Supporting Information for

Polyethyleneimine-modified amorphous silica for the selective adsorption of CO_2/N_2 at high temperature

Cheng Li,[†] Xiaoqing Wang,[†] Anjie Yang, Peng Chen, Tianxiang Zhao,* and Fei Liu* Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China *Corresponding author: txzhao3@gzu.edu.cn (T.X. Zhao) and ce.feiliu@gzu.edu.cn (F. Liu). [†]C. Li and X.Q. Wang authors contributed equally.

Item	$T(^{\circ}\mathrm{C})$	q_1 (mmol·g ⁻¹)	q_2 (mmol·g ⁻¹)	b ₁ /kPa ⁻¹	b ₂ /kPa ⁻¹	n_1	n ₂	R ²
CO_2	0	1.066	2.320	4.139×10 ³	2.140×10 ⁻¹	0.777	0.932	0.9994
	25	1.326	1.817	7.502×10^{2}	3.006×10 ⁻¹	0.720	0.986	0.9999
	70	2.030	0.737	9.517×10	1.095	0.833	1.005	0.9999
CH_4	0	0.02	0.258	5.235×10 ⁻²	2.875×10 ⁻¹	6.999	0.942	0.9998
	25	0.0738	0.0136	3.839×10 ⁻¹	5.729×10	1.552	1.800	0.9982
	70	6.74×10 ⁻¹⁷	0.161	1.168×10	3.817×10 ⁻²	0.3185	1.861×10 ⁻¹⁵	0.9999
N_2	0	0.188	6.29×10 ⁻³	1.5216×10 ⁻¹	3.662×10 ⁻²	0.760	12.270	0.9994
	25	0.01	0.0277	2.815×10-1	1.578	4.795	0.800	0.9974

Table S1. Fitting parameters of DSLF isotherm model for pure isotherms of CO_2 .

Figure S1. Adsorption and desorption isotherms and BJH pore size distributions of (a, b) PEI(30%)/SiO₂, (c, d) PEI(50%)/SiO₂, (e, f) PEI(100%)/SiO₂, (g, h) IM-PEI(30%)/SiO₂, (i, j)

IM-PEI(50%)/SiO₂ and (k, l) IM-PEI(100%)/SiO₂.

Figure S2. FTIR spectra of silica adsorbent prepared by impregnation method with different PEI

loads.

Figure S3. CO₂ adsorption kinetics curves of PEI(70%)/SiO₂ and IM-PEI(70%)/SiO₂.

Figure S4. CO₂ absorption isotherms of IM-PEI(70%)/SiO₂ at different temperatures.

Figure S5. (a) N_2 and (b) CH_4 absorption isotherms of $PEI(70\%)/SiO_2$ at 0°C, 25°C and 70°C.