions of the objects (design matrices,

mean vectors, etc.) are those that were used in the analysis of the teacher data where we have

1 circular component, 1 linear component and estimate an intercept and regression coefficient

for the covariate self-efficacy. Note that for the regression of the linear component in the

CL-PN and CL-GPN models we also have the sine and cosine of the circular component in the

regression equation, this makes the vector with regression coefficients, γ, four-dimensional.

Four cylindrical regression models

The modified CL-PN and modified CL-GPN models

Following Mastrantonio, Maruotti, & Jona-Lasinio (2015) we consider in this section two

models where the prediction equation for the linear component is specified as

ŷi = γ0 + γcos ∗ cos(θi) ∗ ri + γsin ∗ sin(θi) ∗ ri + γ1 ∗ x1 + · · ·+ γq ∗ xq, (1)

where ri is a realization of the unobserved the random variable R ≥ 0 that will be introduced

below, γ0, γcos, γsin, γ1, . . . , γq are the intercept and regression coefficients and x1, . . . , xq are

the q covariates. In both of these models the conditional distribution of Y given Θ = θ and

R = r is given by

f(y | θ, r) = 1√
2πσ2

exp
[
−(y − (γ0 + γ1x1 + · · ·+ γqxq + c))2

2σ2

]
,
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where c =

r cos(θ)

r sin(θ)


t γcos
γsin

, r ≥ 0. The linear component thus has a normal distribution

conditional on Θ and R and contains already linear covariates x1, . . . , xq in its location part.

For the circular component we assume either a projected normal (PN) or a general

projected normal (GPN) distribution. These distributions arise from the radial projection of

a distribution defined on the plane onto the circle. The relation between a bivariate vector S

in the plane and the circular component Θ is defined as follows

S =

SI
SII

 = Ru =

R cos(Θ)

R sin(Θ)

 , (2)

where R =|| S ||, the Euclidean norm of the bivariate vector S. In the PN distribution

we assume S ∼ N2(µ, I) and in the GPN we assume S ∼ N2(µ,Σ) where µ ∈ R2, Σ =τ 2 + ξ2 ξ

ξ 1

, and ξ, τ ∈ (−∞,+∞) (as in Hernandez-Stumpfhauser, Breidt, & Van der

Woerd (2016)). This leads to the circular-linear PN (CL-PN) and circular-linear GPN (CL-

GPN) distributions. We will now detail how we modify both cylindrical distributions to also

incorporate covariates for the circular part.

The modified CL-PN distribution

Following Nuñez-Antonio, Gutiérrez-Peña, & Escarela (2011), the joint density of Θ and R

for the PN distribution equals

f(θ, r | µ, I) = 1
2π exp{−0.5 || µ2 ||} exp{−0.5

[
r2 − 2r(utµ)

]
}, (3)

where u =

cos(θ)

sin(θ)

 and r is defined in (2). In a regression setup the outcome components

θi, ri for each individual i = 1, . . . , n, where n is the sample size, are generated independently

from the distribution with density (3). The mean vector µi ∈ R2 is then defined as µi = Btzi
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where the vector zi is a vector of dimension p+ 1 that contains the covariate values and the

value 1 to estimate an intercept and B = (βI ,βII) contains the regression coefficients and

intercepts.

The modified CL-GPN distribution

Following Wang & Gelfand (2013) and Hernandez-Stumpfhauser et al. (2016) the joint

density of R and Θ for the GPN distribution equals

f(θ, r | µ,Σ) = r

2πτ exp
[
−(ru− µ)tΣ−1(ru− µ)

2τ 2

]
, (4)

where we recall that Σ =

τ 2 + ξ2 ξ

ξ 1

. In a regression setup the outcome components θi

and ri for each individual are generated independently from (4). The mean vector µi ∈ R2 is

defined in the same way via covariates as for the modified CL-PN distribution.

Parameter estimation

Both cylindrical models introduced here are estimated using Markov Chain Monte Carlo

(MCMC) methods based on Nuñez-Antonio et al. (2011), Wang & Gelfand (2013) and

Hernandez-Stumpfhauser et al. (2016) for the regression of the circular component.

The modified Abe-Ley model

This model is an extension of the cylindrical model introduced in Abe & Ley (2017) to the

regression context. The joint density of Θ and Y , in this model defined only on the positive

real half-line [0,+∞), reads

f(θ, y) = ανα

2π cosh(κ)(1 + λ sin(θ − µc))yα−1 exp[−(νy)α(1− tanh(κ) cos(θ − µc))], (5)
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where α > 0 is a linear shape parameter, κ > 0 and λ ∈ [−1, 1] are circular concentra-

tion and skewness parameters with κ also regulating the circular-linear dependence. Our

modification occurs at the level of the linear scale parameter ν > 0 and circular location

parameter µc ∈ [0, 2π), both of which we express in terms of covariates: νi = exp(xtiγ) > 0

and µc,i = β0 + 2 tan−1(ztiβ). The parameter γ is a vector of q regression coefficients

γj ∈ (−∞,+∞) for the prediction of y where j = 0, . . . , q and ν0 is the intercept. The param-

eter β0 ∈ [0, 2π) is the intercept and β is a vector of p regression coefficients βj ∈ (−∞,+∞)

for the prediction of θ where j = 1, . . . , p. The vector xi is a vector of predictor values for the

prediction of y and zi is a vector of predictor values for the prediction of θ. In a regression

setup the outcome component vector (θi, yi)t for each individual is generated independently

from the modified density (5).

As in Abe & Ley (2017), the conditional distribution of Y given Θ = θ is a Weibull

distribution with shape α and scale ν(1− tanh(κ) cos(θ − µc))1/α and the conditional distri-

bution of Θ given Y = y is a sine skewed von Mises distribution with location parameter µc

and concentration parameter (νy)α tanh(κ). The log-likelihood for this model equals

l(α,γ, λ, κ,β) = n[ln(α)− ln(2π cosh(κ))] + α
n∑
i=1
xtiγ

+
n∑
i=1

ln(1 + λ sin(θi − (β0 + 2 tan−1(ztiβ)))) + (α− 1)
n∑
i=1

ln(yi)

−
n∑
i=1

(exp(xtiγ)yi)α(1− tanh(κ) cos(θi − (β0 + 2 tan−1(ztiβ)))).

We can use numerical optimization (Nelder-Mead) to find solutions for the maximum likelihood

(ML) estimates for the parameters of the model.

Modified joint projected and skew normal (GPN-SSN)

This model is an extension of the cylindrical model introduced by Mastrantonio (2018) to

the regression context. Both models contain m independent circular components and w

4



independent linear components. The circular components Θ = (Θ1, . . . ,Θm) are modelled

together by a multivariate GPN distribution. The joint distribution of Θ and R can thus be

modeled as the product of (4) for each of the m circular components. The linear components

Y = (Y 1, . . . ,Y w) are modelled together by a multivariate skew normal distribution (Sahu,

Dey, & Branco, 2003). Because the GPN distribution is modelled using a so-called augmented

representation (as in (2) and (4)) it is convenient to use a similar tactic for modelling the

multivariate skew normal distribution. Following Mastrantonio (2018) the linear components

are represented as

Y = M y + ΛD +H ,

where M y is a mean vector for the linear component Y , Λ = diag(λ) is a w × w diagonal

matrix with diagonal elements λ1, . . . , λw (skewness parameters), D ∼ HNw(0w, Iw), a

w-dimensional half normal distribution (Olmos, Varela, Gómez, & Bolfarine, 2012), and

H ∼ Nw(0w,Σy). This means that, conditional on the auxiliary data D, Y is normally

distributed with mean M y + ΛD and covariance matrix Σy. The joint density for (Y t,Dt)t

is defined as:

f(y,d) = 2wφw(y |M y + Λd,Σy)φw(d | 0w, Iw),

where φ`(·|M `,Σ`) stands for the `-dimensional normal density with mean vector M ` and

covariance Σ`. As in Mastrantonio (2018) dependence between the linear and circular

component is created by modelling the augmented representations of Θ and Y together in a

2m+ w dimensional normal distribution. The joint density of the model is then represented

by:

f(θ, r,y,d) = 2wφ2m+w((st,yt)t |M + (0t2m, (diag(λ)d)t)t,Σ)φw(d | 0w, Iw)
m∏
j=1

rj, (6)

where s = (r1(cos(θ1), sin(θ1)), . . . , rm(cos(θm), sin(θm)))t, the mean vector M = (M t
s,M

t
y)t

and Σ =

Σs Σsy

Σt
sy Σy

. The matrix Σs is the covariance matrix for the variances of and
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covariances between the augmented representations of the circular component and the matrix

Σsy contains covariances between the augmented representations of the circular component

and the linear component.

In our regression extension we have i = 1, . . . , n observations of m circular components,

w linear components and g covariates. The mean in the density in (6) then becomes

M i = Btxi where B is a (g+1)× (2m+w) matrix with regression coefficients and intercepts

and xi is a g + 1 dimensional vector containing the value 1 to estimate an intercept and the

g covariate values.

Model fit

We use the following (conditional) loglikelihoods for the computation of the PLSL in the

teacher data:

• For the modified CL-PN model:

l(y | θ, r) = log(1)−log(
√

2πσ2)+
∑

(ŷi−(γ0+γcos cos(θi)ri+γsin sin(θi)ri+γ1SEi))2/2σ2

l(θ, r) = log(1)− log(2π) +
∑
−0.5µ̂2

i − 0.5(r2
i − 2riutiµ̂i)

where ui = (cosθi, sin θi) and µ̂i = (βI0 + βI0SEi, βII0 + βII0 SEi)t.

• For the modified CL-GPN model:

l(y | θ, r) = log(1)−log(
√

2πσ2)+
∑

(ŷi−(γ0+γcos cos(θi)ri+γsin sin(θi)ri+γ1SEi))2/2σ2
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l(θ, r) = log(1)− log(2π + τ)−
∑

log(ri) + (utiµ̂iΣ−1(utiµ̂i)t)/2τ 2

where ui = (cosθi, sin θi) and µ̂i = (βI0 + βI0SEi, βII0 + βII0 SEi)t.

• For the modified Abe-Ley model:

l(y | θ) = logα +
∑

log hαi +
∑

log yα−1
i −

∑
(hiyi)α

where hi = exp(ŷi){1 − tanh(κ) cos(θi − θ̂i)}1/α, ŷi = γ0 + γ1SEi and θ̂i = β0 +

2 tan−1(β1SEi)) .

l(θ | y) = log(1)−
∑

log 2πI0(ci) +
∑

log{1 + λ sin(θi − θ̂i}+
∑

ci cos(θi − θ̂i)

where ci = yαi exp(ŷi)α tanh κ, and I0 is a modified Bessel function of order 0.

• For the modified joint projected and skew normal model we take the loglikelihoods of

the following distributions:

yi |M i,Σ, θi, ri ∼ SSN(Miy + λdi + Σt
syΣ−1

s (si −M is), σ2
y + Σt

syΣ−1
s Σsy),

θi |M i,Σ, yi, di ∼ GPN(M is + Σsyσ
−2
y (yi −Miy − λdi),Σs + Σsyσ

−2
y Σt

sy)

where SSN is the skew normal distribution. Computationally this comes down to

taking the log of the density values for a univariate and multivariate normal distribution

(with mean and variance specified as above) for the linear and circular component

respectively.
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MCMC procedures

Bayesian Model and MCMC procedure for the modified CL-PN

model

We use the following algorithm to obtain posterior estimates from the model:

1. Split the data, with the circular component θ = θ1, . . . , θn and the linear component

y = y1, . . . , yn where n is the sample size, and the design matrices Zk
n×2 (for k ∈ {I, II})

and Xn×4 of the circular and the linear component respectively, in a training (90%)

and holdout (10%) set.

2. Define the prior parameters for the training set. In this paper we use:

• Prior for γ: N4(µ0,Λ0), with µ0 = (0, 0, 0, 0)t and Λ0 = 10−4I4.

• Prior for σ2: IG(α0, β0), an inverse gamma prior with α0 = 0.001 and β0 = 0.001.

• Prior for βk: N2(µ0,Λ0), with µ0 = (0, 0)t and Λ0 = 10−4I2 for k ∈ {I, II}.

3. Set starting values γ = (0, 0, 0, 0)t, σ2 = 1 and βk = (0, 0)t for k ∈ {I, II}. Also set

starting values ri = 1 in the training and holdout set.

4. Compute the latent bivariate scores si = (sIi , sIIi )t underlying the circular component

for the holdout and training dataset as follows:

 sIi
sIIi

 =

ri cos(θi)

ri sin(θi)

 .

5. Sample γ, σ2 and βk for k ∈ {I, II} for the training dataset from their conditional

posteriors:

• Posterior for γ: N4(µn, σ2Λ−1
n ), with µn = (X tX + Λ0)−1(Λ0µ0 + X ty) and

Λn = (X tX + Λ0).
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• Posterior for σ2: IG(αn, βn), an inverse gamma posterior with αn = α0 + n/2 and

βn = β0 + 1
2(yty + µt0Λ0µ0 + µtnΛnµn).

• Posterior for βk: N2(µn,Λn), with µn = ((Zk)tZk + Λ0)−1(Λ0µ0 + (Zk)tsk) and

Λn = ((Zk)tZk + Λ0).

6. Sample new ri for the training and holdout dataset from the following posterior:

f(ri | θi,µi) ∝ ri exp
(
−1

2(ri)2 + biri

)

where bi =

cos(θi)

sin(θi)


t

µi, µi = Btzi and B = (βI ,βII). We can sample from this

posterior using a slice sampling technique (Cremers et al., 2018):

• In a slice sampler the joint density for an auxiliary variable vi with ri is

p(ri, vi | θi,µi = Btzi) ∝ riI
(

0 < vi < exp
{
−1

2(ri − bi)2
})

I(ri > 0).

The full conditional for vi, p(vi | ri,µi, θi), is

U
(

0, exp
{
−1

2(ri − bi)2
})

and the full conditional for ri, p(ri | vi,µi, θi), is proportional to

riI
(
bi + max

{
−bi,−

√
−2 ln vi

}
< ri < bi +

√
−2 ln vi

)
.

We thus sample vi from the uniform distribution specified above. Independently

we sample a value m from U(0, 1). We obtain a new value for ri by computing

ri =
√

(r2
i2 − r2

i1)m+ r2
i1 where ri1 = bi + max

{
−bi,−

√
−2 ln vi

}
and ri2 = bi +

√
−2 ln vi.
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7. Compute the PLSL for the circular and linear component on the holdout set using the

estimates of γ, σ2 and βk for k ∈ {I, II} for the training dataset.

8. Repeat steps 4 to 7 until the sampled parameter estimates have converged. We assess

convergence visually using traceplots.
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Bayesian Model and MCMC procedure for the modified CL-GPN

model

We use the following algorithm to obtain posterior estimates from the model:

1. Split the data, with the circular component θ = θ1, . . . , θn and the linear component

y = y1, . . . , yn where n is the sample size, and the design matrices Zn×2 and Xn×4 of

the circular and the linear component respectively, in a training (90%) and holdout

(10%) set.

2. Define the prior parameters for the training set. In this paper we use:

• Prior for γ: N4(µ0,Λ0), with µ0 = (0, 0, 0, 0)t and Λ0 = 10−4I4.

• Prior for σ2: IG(α0, β0), an inverse gamma prior with α0 = 0.001 and β0 = 0.001.

• Prior for βj: N2(µ0,Λ0), with µ0 = (0, 0)t and Σ0 = 105I2 for j ∈ {0, . . . , p}

where p is the number of covariates, 1, in Z.

• Prior for ξ: N(µ0, σ
2), with µ0 = 0 and σ2 = 104.

• Prior for τ : IG(α0, β0), an inverse gamma prior with α0 = 0.01 and β0 = 0.01.

3. Set starting values γ = (0, 0, 0, 0)t, σ2 = 1, βj = (0, 0)t for j ∈ {0, 1}, ξ = 0, τ = 1 and

Σ =

τ 2 + ξ2 ξ

ξ 1

. Also set starting values ri = 1 in the training and holdout set.

4. Compute the latent bivariate scores si = (sIi , sIIi )t underlying the circular component

for the holdout and training dataset as follows:

 sIi
sIIi

 =

ri cos(θi)

ri sin(θi)

 .

5. Sample γ, σ2, βj for j ∈ {0, 1}, ξ and τ for the training dataset from their conditional

posteriors:
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• Posterior for γ: N4(µn, σ2Λ−1
n ), with µn = (X tX + Λ0)−1(Λ0µ0 + X ty) and

Λn = (X tX + Λ0).

• Posterior for σ2: IG(αn, βn), an inverse gamma posterior where αn = α0 + n/2

and βn = β0 + 1
2(yty + µt0Λ0µ0 + µtnΛnµn).

• Posterior for βj: N2(µjn ,Σjn), with µjn = ΣjnΣ−1

−∑n
i=1 zi,j−1

∑
l 6=j zi,l−1βl +

∑n
i=1 zi,j−1ri

cos(θi)

sin(θi)


 and Σjn =

(∑n
i=1 z

2
i,j−1Σ−1 + Λ0

)−1
for j ∈ {0, . . . , p}

where p is the number of covariates, 1, in Z.

• Posterior for ξ: N(µn, σ2
n), with µn = τ−2

∑n

i=1(sI
i−µ

I
i )(sII

i −µ
II
i )+µ0σ

−2
0

τ−2
∑n

i=1(sII
i −µ

II
i )2+σ−2

0
and σ2

n =
1

τ−2
∑n

i=1(sII
i −µ

II
i )2+σ−2

0
where µIi = (βI)tzi and µIIi = (βII)tzi.

• Posterior for τ : IG(αn, βn), an inverse gamma posterior with αn = n
2 + α0 and

βn =
n∑
i=1

(sIi − {µIi + ξ(sIIi − µIIi )})2 + β0

6. Sample new ri for the training and holdout dataset from the following posterior:

f(ri | θi,µi) ∝ ri exp
−1

2Ai
(
ri −

Bi

Ai

)2


whereBi =

cos(θi)

sin(θi)


t

Σ−1µi, µi = Btzi,B = (βI ,βII) andAi =

cos(θi)

sin(θi)


t

Σ−1

cos(θi)

sin(θi)

.
We can sample from this posterior using a slice sampling technique (Hernandez-

Stumpfhauser et al. 2018):

• In a slice sampler the joint density for an auxiliary variable vi with ri is

p(ri, vi | θi,µi = Btzi) ∝ riI
(

0 < vi < exp
{
−1

2Ai
(
ri −

Bi

Ai

)2})
I(ri > 0).
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• The full conditional for vi, p(vi | ri,µi,Σ, θi), is

U

0, exp
−1

2Ai
(
ri −

Bi

Ai

)2



and the full conditional for ri, p(ri | vi,µi,Σ, θi), is proportional to

riI

Bi

Ai
+ max

−Bi

Ai
,−
√
−2 ln vi
Ai

 < ri <
Bi

Ai
+
√
−2 ln vi
Ai

 .

• We thus sample vi from the uniform distribution specified above. Independently

we sample a value m from U(0, 1). We obtain a new value for ri by computing ri =√
(r2
i2 − r2

i1)m+ r2
i1 where ri1 = Bi

Ai
+max

{
−Bi

Ai
,−
√
−2 ln vi

Ai

}
and ri2 = Bi

Ai
+
√
−2 ln vi

Ai
.

7. Compute the PLSL for the circular and linear component on the holdout set using the

estimates of γ, σ2, βk for k ∈ {I, II}, ξ and τ for the training dataset.

8. Repeat steps 4 to 7 until the sampled parameter estimates have converged. We visually

assess convergence using traceplots.
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Bayesian Model and MCMC procedure for the modified GPN-SSN

model

1. Split the data, with the circular component θ = θ1, . . . , θn and the linear component

y = y1, . . . , yn where n is the sample size, and the design matrix Xn×2 in a training

(90%) and holdout (10%) set. Note that in this paper we have only one circular

component and one linear component and the MCMC procedure outlined here is

specified for this situation. It can however be generalized to a situation with multiple

circular and linear components without too much effort.

2. Define the prior parameters for the training set. Since we have only one circular

component, one linear component and one covariate, we have m = 1, w = 1 and g = 1.

In this paper we use the following priors:

• Prior for Σ: IW (Ψ0, ν0), an inverse Wishart with Ψ0 = 10−4I2m+w and ν0 = 1.

• Prior for B in vectorized form: N(g+1)(2m+w)(β0,Σ⊗ κ0), where ⊗ stands for the

Kronecker product, β0 = vec(B0), the matrix with prior values for the regression

coefficients. We choose β0 = 0(g+1)(2m+w), B0 = 0(g+1)×(2m+w) and κ0 = 10−4Ig+1.

• Prior for λ: N(γ0, ω0), with γ0 = 0 and ω0 = 10000.

3. Set starting values β = (0, 0, 0, 0, 0, 0)t, Σ = I3 and λ = 0. Also set starting values

ri = 1 and di = 1 in the training and holdout set.

4. Compute the latent bivariate scores si = (sIi , sIIi )t underlying the circular component

for the holdout and training dataset as follows:

 sIi
sIIi

 =

ri cos(θi)

ri sin(θi)

 .

5. Compute the latent scores ỹi underlying the linear component for the holdout and
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training dataset as follows:

ỹi = λdi.

6. Compute ηi defined as follows for each individual i:

ηi = (sti, yi)t − (0t2m, λdi)t.

