
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Physical modelling of water, fauna and flora: knowledge gaps, avenues forPhysical modelling of water, fauna and flora: knowledge gaps, avenues for
future research and infrastructural needsfuture research and infrastructural needs

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1080/00221686.2013.876453

PUBLISHER

Taylor and Francis Ltd / © International Association for Hydro-Environment Engineering and Research

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Thomas, Robert E., Matthew F. Johnson, Lynne E. Frostick, Daniel R. Parsons, Tjeerd J. Bouma, Jasper T.
Dijkstra, Oliver Eiff, et al.. 2019. “Physical Modelling of Water, Fauna and Flora: Knowledge Gaps, Avenues
for Future Research and Infrastructural Needs”. figshare. https://hdl.handle.net/2134/16421.

https://lboro.figshare.com/
http://dx.doi.org/10.1080/00221686.2013.876453


Physical modelling of water, fauna and flora: Knowledge gaps, avenues for future research 

and infrastructural needs 
 

Robert E. Thomas1 (IAHR Member), Matthew F. Johnson2, Lynne E. Frostick1 (IAHR Member), 

Daniel R. Parsons1, Tjeerd J. Bouma3, Jasper T. Dijkstra4, Olivier Eiff5, Sylvie Gobert6, Pierre-Yves 

Henry7, Paul Kemp8, Stuart J. McLelland1, Frederic Y. Moulin5 (IAHR Member), Dag Myrhaug7, 

Alexandra Neyts7, Maike Paul9, W. Ellis Penning4, Sara Puijalon10, Stephen P. Rice2, Adrian 

Stanica11, Davide Tagliapietra12, Michal Tal13, Alf Tørum14, Michalis I. Vousdoukas9 

 

1. Abstract 

Physical modelling is a key tool for generating understanding of the complex interactions between 

aquatic organisms and hydraulics, which is important for management of aquatic environments under 

environmental change and our ability to exploit ecosystem services. Many aspects of this field remain 

poorly understood and the use of physical models within eco-hydraulics requires advancement in 

methodological application and substantive understanding. 

This paper presents a review of the emergent themes from a workshop tasked with identifying the 

future infrastructure requirements of the next generation of eco-hydraulics researchers. The identified 

themes are: abiotic factors, adaptation, complexity and feedback, variation, and scale and scaling. The 

paper examines these themes and identifies how progress on each of them is key to existing and future 

efforts to progress our knowledge of eco-hydraulic interactions. Examples are drawn from studies on 

biofilms, plants, and sessile and mobile fauna in shallow water fluvial and marine environments. 

Examples of research gaps and directions for educational, infrastructural and technological advance 

are also presented. 
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2. Introduction 

The complex interactions between organisms and hydraulics are fundamental to the understanding 

and management of aquatic environments. The recent growth of the field of eco-hydraulics (e.g. 

Nikora 2010, Rice et al. 2010a, 2010b) reflects the imperative of predicting the consequences of 

current and future environmental change (Solomon et al. 2007, Parry et al. 2007, Thorne et al. 2007). 

Changes such as sea-level rise, increased storminess and conveyance-related flooding (Parry et al. 

2007, Thorne et al. 2007) can, in turn, be expected to force changes to the dynamic interactions 

between ecology and hydraulics. Physical modelling provides an essential bridge between field 

observations and theoretical, stochastic and numerical models that attempt to predict the impact of 

environmental changes on aquatic ecosystems. 

Recent progress in eco-hydraulic experimentation has been relatively rapid (e.g. Nikora 2010, Rice et 

al. 2010a, Nepf 2012). However, there are still many aspects of this field that are in their infancy and 

within this context it is significant that the introduction of biota is impossible in many of our hydraulic 

facilities. As a result, experiments have to rely on inert surrogates, often plastics or wood, which 

simplify responses but introduce issues of complexity and representation. Other issues relate to the 

fact that eco-hydraulic experimental research is truly interdisciplinary, requiring contributions from 

ecology, environmental sciences and hydraulic engineering/physics. It is challenging to access 

information across these disciplinary boundaries because of differing research methods, aims, and 

terminology (Rice et al. 2010a). Given the problems it is not surprising that our understanding of the 

interactions between flow and biota are still at an early stage of development. 

2.1. Issues and difficulties associated with understanding the interactions between flows and 

biota 

The measurement of turbulent fluid flow fields is a challenging problem even before considering their 

interaction with mobile objects, deformable boundaries and/or biology. Turbulent flows are highly 

variable in all three spatial dimensions and in time and exhibit a range of spatial and temporal scales 

and quasi-periodicities from very small lengths (the Taylor or Kolmogorov microscales) and short 

durations to considerably longer lengths (up to the thickness of the boundary layer) and durations. 

Thus, velocity measurements should be undertaken at high spatial and temporal resolution, but 

simultaneously cover a large spatial domain and sample for long periods of time. These dichotomous 

requirements, compounded by data storage limitations, help to make controlled laboratory 

environments especially attractive venues for the study of turbulent flows. 



However, introducing biological agents, such as biofilms, plants, and sessile and mobile vertebrate 

and invertebrate animals, into the laboratory presents significant additional challenges. Accounting for 

the additional degrees of freedom afforded by the interactions of turbulent flows with features 

immersed within the fluid and with the boundaries within which they are constrained is non-trivial. 

Aquatic fauna and flora are capable of modifying both time- and space-averaged as well as turbulent 

fluid flows, but conversely, fluid flows are also capable of changing the form and behaviour of 

deformable and reactionary biota. Furthermore, there are other, potentially unrelated, factors which 

may drive or at least modify the behaviour of biota. 

This paper documents an eco-hydraulic foresight workshop held in Trondheim on 15th September 

2011 that was organised as part of HYDRALAB IV, an Integrated Infrastructure Initiative that is part 

of the European Community’s 7th Framework Programme. This includes PISCES, a joint research 

activity designed to improve physical modelling of eco-hydraulic systems. The foresight teams aim to 

identify the probable future infrastructure requirements of the next generation of engineers and 

scientists working within the broad field of environmental hydraulics. Anticipation of those 

requirements is essential if we are to respond in a timely fashion to the challenges that face society as 

freshwater and coastal-marine systems respond to environmental change. In the sections that follow, 

the dominant issues undermining existing and future efforts to further understand eco-hydraulic 

interactions are described and discussed: 

• Abiotic Factors: the detection of, reaction to, and modification of a number of environmental 

factors that may be dependent on or independent of the flow field by subaqueous plants and 

animals; 

• Adaptation: the adjustments made to or by organisms at multiple spatio-temporal scales in 

response to hydrodynamic forcing, abiotic stimuli or both; 

• Complexity and Feedback: complex interactions between organisms and the hydrodynamic 

environment and the role of feedback, whether positive or negative, in amplifying or 

moderating organism or environmental response, respectively; 

• Variation: differences between (parts of) individual organisms, or groups of organisms of any 

species caused either by genetic differences or by the influence of environmental factors 

(Encyclopaedia Britannica 2013); and 

• Scale and Scaling: is it possible to scale down biological (and biomechanical) processes 

operating at the large scale, are the variables measured at the large scale pertinent at the small 

scale and does technology permit us to measure the same variable across scales? 



Note that while each of these issues may be viewed as being distinct and different, it is also clear that 

they overlap and interact with one another. In each section below, each issue is briefly discussed and 

then some potential avenues for research are described. Examples are drawn from studies upon 

biofilms, plants, mobile benthic invertebrates and sessile macrozoobenthos that populate shallow 

water fluvial and marine environments, reflecting the areas of expertise of the contributors to the 

workshop. The improvements to technologies and infrastructures necessary to tackle these issues are 

then outlined.  

3. Abiotic Factors 

3.1. Theme Description 

The behaviour of subaqueous plants and animals may be modified by a number of environmental 

factors that may be dependent on or independent of the flow field around them. Biota may sense and 

react to variations in acoustic, electro-chemical, optical, and thermal stimuli that may be beyond the 

ability of humans to detect and may presently also be beyond the ability of instruments to detect. 

Examples of abiotic factors (see the recent review of Bornette and Puijalon 2011) include light, sound, 

carbon dioxide, oxygen, nutrients (e.g. nitrogen, phosphorus, and sulphur), the presence/absence of 

heavy minerals, salinity, pH, organic matter (both within the substrate and the water column), 

sediment composition (both within the substrate and the water column), turbidity and temperature. 

Some of these factors are inter-related. Furthermore, the responses of biota may be physiological 

and/or chemical rather than physical and thus may also prove difficult to detect. 

3.2. Examples of knowledge gaps 

The impact of biological activity upon substrate and suspended sediment physico-chemical 

characteristics is presently an under-studied area. For example, while there is an extensive body of 

literature describing the nutrient and oxygen exchange promoted by passive irrigation and pumping of 

Thalassinidean shrimp (e.g. Aller et al. 1983, Suchanek 1983, Ziebis et al. 1996, Astall et al. 1997, 

Griffen et al. 2004, D’Andrea and DeWitt 2009), few studies have extended to study the chemical 

composition of the sediment surrounding burrows and the role of chemical exchanges in modifying 

the chemical balance within the substrate, especially under different wave-current regimes. 

Furthermore, studies of this type need to be extended to a wider range of species, particularly mobile 

animals and plants. Macrophytes, for instance, often form in clustered groups of individuals of one or 

more species on the beds of rivers. The deposition of sediment and organic matter is promoted within 

these ‘patches’ (Schoelynck et al. 2012), making them biogeochemical hotspots (Schoelynck 2011). 

There is also growing evidence that Si concentration in aquatic species litter is a major factor driving 

decomposition rates (Schaller et al. 2012a, Schaller et al. 2012b), which can impact upon ecosystem 

productivity and nutrient availability and thus affect vascular plant distribution (Bragazza and Gerdol 

2002). Unfortunately, laboratory studies on plants face practical constraints. For example, the root 



networks of some plants are too anoxic for use in the laboratory, while others (e.g. Posidonia 

oceanica) are thought to fix oxygen into the substrate, improving growing conditions. However, it is 

not currently possible to transplant P. oceanica, mainly because the uptake of nitrogen by leaves is 

insufficient to replenish the N lost during natural leaf decay (Lepoint et al. 2004). In addition, 

although P. oceanica may fix oxygen, it is still sensitive to substrate oxygen levels, has deep roots and 

has high stem densities that are difficult to replicate (Gobert et al. 2003). Further research is thus 

needed to identify and isolate the environmental parameters and tolerance ranges to which P. 

oceanica is sensitive and/or to identify other species that may be more resilient. Such studies are 

complicated by the difficulties presented by chemical instabilities within the substrate, associated with 

limited sediment thicknesses, planform areas and ground (pore) and overlying water chemical 

imbalances within experimental facilities. The latter issue may be ameliorated by using riverside 

flumes and/or unfiltered water. At a broader spatial scale, the relative importance of the decay and 

exchange of organic and inorganic matter, salinity and hydrodynamics in modifying the spatial 

distribution of individuals, and/or communities of organisms in estuarine and lagoonal environments 

is yet to be fully established. 

Due to the complex and important controls that environmental variables exert over the behaviour and 

morphology of living organisms, it is intuitive to assume that organisms will be sensitive to changes 

in these parameters. Organisms may respond to subtle alterations to environmental variables and at 

levels below those that may cause stress. However, many aquatic species tolerate a wide range of 

conditions in the field and thus have global distributions covering a range of climates, habitats and 

environmental conditions. For instance, signal crayfish (Pacifastacus leniusculus) are native to the 

north-western USA, but now thrive throughout Europe and Japan. Many non-marine aquatic plants 

also have extremely wide distributions, with climatic factors seemingly having minimal effect on their 

distribution (Santamaria 2002). This implies that many plants and animals can survive a large range of 

environmental conditions, potentially lessening the challenge of maintaining organisms in flumes. 

However, whilst great ranges of conditions are ‘survivable’, they may still have important 

consequences for flume work as organism behaviour and morphology can be largely controlled by 

environmental conditions. For instance, whilst many species of mollusc have colonies all over the 

world, those in areas of high hydraulic stress are likely to be morphologically dissimilar to those from 

sheltered areas (e.g., blue mussels (Mytilus edulis): Seed 1969, Jørgensen 1976; limpets (genera 

Cymbula and Scutellastra): Branch and Marsh 1978; brown mussels (Perna perna): McQuaid et al. 

2000, McQuaid and Lindsay 2000; Mediterranean mussels (Mytilus galloprovincialis): Steffani and 

Branch 2003, Hammond and Griffiths 2004; fan mussels (Pinna nobilis): García-March et al. 2007). 

