jz200531z_si_001.pdf (640.78 kB)
Download file

Pt-Covered Multiwall Carbon Nanotubes for Oxygen Reduction in Fuel Cell Applications

Download (640.78 kB)
journal contribution
posted on 2015-12-16, 19:11 authored by Junhyung Kim, Seung Woo Lee, Christopher Carlton, Yang Shao-Horn
Recently one-dimensonal (1-D) Pt nanostructures have shown greatly enhanced intrinsic oxygen reduction reaction (ORR) activity (ORR kinetic current normalized to Pt surface area) and/or improved durability relative to conventional supported Pt catalysts. In this study, we report a simple synthetic route to create Pt-covered multiwall carbon nanotubes (Pt NPs/MWNTs) as promising 1-D Pt nanostructured catalysts for ORR in proton exchange membrane fuel cells (PEMFCs). The average ORR intrinsic activity of Pt NPs/MWNTs is ∼0.95 mA/cm2 Pt at 0.9 ViR-corrected versus reversible hydrogen electrode (RHE), ∼3-fold higher than a commercial catalyst −46 wt % Pt/C (Tanaka Kikinzoku Kogyo) in 0.1 M HClO4 at room temperature. More significantly, the mass activity of Pt NPs/MWNTs measured (∼0.48 A/mgPt at 0.9 ViR-corrected vs RHE) is higher than other 1-D nanostructured catalysts and TKK catalysts. The enhanced intrinsic activity of 1-D Pt NPs/MWNTs could be attributed to the weak chemical adsorption energy of OHads-species on the surface Pt NPs covering MWNTs.