7. Sample B, Σ and λ for the training dataset from their conditional posteriors:

• Posterior for Σ: IW (Ψn, νn), an inverse Wishart with Ψn = Ψ0 +(η−X tB)t(η−

X tB) + (B −B0)tκ0(B −B0) and νn = ν0 + n where n is the sample size.

• Posterior for B in matrix form: MN(Bn,κn,Σ), with Bn = κ−1
n X

tη + κ0B0

and κn = X tX + κ0.

• Posterior for λ: N(γn, ωn), with ωn =
(∑n

i=1 d
2
iσ
−2
y|s + ω−1

0

)−1
and γn =

ωn
(∑n

i=1 diσ
−2
y|s(yi − µyi|si

) + ω−1
0 γ0

)
where µyi|si

= µy + Σt
syΣ−1

s (si − µs) and

σ2
y|s = σ2

y −Σt
syΣ−1

s Σsy.

8. Sample new di for the training and holdout dataset from the following posterior:

f(di) ∝ φ(yi|µyi|si
+ λdi, σ

2
y|s)φ(di|0, 1),

where µyi|si
= Bt

yi|si
xi. We can see each di as a positive regressor with λ as covariate

and φ(di|0, 1) as prior (Mastrantonio, 2018). The full conditional is then truncated

normal with support R+ as follows:

N(mdi
, v),

where v =
(
λ2σ−2

y|s + 1
)
and mdi

= vλσ−2
y|s

(
yi − µyi|si

)
.
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9. Sample new ri for the training and holdout dataset from the following posterior

f(ri | θi,µi) ∝ ri exp
−0.5Ai

(
ri −

Bi

Ai

)2


where Bi =

cos(θi)

sin(θi)


t

Σ−1
si|yi
µsi|yi

, µsi|yi
= Bt

si|yi
xi and Ai =

cos(θi)

sin(θi)


t

Σ−1
si|yi

cos(θi)

sin(θi)

.
The parameters µsi|yi

and Σsi|yi
are the conditional mean and covariance matrix of si

assuming that (sti, yi)t ∼ N2m+w(µ+ (0t2m, λdi)t,Σ). Because in this paper θ originates

from a bivariate variable that is known we can in this model (where the variance-

covariance matrix of the circular component is not constrained in the estimation

procedure) simply define the ri as the Euclidean norm of the bivariate datapoints.

However, for didactic purposes we continue with the explanation of the sampling

procedure. We can sample from the posterior for ri using a slice sampling technique

(Hernandez-Stumpfhauser et al. 2018):

• In a slice sampler the joint density for an auxiliary variable vi with ri is

p(ri, vi | θi,µi = Btxi) ∝ riI
(

0 < vi < exp
{
−1

2Ai
(
ri −

Bi

Ai

)2})
I(ri > 0).

• The full conditional for vi, p(vi | ri,µi,Σ, θi), is

U

0, exp
−1

2Ai
(
ri −

Bi

Ai

)2



and the full conditional for ri, p(ri | vi,µi,Σ, θi), is proportional to

riI

Bi

Ai
+ max

−Bi

Ai
,−
√
−2 ln vi
Ai

 < ri <
Bi

Ai
+
√
−2 ln vi
Ai



• We thus sample vi from the uniform distribution specified above. Independently
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we sample a value m from U(0, 1). We obtain a new value for ri by computing ri =√
(r2
i2 − r2

i1)m+ r2
i1 where ri1 = Bi

Ai
+max

{
−Bi

Ai
,−
√
−2 ln vi

Ai

}
and ri2 = Bi

Ai
+
√
−2 ln vi

Ai
.

10. Compute the PLSL for the circular and linear component on the holdout set using the

estimates of B, Σ and λ for the training dataset.

11. Repeat steps 4 to 10 until the sampled parameter estimates have converged.

12. In the MCMC sampler we have estimated an unconstrained Σ. However, for identifica-

tion of the model we need to apply constraints to both Σ and µ. Therefore we need

the matrix

C =

 Cs 02m×w

0t2m×w Iw


where Cs is a 2m× 2m diagonal matrix with every (2(j − 1) + k)th entry > 0 where

k ∈ {1, 2} and j = 1, . . . ,m (Mastrantonio, 2018). The estimates Σ and µ can then be

related to their constrained versions Σ̃ and µ̃ as follows:

µ = Cµ̃

Σ = CΣ̃C.
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