Similarly, plants within a species can be morphologically very different depending on the 

environment within which they are growing (e.g., Idestam-Almquist and Kautsky 1995, Strand and 

Weisner 1996, Doyle 2001, Puijalon and Bornette 2006, Puijalon et al. 2008a). It would be useful to 



establish the extent to which these morphological adaptations benefit an individual and also influence 

the hydraulics within the surrounding fluid. Likewise, at the annual scale, external factors other than 

hydrodynamics may trigger changes to biofilm composition (de Brouwer et al. 2000). The effects of 

light attenuation, clogging of pore spaces, abrasion and fluid drag on biofilm dynamics have still not 

been isolated. Consequently, there is a need for research that identifies important organism stresses, 

beyond just the tolerable range, and a discussion of which environmental conditions need to be 

replicated. In addition, consideration needs to be given to organisms with a wide spatial distribution 

and the implications this has for the selection of experimental parameters. For example, when using 

blue mussels should the characteristics of the water (e.g. temperature, salinity, pH) in Norway or 

Chile be replicated? Much relevant information could be gained from existing biological literature and 

the answers to many such questions will depend on the specific aims of the study. For most studies, 

replicating the conditions at the site of interest would be sufficient, but an understanding of which 

conditions need to be replicated in flumes to ensure organism behaviour is analogous to field 

equivalents would be beneficial to experimental design. 

4. Adaptation 

4.1. Theme Description 

Living organisms adapt to the natural environment in which they are immersed at temporal scales 

ranging from supra-millennial (genetic mutation or evolution) to sub-second (reconfigurations or 

behavioural adjustments). Adjustments may be classified as avoidance or tolerance and may take the 

form of changes to growth, movement, feeding and reproduction strategies. Adaptations may be in 

response to hydraulic drivers (i.e., the mean current, whether unidirectional or multidirectional; 

waves; turbulence; boundary and/or wall effects) or they may be predominantly in response to abiotic 

drivers (see section 3). Alternatively, adaptations may result from the superimposition of abiotic 

drivers on hydraulic drivers. In addition to the adaptations made by individuals, some species also 

form colonies that may enable both the individuals within the colony and the colony as a whole to 

obtain a collective advantage (e.g., within colonies the ascidians Botryllus schlosseri inhale water 

independently but exhale into a common exhalant cavity, increasing the flow rate and enhancing the 

efficiency of waste removal; Vogel 1994). Further, some groups of species tend to associate with each 

other because of either an observed or a presumed competitive advantage afforded by cohabitation 

(e.g., goose barnacles (Capitulum mitella) require a firm substrate, which may be supplied by the 

shells of mussels (Septifer virgatus). This increases the roughness of shells, reducing wave-induced 

shear stress and thus decreasing mussel entrainment; Kawai and Tokeshi 2004). The challenge faced 

by the scientific community is to observe and measure these adaptations in an objective manner, both 

for individual specimens and entire colonies. 

4.2. Examples of knowledge gaps 



Without detailed biological and ecological knowledge of organism activity and behaviour in field 

situations, it is impossible to assess the extent to which the behaviour exhibited by an organism 

removed from its natural habitat is abnormal. Thus, although it is difficult to assess what constitutes a 

natural behaviour of a wild organism in an undisturbed field situation, a first goal must be to obtain 

baseline information on natural behaviours. Incorporating a field validation component to flume 

experiments is also an effective way of assessing the realism of the response of biota to stimuli in 

laboratory flumes as field experiments integrate across biological interactions. Once this information 

has been obtained for the organism of interest, a second goal is to assess how analogous the behaviour 

of organisms in flume environments is to field equivalents. In addition, it would be beneficial to 

understand whether organisms respond differently to a ‘natural stress’, such as a flood event, than to 

an ‘unnatural stress’ that is specifically associated with artificial environments, such as a lack of space 

or the imposition of a diurnal signature through pausing experiments each night. If tell-tale signs of 

these stresses could be identified it would be extremely beneficial to future studies. 

Acclimatising organisms to experimental conditions is important so as to avoid mistakenly believing 

the response of an organism to the new environment is actually the organism response to experimental 

variables (e.g., Barmuta et al. 2001, Battin et al. 2003, Hurtado et al. 2011, National Research 

Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals 2011). 

However, the life-history of an organism partially dictates its response to environmental and 

biological conditions. Therefore, the environment in which the organism has been kept prior to 

experimentation is likely to impact upon experimental results. This has a number of implications. 

