figshare
Browse

Rational and Heron tetrahedra

Download (441.76 kB)
journal contribution
posted on 2025-05-09, 23:38 authored by C. Chisholm, James A. MacDougall
Buchholz [R.H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1991) 353–368] began a systematic search for tetrahedra having integer edges and volume by restricting his attention to those with two or three different edge lengths. Of the fifteen configurations identified for such tetrahedra, Buchholz leaves six unsolved. In this paper we examine these remaining cases for integer volume, completely solving all but one of them. Buchholz also considered Heron tetrahedra, which are tetrahedra with integral edges, faces and volume. Buchholz described an infinite family of Heron tetrahedra for one of the configurations. Another of the cases yields a new infinite family of Heron tetrahedra which correspond to the rational points on a two-parameter elliptic curve.

History

Journal title

Journal of Number Theory

Volume

121

Issue

1

Pagination

153-185

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC