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Abstract

We develop a framework for prediction of multivariate data that follow some known
linear constraints, such as the example where some variables are aggregates of others.
This is particularly common when forecasting time series (predicting the future), but
also arises in other types of prediction. For point prediction, an increasingly popular
technique is reconciliation, whereby predictions are made for all series (so-called ‘base’
predictions) and subsequently adjusted to ensure coherence with the constraints. This
paper extends reconciliation from the setting of point prediction to probabilistic pre-
diction. A novel definition of reconciliation is developed and used to construct densities
and draw samples from a reconciled probabilistic prediction. In the elliptical case, it is
proven that the true predictive distribution can be recovered from reconciliation even
when the location and scale matrix of the base prediction are chosen arbitrarily. To
find reconciliation weights, an objective function based on scoring rules is optimised.
The energy and variogram scores are considered since the log score is improper in the
context of comparing unreconciled to reconciled predictions, a result also proved in
this paper. To account for the stochastic nature of the energy and variogram scores,
optimisation is achieved using stochastic gradient descent. This method is shown to
improve base predictions in simulation studies and in an empirical application, particu-
larly when the base prediction models are severely misspecified. When misspecification
is not too severe, extending popular reconciliation methods for point prediction can
result in a similar performance to score optimisation via stochastic gradient descent.
The methods described here are implemented in the ProbReco package for R.

Keywords: Scoring Rules, Probabilistic Forecasting, Hierarchical Time Series, Stochastic
Gradient Descent.
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1 Introduction

Many multivariate prediction problems involve data that follow some linear constraints.

For instance, in retail or tourism it is important to forecast demand in individual regions as

well as aggregate demand of a whole country. In recent years reconciliation has become an

increasingly popular method for handling such problems (see Hyndman & Athanasopoulos

2018, for an overview). Reconciliation involves producing predictions for all variables and

making a subsequent adjustment to ensure these adhere to known linear constraints. While

this methodology has been extensively developed for point prediction, there is a paucity of

literature dealing with probabilistic predictions. This paper develops a formal framework

for probabilistic reconciliation, derives theoretical results that allow reconciled probabilis-

tic forecasts to be constructed and evaluated, and proposes an algorithm for optimally

reconciling probabilistic forecasts with respect to a proper scoring rule.

Before describing the need for probabilistic reconciliation we briefly review the litera-

ture on point forecast1 reconciliation. Prior to the development of forecast reconciliation,

the focus was on finding a subset of variables that could be subsequently aggregated or

disaggregated to find forecasts for all series (see Dunn et al. 1976, Gross & Sohl 1990, and

references therein). An alternative approach emerged with Athanasopoulos et al. (2009)

and Hyndman et al. (2011) who recommended producing forecasts of all series and then

adjusting, or ‘reconciling’, these forecasts to be ‘coherent’, i.e. adhere to the aggregation

constraints. These papers formulated reconciliation as a regression model, however sub-

sequent work has formulated reconciliation as an optimisation problem where weights are

chosen to minimise a loss, such as a weighted squared error (Van Erven & Cugliari 2015,

Nystrup et al. 2020), a penalised version thereof (Ben Taieb & Koo 2019), or the trace of

the forecast error covariance (Wickramasuriya et al. 2019).

In contrast to the point forecasts, the entire probability distribution of future values

provides a full description of the uncertainty associated with the predictions (Abramson &

Clemen 1995, Gneiting & Katzfuss 2014). Therefore probabilistic forecasting has become

of great interest in many disciplines such as, economics (Zarnowitz & Lambros 1987, Rossi

1Such has been the dominance of forecasting in the literature on reconciliation, that we will refer to fore-

casting throughout the remainder of the paper. However, we note that the techniques discussed throughout

the paper generalise to prediction problems in general and are not limited to time series.
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2014), meteorological studies (Pinson et al. 2009, McLean Sloughter et al. 2013), energy

forecasting (Wytock & Kolter 2013, Ben Taieb et al. 2017) and retail forecasting (Böse

et al. 2017). An early attempt towards probabilistic forecast reconciliation came from

Shang & Hyndman (2017) who applied reconciliation to forecast quantiles, rather than to

the point forecasts, in order to construct prediction intervals. This idea was extended to

constructing a full probabilistic forecast by Jeon et al. (2019) who propose a number of

algorithms, one of which is equivalent to reconciling a large number of forecast quantiles.

Ben Taieb et al. (2020) also propose an algorithm to obtain probabilistic forecasts that

cohere to linear constraints. In particular, Ben Taieb et al. (2020) draw a sample from

the probabilistic forecasts of univariate models for the bottom level data, reorder these to

match the empirical copula of residuals, and aggregate these in a bottom-up fashion. The

only sense in which top level forecasts are used is in the mean, which is adjusted to match

that obtained using the MinT reconciliation method (Wickramasuriya et al. 2019).

There are a number of shortcomings to Jeon et al. (2019) and Ben Taieb et al. (2020)

which to the best of our knowledge represent the only attempts to develop algorithms

for probabilistic forecast reconciliation. First, little formal justification is provided for

the algorithms, or for the sense in which they generalise forecast reconciliation to the

probabilistic domain. As such, both algorithms are based on sampling and neither can

be used to obtain a reconciled density analytically. Both algorithms are tailored towards

specific applications and conflate reconciliation with steps that involve reordering the base

forecasts. For example, while Jeon et al. (2019) show that ranking draws from independent

base probabilistic forecasts before reconciliation is effective, this may only be true due

to the highly dependent time series considered in their application. A limitation of Ben

Taieb et al. (2020) is that to ensure their sample from the base probabilistic forecast has

the same empirical copula as the data, it must be of the same size as the training data.

This will be problematic in applications with fewer observations than the smart meter data

they consider. Further, Ben Taieb et al. (2020) only incorporate information from the

forecast mean of aggregate variables, missing out on potentially valuable information in the

probabilistic forecasts of aggregate data.

In this paper we seek to address a number of open issues in probabilistic forecast rec-

onciliation. First, we develop in a formal way, definitions and a framework that generalise
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reconciliation from the point setting to the probabilistic setting. This is achieved by ex-

tending the geometric framework proposed by Panagiotelis et al. (2020) for point forecast

reconciliation. Second, we utilise these definitions to show how a reconciled forecast can

be constructed from an arbitrary base forecast. Solutions are provided in the case where a

density of the base probabilistic forecast is available and in the case where it is only pos-

sible to draw a sample from the base forecasting distribution. Third, we show that in the

elliptical case, the correct predictive distribution can be recovered via linear reconciliation

irrespective of the location and scale parameters of the base forecasts. We also derive con-

ditions for when this also holds for the special case of reconciliation via projection. Fourth,

we derive theoretical results on the evaluation of reconciled probabilistic forecasts using

multivariate scoring rules, including showing that the log score is improper when used to

compare reconciled to unreconciled forecasts. Fifth, we propose an algorithm for choosing

reconciliation weights by optimising a scoring rule. This algorithm takes advantages of ad-

vances in stochastic gradient descent and is thus suited to scoring rules that are themselves

often only known up to an approximation. The algorithm and other methodological con-

tributions described in this paper are implemented in the ProbReco package (Panagiotelis

2020).

The remainder of the paper is structured as follows. In Section 2, after a brief review

of point forecast reconciliation, novel definitions are provided for coherent forecasts and

reconciliation in the probabilistic setting. In Section 3, we outline how reconciliation can be

achieved in the both the case where the density of the base probabilistic forecast is available,

and in the case where a sample has been generated from the base probabilistic forecast.

In Section 4, we consider the evaluation of probabilistic hierarchical forecasts via scoring

rules, including theoretical results on the impropriety of the log score in the context of

forecast reconciliation. The use of scoring rules motivates our algorithm for finding optimal

reconciliation weights using stochastic gradient descent, which is described in Section 5

and evaluated in an extensive simulation study in Section 6. An empirical application on

forecasting electricity generation from different sources is contained in Section 7. Finally

Section 8 concludes with some discussion and thoughts on future research.
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2 Hierarchical probabilistic forecasts

Before introducing coherence and reconciliation to the probabilistic setting, we first briefly

refresh these concepts in the case of point forecasts. In doing so, we follow the geometric

interpretation introduced by Panagiotelis et al. (2020), since this formulation naturally

generalises to probabilistic forecasting.

2.1 Point Forecasting

A hierarchical time series is a collection of time series adhering to some known linear

constraints. Stacking the value of each series at time t into an n-vector yt, the constraints

imply that yt lies in an m-dimensional linear subspace of Rn for all t. This subspace is

referred to as the coherent subspace and is denoted as s. A typical (and the original)

motivating example is a collection of time series some of which are aggregates of other

series. In this case bt ∈ Rm can be defined as the values of the most disaggregated or

bottom-level series at time t and the aggregation constraints can be formulated as,

yt = Sbt,

where S is an n×m constant matrix for a given hierarchical structure.

Tot

A

AA AB

B

BA BB

Figure 1: An example of a two-level hierarchical structure.

An example of a hierarchy is shown in Figure 1. There are n = 7 series of which m = 4

are bottom-level series. Also, bt = [yAA,t, yAB,t, yBA,t, yBB,t]
′, yt = [yTot,t, yA,t, yB,t, b

′
t]
′,

and

S =


1 1 1 1

1 1 0 0

0 0 1 1

I4

 ,
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where I4 is the 4× 4 identity matrix.

The connection between this characterisation and the coherent subspace is that the

columns of S span s. Below, the notation s : Rm → Rn is used when premultiplication by

S is thought of as a mapping. Finally, while S is defined in terms of m bottom-level series

here, in general any m series can be chosen with the S matrix redefined accordingly. The

columns of all appropriately defined S matrices span the same coherent subspace s.

When forecasts of all n series are produced, they may not adhere to constraints. In this

case forecasts are called incoherent base forecasts and are denoted ŷt+h, with the subscript

t+ h implying a h-step-ahead forecast at time t. To exploit the fact that the target of the

forecast adheres to known linear constraints, these forecasts can be adjusted in a process

known as forecast reconciliation. At its most general, this involves selecting a mapping

ψ : Rn → s and then setting ỹt+h = ψ(ŷt+h), where ỹt+h ∈ s is called the reconciled

forecast. The mapping ψ may be considered as the composition of two mappings ψ = s ◦ g.

Here, g : Rn → Rm combines incoherent base forecasts of all series to produce new bottom-

level forecasts, which are then aggregated via s. Many existing point forecasting approaches

including the bottom-up (Dunn et al. 1976), OLS (Hyndman et al. 2011), WLS (Hyndman

et al. 2016, Athanasopoulos et al. 2017) and MinT (Wickramasuriya et al. 2019) methods,

are special cases where g involves premultiplication by a matrix G and where SG is a

projection matrix. These are summarised in Table 1.

2.2 Coherent probabilistic forecasts

We now turn our attention towards a novel definition of coherence in a probabilistic setting.

First let (Rm,FRm , ν) be a probability triple, where FRm is the usual Borel σ-algebra on

Rm. This triple can be thought of as a probabilistic forecast for the bottom-level series. A

σ-algebra Fs can then be constructed as the collection of sets s(B) for all B ∈ FRm , where

s(B) denotes the image of B under the mapping s.

Definition 2.1 (Coherent Probabilistic Forecasts). Given the triple, (Rm,FRm , ν), a co-

herent probability triple (s,Fs, ν̆), is given by s, the σ-algebra Fs and a measure ν̆, such

that

ν̆(s(B)) = ν(B) ∀B ∈ FRm .
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Table 1: Summary of reconciliation methods for which SG is a projection matrix. Here

W is some diagonal matrix, Σ̂sam is a sample estimate of the residual covariance

matrix and Σ̂shr is a shrinkage estimator proposed by Schäfer & Strimmer (2005),

given by τdiag(Σ̂sam) + (1 − τ)Σ̂sam where τ =

∑
i 6=j V̂ar(σ̂ij)∑

i 6=j σ̂
2
ij

and σij denotes

the (i, j)th element of Σ̂sam.

Reconciliation method G

OLS (S′S)−1S′

WLS (S′WS)−1S′W

MinT(Sample) (S′Σ̂−1samS)−1S′Σ̂−1sam

MinT(Shrink) (S′Σ̂−1shrS)−1S′Σ̂−1shr

To the best of our knowledge, the only other definition of coherent probabilistic forecasts

is given by Ben Taieb et al. (2020) who define them in terms of convolutions. While these

definitions do not contradict one another, our definition has two advantages. First it can

more naturally be extended to problems with non-linear constraints with the coherent

subspace s replaced with a manifold. Second, it facilitates a definition of probabilistic

forecast reconciliation to which we now turn our attention.

2.3 Probabilistic forecast reconciliation

Let (Rn,FRn , ν̂) be a probability triple characterising a probabilistic forecast for all n series.

The hat is used for ν̂ analogously with ŷ in the point forecasting case. The objective is to

derive a reconciled measure ν̃, assigning probability to each element of the σ-algebra Fs.

Definition 2.2. The reconciled probability measure of ν̂ with respect to the mapping ψ(.)

is a probability measure ν̃ on s with σ-algebra Fs such that

ν̃(A) = ν̂(ψ−1(A)) ∀A ∈ Fs ,

where ψ−1(A) := {y ∈ Rn : ψ(y) ∈ A} is the pre-image of A, that is the set of all points

in Rn that ψ(.) maps to a point in A.

This definition naturally extends forecast reconciliation to the probabilistic setting. In

the point forecasting case, the reconciled forecast is obtained by passing an incoherent
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forecast through a transformation. Similarly, for probabilistic forecasts, sets of points is

mapped to sets of points by a transformation. The same probabilities are assigned to these

sets under the base and reconciled measures respectively. Recall that the mapping ψ can also

be expressed as a composition of two transformations s ◦ g. In this case, an m-dimensional

reconciled probabilistic distribution ν can be obtained such that ν(B) = ν̂(g−1(B)) for

all B ∈ FRm and a probabilistic forecast for the full hierarchy can then be obtained via

Definition 2.1. This construction will be used in Section 3.

Definition 2.2 can use any continuous mapping ψ, where continuity is required to ensure

that open sets in Rn used to construct FRn are mapped to open sets in s. However,

hereafter, we restrict our attention to ψ as a linear mapping. This is depicted in Figure 2

when ψ is a projection. This figure is only a schematic, since even the most trivial hierarchy

is 3-dimensional. The arrow labelled S spans an m-dimensional coherent subspace s, while

the arrow labelled R spans an (n−m)-dimensional direction of projection. The mapping g

collapses all points in the blue shaded region g−1(B), to the black interval B. Under s, B is

mapped to s(B) shown in red. Under our definition of reconciliation, the same probability

is assigned to the red region under the reconciled measure as is assigned to the blue region

under the incoherent measure.
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S

s

R

B s(B)

g−1(B)

Figure 2: Summary of probabilistic forecast reconciliation. The probability that yt+h lies

in the red line segment under the reconciled probabilistic forecast is defined to

be equal to the probability that yt+h lies in the shaded blue area under the un-

reconciled probabilistic forecast. Note that since the smallest possible hierarchy

involves three dimensions, this figure is only a schematic.

3 Construction of Reconciled Distribution

In this section we derive theoretical results on how distributions on Rn can be reconciled

to a distribution on s. In Section 3.1 we show how this can be achieved analytically by a

change of coordinates and marginalisation when the density is available. In Section 3.2 we

explore this result further in the specific case of elliptical distributions. In Section 3.3 we

consider reconciliation in the case where the density may be unavailable but it is possible

to draw a sample from the base probabilistic forecast distribution. Throughout we restrict

our attention to linear reconciliation.

3.1 Analytical derivation of reconciled densities

The following theorem shows how a reconciled density can be derived from any base prob-

abilistic forecast on Rn.

Theorem 3.1 (Reconciled density of bottom-level). Consider the case where reconciliation

is carried out using a composition of linear mappings s ◦ g where g combines information
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from all levels of the base forecast into a new density for the bottom-level. The density of

the bottom-level series under the reconciled distribution is

f̃b(b) = |G∗|
∫
f̂(G−b+G⊥a)da ,

where f̂ is the density of the incoherent base probabilistic forecast, G− is an n ×m gen-

eralised inverse of G such that GG− = I, G⊥ is an n × (n −m) orthogonal complement

to G such that GG⊥ = 0, G∗ =

(
G−

...G⊥

)
, and b and a are obtained via the change of

variables

y = G∗

b
a

 .

Proof. See Appendix A.

Theorem 3.2 (Reconciled density of full hierarchy). Consider the case where a reconciled

density for the bottom-level series has been obtained using Theorem 3.1. The density of the

full hierarchy under the reconciled distribution is

f̃y(y) = |S∗|f̃b(S−y)1{y ∈ s} ,

where 1{·} equals 1 when the statement in braces is true and 0 otherwise,

S∗ =

S−
S′⊥

 ,

S− is an m × n generalised inverse of S such that S−S = I, and S⊥ is an n × (n −m)

orthogonal complement to S such that S′⊥S = 0.

Proof. See Appendix A.

Example: Gaussian Distribution

Suppose the incoherent base forecasts are Gaussian with mean µ̂, covariance matrix Σ̂ and

density,

f̂(ŷ) = (2π)−n/2|Σ̂|−1/2 exp

{
−1

2

[
(y − µ̂)′Σ̂−1(y − µ̂)

]}
.

Then, using Theorem 3.1, the reconciled density for the bottom-level series is given by

f̃b(b) =

∫
(2π)−

n
2 |Σ̂|−

1
2 |G∗|eq/2da ,
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where

q =

[
G∗
(
b

a

)
− µ̂

]′
Σ̂−1

[
G∗
(
b

a

)
− µ̂

]

=

[(
b

a

)
−G∗−1µ̂

]′[
G∗−1Σ̂(G∗−1)′

]−1[(
b

a

)
−G∗−1µ̂

]
.

Noting that

G∗−1 =

(
G

G−⊥

)
,

where G−⊥ is an (n−m)× n matrix such that G−⊥G⊥ = I, q can be rearranged as[(
b

a

)
−
(
G

G−⊥

)
µ̂

]′[(
G

G−⊥

)
Σ̂

(
G

G−⊥

)′]−1[(
b

a

)
−
(
G

G−⊥

)
µ̂

]
.

After the change of variables, the density can be recognised as a multivariate Gaussian

in b and a. The mean and covariance matrix for the margins of the first m elements are

Gµ̂ and GΣ̂G′ respectively. Marginalising out a, the reconciled forecast for the bottom-

level is b̃ ∼ N (Gµ̂,GΣ̂G′). Using standard results from matrix algebra of normals, ỹ ∼

N (SGµ̂,SGΣ̂G′S′).

3.2 Elliptical distributions

More generally, consider linear reconciliation of the form ψ(ŷ) = S(d+Gŷ). For an elliptical

base probabilistic forecast, with location µ̂ and scale Σ̂, the reconciled probabilistic forecast

will also be elliptical with location µ̃ = S(d +Gµ̂) and scale Σ̃ = SGΣ̂G′S′. This is a

consequence of the fact that elliptical distributions are closed under linear transformations

and marginalisation. While the base and reconciled distribution may be of a different form,

they will both belong to the elliptical family. This leads to the following result.

Theorem 3.3 (Recovering the true density through reconciliation). Assume the true pre-

dictive distribution is elliptical with location µ and scale Σ. Then for an elliptical base

probabilistic forecast with arbitrary location µ̂ and scale Σ̂, there exists dopt and Gopt such

that the true predictive distribution is recovered by reconciliation.

Proof. First consider finding a Gopt for which the following holds,

Σ = SGoptΣ̂G
′
optS

′ .
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This can be solved as Gopt = Ω
1/2
0 Σ̂−1/2, where Σ̂1/2 is any matrix such that Σ̂ =

Σ̂1/2(Σ̂1/2)′ (for example a Cholesky factor), Ω
1/2
0 (Ω

1/2
0 )′ = Ω and Ω is the true scale

matrix for the bottom-level series. To ensure conformability of matrix multiplication, Ω1/2

must be an m× n matrix; so it can be set to the Cholesky factor of Ω augmented with an

additional n−m columns of zeros. To reconcile the location. solve the following for dopt

µ = S(dopt +Goptµ̂)

which is given by dopt = β −Goptµ̂, where β is defined so that µ = Sβ.

While the above theorem is not feasible in practice (exploiting the result requires knowl-

edge of µ and Σ), it does nonetheless have important consequences for the algorithm that

we introduce in Section 5. In particular, note that SGopt is not a projection matrix in

general. This implies that in the probabilistic forecasting setting, it is advised to include

a translation d in the reconciliation procedure. This holds even if the base forecasts are

unbiased (i.e. µ̂ = µ) since in general SGoptµ̂ 6= µ.

Although SGopt is not a projection matrix in general, there are some conditions under

which it will be. These are described by the following theorem.

Theorem 3.4 (Optimal Projection for Reconciliation). Let Σ̂ be the scale matrix from an

elliptical but incoherent base forecast and assume base forecasts are also unbiased. When

the true predictive distribution is also elliptical, then this can be recovered via reconciliation

using a projection if rank(Σ̂−Σ) ≤ n−m.

Proof. See Appendix B.

3.3 Simulation from a Reconciled Distribution

In practice it is often the case that samples are drawn from a probabilistic forecast since an

analytical expression is either unavailable, or relies on unrealistic parametric assumptions.

A useful result is the following.

Theorem 3.5 (Reconciled samples). Suppose that
(
ŷ[1], . . . , ŷ[L]

)
is a sample drawn from

an incoherent probability measure ν̂. Then
(
ỹ[1], . . . , ỹ[L]

)
where ỹ[`] := ψ(ŷ[`]) for ` =

1, . . . , L, is a sample drawn from the reconciled probability measure ν̃ as defined in Defini-

tion 2.2.

13



Proof. For any A ∈ Fs

Pr(ŷ ∈ ψ−1(A)) = lim
L→∞

L∑
`=1

1
{
ŷ[`] ∈ ψ−1(A)

}
= lim

L→∞

L∑
`=1

1
{
ψ(ŷ[`]) ∈ (A)

}
= Pr(ỹ ∈ (A))

This result implies that reconciling each member of a sample drawn from an incoherent

distribution provides a sample from the reconciled distribution. Such a strategy has already

been used by Jeon et al. (2019), without formal justification. This result allows coherent

forecasts to be built in a general and modular fashion, the mechanism for simulating base

forecasts is separated from the question of reconciliation. This will become clear in the

simulation study covered in Section 6.

4 Evaluation of Hierarchical Probabilistic Forecasts

An important issue in all forecasting problems is evaluating forecast accuracy. In the proba-

bilistic setting, it is common to evaluate forecasts using proper scoring rules (see Gneiting &

Raftery 2007, Gneiting & Katzfuss 2014, and references therein). Throughout, we follow the

convention of negatively oriented scoring rules such that smaller values of the score indicate

more accurate forecasts. In general, a scoring rule K(., .), is a function taking a probability

measure as the first argument and a realisation as the second argument (although for ease

of notation we will at times replace the probability measure with its associated density in

the first argument). A scoring rule is proper if EQ[K(Q,ω)] ≤ EQ[K(P,ω)] for all P , where

P is any member of some class of probability measures (densities), Q is the true predictive

and ω is a realisation. When this inequality is strict for all P 6= Q, the scoring rule is said

to be strictly proper.

Since hierarchical forecasting is inherently a multivariate problem (the linear constraints

affect all variables), our focus is on multivariate scoring rules. Arguably the simplest and

most common multivariate scoring rule is the log score. The log score simply involves

14



evaluating the negative log density at the value of the realisation, LS(P,ω) = − log f(ω),

where f is the density associated with a distribution P . The log score is more commonly

used when a parametric form for the density is available, however this density can also be

approximated from a sample of values drawn from the probabilistic forecast (see Jordan

et al. 2017).

Alternatively there are a number of other multivariate scoring rules that are difficult

to compute using the probabilistic forecast density alone, but can be approximated using

a sample drawn from that density. An example is the energy score (ES) (see Székely 2003,

Gneiting & Raftery 2007, for details) which is a multivariate generalisation of the popular

Cumulative Rank Probability Score (CRPS). The energy score is given by

ES(P,ω) = EP ||y − ω||α −
1

2
EP ||y − y∗||α, α ∈ (0, 2] , (1)

where y and y∗ are independent copies drawn from the distribution P . In the empiri-

cal results described later, we follow common convention by setting α = 0.5. While the

expectations in Equation (1) may have no closed form, they can be easily approximated

via simulations using a sample drawn from the probabilistic forecast. Other scores with

similar behaviour are kernel-based scores (Dawid 2007, Gneiting & Raftery 2007) and the

variogram score (Scheuerer & Hamill 2015).

4.1 The Log Score for Hierarchical Time Series

When an expression for the density of an incoherent base forecast is available, Section 3

describes how the density of a reconciled forecast can be recovered. With both densities

available, the log score is a natural and straightforward scoring rule to use. However,

the following theorem shows that the log score is improper in the setting of comparing

incoherent to coherent forecasts.

Theorem 4.1 (Impropriety of log score). When the true data generating process is coherent,

then the log score is improper with respect to the class of incoherent measures.

Proof. See Appendix C.

As a result of Theorem 4.1 we recommend avoiding the log score when comparing

reconciled and unreconciled probabilistic forecasts.
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Table 2: Properties of scoring rules for reconciled probabilistic forecasts.

Scoring Rule Coherent v Incoherent Coherent v Coherent

Log Score Not proper Ordering preserved if compared

using bottom-level only

Energy Score Proper Full hierarchy should be used

If a probabilistic forecast is available for any m series, then a probabilistic forecast for

the full hierarchy can be derived. Definition 2.1 provides an example using the bottom-level

series. This suggests that it may be adequate to merely compare two coherent forecasts to

one another using the bottom-level series only. This is true for the log score.

Consider a coherent probabilistic forecast with density f̃y for the full hierarchy and

f̃b for the bottom-level series. By Theorem 3.2, f̃y(y) = |S∗|f̃b(S−y)1{y ∈ s}. Any

realisation y∗ will lie on the coherent subspace and can be written as Sb∗. The expression

for the log score is therefore

LS(f̃y,y
∗) = − log

(
|S∗|f̃b(S−Sb∗)

)
= − log |S∗| − log f̃b(b

∗).

For coherent densities, the log score for the full hierarchy differs from the log score for

the bottom-level series only by − log |S∗|. This term is independent of the choice of G.

Consequently, rankings of different reconciliation methods using the log score for the full

hierarchy will not change if only the bottom-level series is used.

The same property does not hold for all scores. For example, the energy score is in-

variant under orthogonal transformations (Székely & Rizzo 2013) but not under linear

transformations in general. Therefore it is possible for one method to outperform another

when energy score is calculated using the full hierarchy, but for these rankings to change

if only bottom-level series are considered. We therefore recommend computing the energy

score using the full hierarchy. The properties of multivariate scoring rules in the context of

evaluating reconciled probabilistic forecasts are summarised in Table 2.
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5 Score Optimal Reconciliation

We now propose an algorithm for finding reconciliation weights by optimising an objective

function based on scores. For clarity of exposition, we consider the special case of the

energy score. However, the algorithm can be generalised to any score that is computed by

sampling from the probabilistic forecast. For example, in the simulations and the empirical

application of Sections 6 and 7 we consider optimising with respect to both the energy and

variogram scores. We consider linear reconciliation of the form ỹ = ψγ(ŷ) = S (d+Gŷ),

where γ := (d, vec(G)). This allows for more flexibility than a projection, which would im-

ply the constraints d = 0 and GS = I. This added flexibility is motivated by Theorem 3.3

which shows that projections in general are not guaranteed to recover the true predictive

distribution even in the elliptical case. When making an h-step-ahead forecast at time T ,

the objective used to determine an optimal value of γ is the total energy score based on

in-sample information, given by

E (γ) =

T+R∑
t=T

ES(f̃γt+h|t,yt+h) , (2)

where f̃γt+h|t a is probabilistic forecast for yt+h made at time t and reconciled with respect

to ψγ(.), and R is the number of score evaluations used in forming the objective function.

One of the challenges in optimising this objective function is that there is, in general,

no closed form expression for the energy score. However, it can be easily approximated by

simulation as

Ê (γ) =
T+R∑
t=T

 1

Q

( Q∑
q=1

||ỹ[q]t+h|t − yt+h|| −
1

2
||ỹ[q]t+h|t − ỹ

∗[q]
t+h|t||

) , (3)

where ỹ
[q]
t+h|t = S

(
d + Gŷ

[q]
t+h|t

)
, ỹ
∗[q]
t+h|t = S

(
d + Gŷ

∗[q]
t+h|t

)
and ŷ

[q]
t+h|t, ŷ

∗[q]
t+h|t

iid∼ f̂t+h|t for

q = 1, . . . , Q, and t = 1, . . . , T − h.

The objective function is optimised by Stochastic Gradient Descent (SGD). The SGD

technique has become increasingly popular in machine learning and statistics over the past

decade having been applied to training neural networks (Bottou 2010) and Variational

Bayes (Kingma & Welling 2013). The method requires an estimate of the gradient ∂Ê/∂γ

which is computed by automatically differentiating Equation (3) using the header only

C++ library of the Stan project (Carpenter et al. 2015). The learning rates used for SGD
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are those of the Adam method (see Kingma & Ba 2014, for details). Pseudo-code for the

full procedure in the case where h = 1 is provided in Algorithm 1 and is implemented in

the R package ProbReco (Panagiotelis 2020).

Algorithm 1 SGD with Adam for score optimal reconciliation (one-step-ahead forecasts).

The initial value of γ is given by OLS reconciliation. Steps 9–14 are the standard steps

for SGD with Adam. Squaring gj in Step 11 and division and addition in Step 14 are

element-wise operations.
.

1: procedure ScoreOpt(f̂2|1, . . . , f̂T |T−1|1, y1, . . . ,yT , β1,β2,ε,η).

2: for t = T : T +R do

3: Find base forecasts f̂t+1|t using t− T + 1, t− T + 2, . . . , t as training data.

4: end for

5: Initialise m0 = 0,v0 = 0 and γ0 =
(
0, vec

(
(S′S)−1S′

))
6: for j = 1, 2, 3, . . . up to convergence do

7: Draw ŷ
[q]
t+1|t, ŷ

∗[q]
t+1|t ∼ f̂t+1|t for q = 1, . . . , Q, t = 1, . . . T − 1.

8: Compute ỹ
[q]
t+1|t and ỹ

∗[q]
t+1|t for q = 1, . . . , Q, t = 1, . . . T − 1 using γj−1.

9: gj ← ∂Ê/∂γ
∣∣∣
γ=γj−1

. Compute gradient

10: mj ← β1mj−1 + (1− β1)gj . Moving average of gradient

11: vj ← β2vj−1 + (1− β2)g2j . Moving average of squared gradient

12: m̂j ←mj/(1− βj1) . Bias correct

13: v̂j ← vj/(1− βj2) . Bias correct

14: γj ← γj−1 + η
m̂j

(v̂j+ε)
. Update weights

15: end for

16: Set the reconciled forecast as f̃
γopt
T+1|T where γopt is the converged value of γ.

17: end procedure

While Algorithm 1 is not the first instance of calibrating parameters by optimising scor-

ing rules (see Gneiting et al. 2005, for an earlier example), to the best of our knowledge it

is the first instance of doing so using SGD and the first application to forecast reconcili-

ation. It is amenable to parallel computing architectures: the loop beginning at line 2 of

the pseudo-code of Algorithm 1 can be done in parallel as can the computation of the gra-

dient. Finally, the total score in Equation (2) can be replaced with a weighted sum where
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appropriate; for instance weights that decay for scores computed further in the past will

favour choices of γ that produced better forecasting performance for more recent forecast

windows.

6 Simulations

The aim of the simulations that follow is to demonstrate probabilistic forecast reconciliation

including the algorithm discussed in Section 5. For all simulations, the tuning parameters

for the SGD are set as η = 0.001, β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8, which are the

values recommended by Kingma & Ba (2014) and used in popular software packages such

as TensorFlow, Keras and Torch amongst others. Convergence is achieved when the change

in all gradients is less than 10% of the step size η. The number of sample periods used to

construct the objective function is R = 250, while the number of draws used to estimate

each score is Q = 250. All estimation of base models uses a sample size of T = 500. All

forecast evaluations are carried out using a rolling window, also of size W = 500.

6.1 Data Generating Processes

The data generating process we consider corresponds to the 3-level hierarchical structure

presented in Figure 1. Bottom-level series are first generated from ARIMA(p, d, q) pro-

cesses, which are in-turn aggregated to form the middle and top-level series. The orders

p and q are randomly selected from {1, 2} for each bottom-level series. The AR and MA

parameters are randomly and uniformly generated from [0.3, 0.5] and [0.3, 0.7] respectively,

and only accepted if they belong to the stationary and invertible region. In addition a

non-stationary case where d is randomly chosen for each bottom-level from {0, 1} was con-

sidered, these results are omitted for brevity. A complete set of results are available at the

github repository https://git.io/JJwQB.

We consider a multivariate Gaussian and a non-Gaussian setting for the errors driv-

ing the ARIMA processes. Specifically, the non-Gaussian errors are drawn from a meta-

distribution of a Gumbel copula with Beta(1, 3) margins. After simulating from the ARIMA

models, additional noise is added to ensure bottom-level series have a lower signal-to-noise

ratio than top level series with details provided in Appendix D. For each series the first
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500 observations are ignored to avoid the impact of initial values.

6.2 Modelling and Base Forecasts

We fit univariate ARIMA models to each series using the ARIMA() function in the fable

package (O’Hara-Wild et al. 2020) in R (R Core Team 2018). Note that the order of the

ARIMA models is not set to the true order but is chosen using the algorithm of Hyndman

& Khandakar (2008), allowing for the possibility of misspecification. Indeed, an advantage

of forecast reconciliation is the ability to down-weight the forecasts of series within the

hierarchy that come from misspecified models. We also considered exponential smoothing

(ETS) models using the ETS() function in the fable package. These are omitted for brevity;

please refer to https://git.io/JJwQB for a full set of results.

Let ŷt+h|t =
(
ŷ1,t+h|t, . . . , ŷn,t+h|t

)′
, where ŷi,t+h|t is the h-step-ahead point forecast for

series i, and E := {ei,t}i=1,...,n;t=1,...,T where ei,t is the residual stacked in the (n × T )

matrix. For each series and model, base probabilistic forecasts for h = 1 are constructed in

the following four ways:

• Independent Gaussian: The base probabilistic forecast is made up of independent

Gaussian distributions with the forecast mean and variance of variable i given by

ŷi,t+h|t and σ̂2i,t+h|t, where σ̂2i,t+h|t is the sample variance of the residuals in the ith

row of E.

• Joint Gaussian: The base probabilistic forecast is a multivariate Gaussian distri-

bution with the forecast mean ŷt+h|t and variance covariance matrix Σ̂, where Σ̂ is

the variance covariance matrix of the residuals.

• Independent Bootstrap: A draw from the base probabilistic forecast is made in-

dependently for each variable as ŷi,t+h|t + ei,τ where τ is drawn randomly (with re-

placement) from 1, 2, . . . , T .

• Joint Bootstrap: A draw from the joint probabilistic forecast is made as ŷt+h|t+eτ

where eτ is the τth column of E, where τ is drawn randomly (with replacement) from

1, 2, . . . , T .

We restrict our attention to the case of h = 1 although these methods can be generalised

to larger h using the recursive method (Hyndman & Athanasopoulos 2018). For multi-

step-ahead forecasts, methods (c) and (d) should be sampled in blocks to preserve serial
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dependence in the residuals.

6.3 Reconciliation

For each DGP, model and method for obtaining base forecasts, reconciled probabilistic

forecasts are obtained using each of the following techniques.

• Base: The base forecasts with no reconciliation.

• JPP: The best method of Jeon et al. (2019). This is equivalent to reconciling quan-

tiles. A sample is drawn from the base forecast, these are ranked, one variable at

a time (so that the smallest value drawn from each variable are put together, etc.).

These are then pre-multiplied by S (S′WS)−1 S′W where W is a diagonal matrix

with elements (1/42,1/22,1/22,1,1,1,1). These are the squared reciprocals of the num-

ber of bottom-level series used to form an aggregate.

• BTTH: The method of Ben Taieb et al. (2020). This is a method whereby draws

from the probabilistic forecasts of the bottom-level series are permuted so that they

have the same empirical copula as the residuals. These are then aggregated to form

a sample from the distribution of all series. The mean is adjusted to be equivalent to

the mean that would be obtained using the MinT method of Wickramasuriya et al.

(2019) described in Table 1.

• BottomUp: Reconciliation via premultiplication by SG whereG =
(
0m×(n−m), Im×m

)
.

• OLS: Reconciliation via pre-multiplication by S (S′S)−1 S′.

• MinTShr: Reconciliation via pre-multiplication using the shrinkage estimator of the

covariance matrix used by Wickramasuriya et al. (2019) but applied to probabilistic

rather than point forecasting.

• ScoreOptE: The algorithm described in Section 5 used to optimise energy score.

• ScoreOptV: The algorithm described in Section 5 used to optimise variogram score.

Note that JPP and BTTH are two methods previously existing in the literature. The

methods BottomUp, OLS, and MinTShr have been used extensively in the point forecasting

literature but their application to probabilistic forecasting for general base forecasts is, to

the best of our knowledge, novel in this paper.

In addition to these methods, two further reconciliation methods were considered; WLS,

which reconciles via pre-multiplication by the same matrix used in Jeon et al. (2019) but

21



without any reordering of the draws, and MinTSam which uses a sample estimate of the

covariance matrix rather than a shrinkage estimator. These methods were mostly domi-

nated by OLS and MinTShr respectively and are therefore omitted for brevity; please refer

to https://git.io/JJwQB for a full set of results.

6.4 Results for Gaussian probabilistic forecasts

The left panel of Figure 3 shows the mean energy score for different reconciliation methods

and different methods of generating base forecasts. When base probabilistic forecasts are

generated independently, score optimisation with the energy score (ScoreOptE) performs

best, while when base forecasts are generated jointly, the MinT method for reconciliation

using the shrinkage estimator (MinTShr) yields the most accurate forecasts. The bottom-

up method as well as BTTH and JPP fail to even improve upon base forecasts in all cases.

As expected score optimisation using the variogram score does not perform as well as score

optimisation using energy score, when evaluation is carried out with respect to the latter.

However, the results are quite close suggesting that score optimisation is fairly robust to

using an alternative proper score.

To assess significant differences between the reported results, we use post-hoc Nemenyi

tests (Hollander et al. 2013). The Nemenyi test is a non-parametric test that identifies

groups of forecasts which cannot be significantly distinguished from one another. We use

the implementation of the tests available in the tsutils R package (Kourentzes 2019).

Figure 5 reports the results which should be looked at column-wise. A blue square indicates

that the method in the corresponding row, is statistically indistinguishable from the method

in that column. For all four methods of generating base forecasts, MinTShr, ScoreOptE

and OLS significantly outperform base forecasts, bottom-up forecasts, BTTH and JPP.

The right panel of Figure 3 and Figure 6 report the same output but using the variogram

score for evaluation. For this specific DGP, base model and score, BTTH significantly

outperforms all other methods. However, this result was not observed when using BTTH

for any other simulation scenario, including those reported only in the online supplement.

Excluding this result, score optimisation with respect to the variogram score is the best

performing method with MinTShr and OLS also performing well. Score optimisation, OLS,

MinTShr and BTTH all lead to significantly improvements relative to base, bottom-up and
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Figure 3: Mean scores for Gaussian DGP using different base forecast and reconciliation

methods. The left panel is the energy score, the right panel is the variogram

score.

JPP.

6.5 Results for non-Gaussian probabilistic forecast

The left panel of Figure 4 reports the mean energy score for the non-Gaussian DGP. Overall,

the results are quite similar to the Gaussian DGP. The best performing reconciliation

method is ScoreOptE when base probabilistic forecasts are independent, and MinTShr when

base forecasts are dependent. The Nemenyi matrix is omitted for brevity; please refer to

https://git.io/JJwQB for a full set of results. However, these lead to similar conclusion
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Figure 4: Mean scores for non-Gaussian DGP using different base forecast and reconcilia-

tion methods. The left panel is the energy score, the right panel is the variogram

score.

to Figure 5. The methods ScoreOptE, MinTShr and OLS are statistically indistinguishable

from one another but are significantly better than base forecasts and the bottom-up method.

The methods BTTH and JPP lead to a statistically significant deterioration in forecast

quality relative to base forecasts.

Finally, the right panel of Figure 4 and Figure 7 report results for the non-Gaussian DGP

using the variogram score to evaluate forecasts. In this case, score optimisation with respect

to the variogram score yields the best performance when base forecasts are dependent, while

MinTShr yields the best performance when base forecasts are independent. In contrast to
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Figure 5: Nemenyi matrix for Energy Score for Gaussian DGP.

the Gaussian DGP, the JPP method leads to significant improvements over base forecasts,

while the BTTH method leads to a significantly worse performance than base forecasts.

Overall, the main conclusion from the simulation study is that score optimisation leads

to significant improvements in forecast performance over base forecasts irrespective of

whether the DGP is Gaussian or non-Gaussian and irrespective of whether the energy

or variogram score is used for evaluation. For the DGPs considered in the simulation study,

MinTShr and to a lesser extent OLS also provided significant improvements over base and

bottom-up forecasts. While the existing probabilistic forecast reconciliation methods con-

sidered in the literature (BTTH and JPP) performed well in some scenarios (particularly

BTTH for the Gaussian DGP evaluated by variogram score), overall results for these meth-
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Figure 6: Nemenyi matrix for Variogram score for Gaussian Stationary DGP.

ods was mixed and even led to a statistically significant deterioration in forecast quality

relative to base forecasts in some settings.
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Figure 7: Nemenyi matrix for Variogram score with a non-Gaussian DGP.

7 Forecasting Australian Electricity Generation

7.1 Data Description

To demonstrate the potential of the proposed methods, we consider an application to fore-

casting Australian electricity generation from different sources of energy. Daily time series

were obtained form opennem.org.au, a website that compiles publicly available data from

the Australian Energy Market Operator (AEMO). Probabilistic day-ahead forecasts are

crucial inputs into operational and planning decisions that ensure the efficiency and stabil-

ity of the power network. This has become a more challenging problem with the growth in

intermittent sources of generation such as wind and solar.
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The hierarchy comprises three levels of aggregation.

1. Total generation is the sum of generation from Renewable and non-Renewable sources.

2. Renewable generation is the sum of Batteries, Hydro (inc. Pumps), Solar, Wind and

Biomass. Non-Renewable is the sum of Coal, Gas and Distillate

3. Battery generation is given by Battery (Discharging) minus Battery (Charging), Hy-

dro (inc. Pumps) is Hydro generation minus Pumps (energy used to pump water

upstream), while Solar generation is the sum of Solar (Rooftop) and Solar (Utility).

Coal generation is the sum of Black Coal and Brown Coal, while Gas is the sum of

Gas (OCGT), Gas (CCGT), Gas (Steam), Gas (Reciprocating).

In total, there are n = 23 series of which m = 15 are bottom-level series.

Figure 8 shows time plots for some selected series2. The series exhibit some interesting

and unique features. At the aggregate level, Total generation shows strong weekly seasonal-

ity, with troughs corresponding to weekends. An annual seasonal pattern is also displayed

with peaks occurring during the months of June–August as well as December–February.

These periods correspond to the winter and summer months in Australia for which electric-

ity demand peaks for heating and cooling purposes respectively. As expected, generation

from Solar peaks during the summer months of December–February. There are also some

unusually large spikes observed in both the Total and Solar series during February and

January 2020 respectively. Wind displays higher volatility (especially outside the summer

months), while generation from Distillate exhibits aperiodic spikes.

The diversity and prominence of the features in each series and each level of aggregation

highlights the importance of modelling and forecasting each series on its own merits and

then applying a reconciliation approach.

7.2 Base Forecasts

The forecast evaluation is based on a rolling window. Each training window consists of 140

days (20 weeks) of data. One-step-ahead forecasts were generated leading to 170 daily fore-

casts for evaluation. Each series was independently modelled using a one-layer feed-forward

neural network with up to 28 lags of the target variable as inputs. This was implemented

using the NNETAR function in the fable package. Neural networks are used to highlight the

2Time plots for the remaining series area available from https://git.io/JJwd0.
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versatility of reconciliation to different forecasting approaches. While including more layers

or meteorological variables as predictors will probably lead to improved base forecasts, the

primary objective is to assess the effectiveness of different forecast reconciliation methods.

Four situations were considered where base forecasts are assumed to be either Gaussian

or bootstrapped from residuals, and either dependent or independent. The histograms in

Figure 9 demonstrate departures from normality while the correlation heatmap in Figure 10

demonstrates departures from independence. Therefore, independent Gaussian probabilis-

tic forecasts are likely to represent a case of severe misspecification.
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Figure 8: Time series plots for selected series from 11 June 2019 to 10 June 2020.
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Figure 9: Densities of residuals for selected series from a typical training window of 2

October 2019 to 21 January 2020.

7.3 Reconciliation

The same methods were used for reconciliation as in the simulation study with score op-

timisation based on an objective function containing 56 days (8 weeks) of score evalua-

tions. For brevity, only the results for energy score are presented here; please refer to

https://git.io/JJwQB for a full set of results.

The mean energy score for all four base forecasting methods is summarised in Figure 11.

When base forecasts are generated assuming both independence and a Gaussian distribu-

tion, score optimisation achieves a mean energy score that is considerably smaller than all

other competing methods, with MinT providing the second smallest value. Figure 12 (left)

provides the Nemenyi matrix for this set of base forecasts, and shows that the superior

30



●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

To
ta

l
no

n−
R

en
ew

ab
le

R
en

ew
ab

le
C

oa
l

G
as

S
ol

ar
H

yd
ro

 (
in

c.
 P

um
ps

)
B

at
te

ry
B

la
ck

 C
oa

l
B

ro
w

n 
C

oa
l

G
as

 (
C

C
G

T
)

G
as

 (
O

C
G

T
)

G
as

 (
R

ec
ip

ro
ca

tin
g)

G
as

 (
S

te
am

)
S

ol
ar

 (
R

oo
fto

p)
S

ol
ar

 (
U

til
ity

)
H

yd
ro

P
um

ps
B

at
te

ry
 (

C
ha

rg
in

g)
B

at
te

ry
 (

D
is

ch
ar

gi
ng

)
D

is
til

la
te

B
io

m
as

s
W

in
d

Total
non−Renewable

Renewable
Coal
Gas

Solar
Hydro (inc. Pumps)

Battery
Black Coal

Brown Coal
Gas (CCGT)
Gas (OCGT)

Gas (Reciprocating)
Gas (Steam)

Solar (Rooftop)
Solar (Utility)

Hydro
Pumps

Battery (Charging)
Battery (Discharging)

Distillate
Biomass

Wind

Figure 10: Correlation heatmap of residuals from a typical training window of 2 October

2019 to 21 January 2020. Blue circles indicate positive correlation, while

red circles indicate negative correlation with larger circles indicating stronger

correlations.

forecasting performance of score optimisation is statistically significant. This suggests that

score optimisation is best for guarding against severe model misspecification.

For all other methods the best performing method is OLS. This difference is statisti-

cally significant as seen in Figure 12 (right), which shows the Nemenyi matrix for jointly

bootstrapped base forecasts. The corresponding figures for joint Gaussian and independent

bootstrap look mostly similar to Figure 12; please refer to https://git.io/JJwQB for a

full set of results. Although score optimisation does not improve upon base, the differences

are not significant. For all base forecasts, both JPP and BTTH are significantly worse than

base forecasts.
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8 Conclusions

This paper introduces a rigorous formulation of forecast reconciliation in the probabilistic

setting. It can be applied when the probabilistic forecast is either available as a density or

when a sample has been drawn from the probabilistic forecast. In the elliptical case, we

prove that reconciliation can recover the correct probability distribution as long as the base

forecast is of the correct form, irrespective of the scale and location of the base forecast.

Probably due to this reason, score optimisation works well in applications even when the

base forecasts are assumed to be independent.

We also prove that the log score is not proper when comparing incoherent and coherent

forecasts. Consequently, we introduce a new algorithm that trains reconciliation weights by

minimising the energy score or variogram score. Since the scores are approximated by Monte

Carlo simulation, stochastic gradient descent is used for optimisation. This method is shown

to lead to significant improvements over base forecasts, bottom-up methods and existing

probabilistic reconciliation approaches across a wide variety of simulated and empirical

examples.

An interesting result is that projection methods with certain optimality properties in

the point forecasting setting, also work well when extended to the probabilistic case. In

particular, a simple least squares projection is the best performing method in the high-

dimensional empirical example, provided the base forecasts are not too badly misspecified.

This may arise since projections implicitly provide constrained versions of the reconciliation

weights. A promising future research avenue may involve regularised versions of score

optimisation that add an L1 or L2 penalty to the objective function. Alternatively, early

stopping (Bühlmann & Yu 2003, Yao et al. 2007) of the gradient descent may lead to a

better bias-variance tradeoff in learning reconciliation weights.

A final important avenue of future research is the development of probabilistic forecast

reconciliation for domains other than the real line. These may include domains constrained

above zero, discrete domains, or domains that are a mixture of continuous distributions and

discrete point masses. While such problems are challenging, the geometric interpretation of

probabilistic forecast introduced in this paper, lays the foundation for this research agenda.
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A Proof of Theorem 3.1 and Theorem 3.2

Consider the region I given by the Cartesian product of intervals (l1, u1), (l2, u2), . . . (lm, um).

We derive the probability, under the reconciled measure, that the bottom-level series lie

in I, i.e. Pr(` � b � u), where ` = (`1, `2, . . . , `m), u = (u1, u2, . . . , um) and � denotes

element-wise inequality between vectors. The pre-image of I under g can similarly be

denoted as all points y satisfying ` � Gy � u. Using Definition 2.2,

Pr(` � b � u) =

∫
`�Gy�u

f̂(y)dy ,

where f̂ is the density of the base probabilistic forecast. Now consider a change of variables

to an n-dimensional vector z where y = G∗z. Recall, G∗ =
(
G−

...G⊥
)
, G− is a generalised

inverse of G, and G⊥ is an orthogonal complement of G. By the change of variables

Pr(` � b � u) =

∫
`�Gy�u

f̂(y)dy

=

∫
`�GG∗z�u

f̂(G∗z)|G∗|dz

=

∫
`�z1�u

f̂(G∗z)|G∗|dz ,

where z1 denotes the first m elements of z. Letting a denote the last n−m elements of z

the integral above can be written as

Pr(b ∈ I) =

∫
`�z1�u

∫
f̂(G−z1 +G⊥a)|G∗|dadz1

Replacing z1 with b, it can be seen that the term inside the outer integral is a density for

the bottom-level series. Therefore

f̃b(b) =

∫
f̂(G−b+G⊥a)|G∗|da , (4)

is the density of b. To obtain the density of the full hierarchy we first augment the density

in Equation (4) by n−m variables denoted u

f(b,u) = f̃b(b)1{u = 0} , (5)
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such that the density f(b,u) is a density for n-dimensional vector that is degenerate across

the dimensions corresponding to u. Using the change of variables,

y =
(
S

...S−⊥
)(b
u

)
,

where S−⊥ is a generalised inverse such that S′⊥S
−
⊥ = I and noting the inverse of

(
S

...S⊥
)

is given by

S∗ :=

(
S−

S′⊥

)
,

it can be seen that b = S−y and u = S′⊥y. Applying this change of variables yields the

density

f̃y(y) = |S∗|f̃b(S−y)1{S′⊥y = 0} .

Since S′⊥ is the orthogonal complement of S and since the columns of S span the coherent

subspace, the statement S′⊥y = 0 is equivalent to the statement y ∈ s. As such, the

reconciled density is given by

f̃y(y) = |S∗|f̃b(S−y)1{y ∈ s}.
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B Proof of Theorem 3.4

Let

Σ̂ = Σ +D = SΩS′ +D .

If reconciliation is carried out via a projection onto s, then SGS = S and

Σ̃ = SGΣ̂G′S′

SGSΩS′G′S′ + SGDG′S′

SΩS′ + SGDG′S′

Σ + SGDG′S′ .

Therefore to recover the true predictive using a projection, some Gopt must be found such

that GoptD = 0. Let the eigenvalue decomposition of D be given by RΛR′ , where R is

an n× q matrix with q = rank(D) and Λ is an q × q diagonal matrix containing non-zero

eigenvalues of D. By the rank nullity theorem, R will have an orthogonal complement R⊥

of dimension n× (n− q). If q = n−m then the number of columns of R⊥ is m and Gopt

can be formed as the m× n matrix (R′⊥S)−1R′⊥. If q < n−m the number of columns of

R⊥ is greater than m, and any m columns of R⊥ can be used to form Gopt in a similar

fashion. However when q > n −m, the number of columns of R⊥ is less than m and no

such m×n matrix Gopt can be formed. Therefore the true predictive can only be recovered

via a projection when rank(D) ≤ n−m.

With respect to the location, if SG is a projection then reconciled forecasts will be

unbiased as long as the base forecasts are also unbiased. When base forecasts are biased

they can be bias corrected before reconciliation as described by Panagiotelis et al. (2020)

in the point forecasting setting.
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C Proof of Theorem 4.1

The proof relies on the following change of variables,

y =
(
S

...S⊥
)(b
u

)
.

Also recall from the proof of Theorem 3.2 that S∗ =
(
S

...S⊥
)−1

Let the density of the true predictive f(y) after a change of variables, be given by

|S∗|−1fb(b)1{u = 0}. To prove that the log score is improper we construct an incoherent

base density f̂ such that Ef
[
LS(f̂ ,y)

]
< Ef [LS (f,y)]. This incoherent density is con-

structed, so that after the same change of variables it can be written as |S∗|−1f̂b(b)f̂u(u).

We require f̂u(0) > 1, i.e., u is highly concentrated around 0 but still non-degenerate. An

example is an independent normal with mean 0 and variances less than (2π)−1. Now, let

y∗ be a realisation from f . Let the first m elements of S∗y∗ be b∗, and the remaining

elements be u∗. The log score for f is thus,

LS (f,y∗) = − log f(y∗)

= − log |S∗| − log fb (b∗)− log (1{u∗ = 0}) (6)

= − log |S∗| − log fb (b∗) ,

where the third term in Equation (6) is equal to zero since the fact that y∗ ∈ s implies that

u∗ = 0. The log score for f̂ is

LS(f̂ ,y∗) = − log |S∗| − log fb(b
∗)− log fu(0) .

Since fu(0) > 1 by construction, − log fu(0) < 0, therefore

LS(f̂ ,y∗) < − log |S∗| − log fb(b
∗) = LS (f,y∗)

Since this holds for any possible realisation, it will also hold after taking expectations (by

the monotonicity of expectations). Thus f̂ violates the condition for a proper scoring rule.
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D Data generating process

To ensure that bottom-level series are noisier than top level series (a feature often observed

empirically), noise is added to the bottom-level series in the following manner

yAA,t = wAA,t + ut − 0.5vt,

yAB,t = wAB,t − ut − 0.5vt,

yBA,t = wBA,t + ut + 0.5vt,

yBB,t = wBB,t − ut + 0.5vt,

where wAA,t, wAB,t, wBA,t, wBB,t are generated from ARIMA processes as described in Sec-

tion 6.1 with innovations εAA,t, εAB,t, εBA,t, εBB,t.

For the Gaussian DGP, ut ∼ N (0, σ2u) and vt ∼ N (0, σ2v) and {εAA,t, εAB,t, εBA,t, εBB,t}
iid∼

N (0,Σ) ∀t. We follow Wickramasuriya et al. (2019) and set

Σ =


5.0 3.1 0.6 0.4

3.1 4.0 0.9 1.4

0.6 0.9 2.0 1.8

0.4 1.4 1.8 3.0


and σ2u = 28 and σ2v = 22. This ensures that the following inequalities are satisfied,

Var(εAA,t + εAB,t + εBA,t + εBB,t) ≤ Var(εAA,t + εAB,t − vt) ≤ Var(εAA,t + ut − 0.5vt),

Var(εAA,t + εAB,t + εBA,t + εBB,t) ≤ Var(εAA,t + εAB,t − vt) ≤ Var(εAB,t − ut − 0.5vt),

Var(εAA,t + εAB,t + εBA,t + εBB,t) ≤ Var(εBA,t + εBB,t + vt) ≤ Var(εBA,t + ut + 0.5vt),

Var(εAA,t + εAB,t + εBA,t + εBB,t) ≤ Var(εBA,t + εBB,t + vt) ≤ Var(εBB,t − ut + 0.5vt).

For the non-Gaussian case, errors are generated from a Gumbel copula with Beta mar-

gins as described in Section 6.1. Rather than add Gaussian noise, we simulate ut and vt

from skew t distributions using the sn package (Azzalini 2020). The scale, skew and degrees

of freedom parameters are chosen as 0.5,1.5 and 4 and 0.9,2 and 8 for ut and vt respectively.

Monte Carlo simulations show that these values satisfy the inequalities described above.
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