First, organisms used in experiments may either be obtained from the field, raised in a laboratory or 

collected in the field and kept in a laboratory environment until used in experiments. There is 

evidence that the behaviour of animals raised in laboratories differs from field-collected equivalents 

(Tiselius et al. 1995) but further research is needed to determine whether organisms raised in these 

different manners behave and respond to environmental stimuli in the same way. Second, maintaining 

organisms in experimental conditions for extended periods may increase the likelihood of unnatural 

behaviours. Signal crayfish (P. leniusculus) that had been collected from the field but maintained in 

laboratory conditions rapidly altered their behaviour (Rice et al. 2012), presumably due to the 

standardisation of conditions and lack of biological interactions (e.g. lack of predation and/or 

competition). Research is needed to determine whether these findings are applicable to other species. 

In addition to research on individual organisms, the impact of communities of organisms, rather than 

descriptions of the impact of individuals and/or single species on near-bed hydraulics, needs to be 

explored. For example, growing evidence (e.g. Amyot and Downing 1997, Rowden et al. 1998, 

Widdows et al. 1998, 2000a, 2000b, 2004, Andersen 2001, Widdows and Brinsley 2002, Fortino 

2006) suggests that communities of animals can control substrate stability, with seasonal cycles in 



community structure controlling seasonal cycles in substrate stability. In addition, sessile animals 

such as ascidians, barnacles and anemones are associated with many organisms that attach to, or live 

within, reefs and aggregations (e.g. algae, molluscs and sponges) that may significantly increase the 

projected area and hence increase the drag acting on their hosts. Also, the presence of other organisms 

will increase competition which could lead to behavioural and physiological alterations. For example, 

dense communities of epiphytes (e.g. black fly larvae) may weigh down the leaves of plants and thus 

deprive their hosts of light, reduce dissolved gas exchange, affect their biomechanics and thus modify 

how their respond to forcing. Plant structure and morphology is known to change over the order of 

days/weeks in response to hydrodynamic forcing (Puijalon and Bornette 2004, 2006, Puijalon et al. 

2005, 2008a, 2008b), but the extent to which these changes provide potential competitive advantages 

and/or disadvantages (e.g. the invasion of other species if plant size reduces) is yet to be established. 

Each of these points emphasises that the interactions between communities of organisms and 

environments are complex and variable and require the expertise of biologists and physical scientists 

to unravel the complex bi-directional impacts. Organisms respond and react to each other through 

purely biological interactions, in addition to interactions with each other based on habitat modification 

(ecosystem engineering). These interactions control the community structure and, consequently, the 

impacts on the physical environment. However, the nature of the physical environment will also 

impact the biological interactions between organisms. 

5. Complexity and Feedback 

5.1. Theme Description 

Natural systems are inherently complex. Complexity arises in many different and sometimes 

unexpected ways, through the myriad interactions between biofilms, plants and animals and the 

aquatic environment, including water and sediment physico-chemistry. These often non-linear 

interactions are further complicated by feedback, whether positive or negative. King (1970: 147) 

describes the two types of feedback: 

“...positive feedback results in the operating process further extending the change it 

has induced in the dependent variable... Negative feedback, on the other hand, causes 

a self-regulating effect that reverses the change induced by the action of the process. 

The first effect is self-generating, the second is self-regulating.” 

In recent years, much work has been done on feedbacks in ‘biogeomorphology’ and/or 

‘ecogeomorphology’ (e.g., Fisher et al. 2007, Reinhardt et al. 2010, Rice et al. 2010b, Hession et al. 

2010, Darby 2010, Wheaton et al. 2011, Schoelynck et al. 2012). 

5.2. Examples of knowledge gaps 



Feedback operates at a range of spatial and temporal scales. For example, most biofilms, plants and 

benthic animals reconfigure in response to hydrodynamic loading. Changes in the projected areas of 

organisms then reduce the hydrodynamic loading upon the organisms (negative feedback) and 

simultaneously impact upon the flow field. Adjustment mechanisms and the effects of those 

mechanisms vary by species, and furthermore, vary dynamically in response to turbulent fluctuations 

(Hedden et al. 1995). Thus, as argued by Lauder (2011), in order to properly quantify the interactions 

between turbulent fluid flows and the biota immersed in them, we must make simultaneous 

measurements of the flow field and the four-dimensional motion of biota. To date, most concurrent 

measurements of biological motion and velocities have been made around fish. For example, 

Sakakibara et al. (2004) used both conventional 2D and stereoscopic (3D) Particle Image Velocimetry 

(PIV) to quantify the flow field and shedding vortex structures around the tail fin of a goldfish, while 

employing a three-dimensional shape identification technique to estimate the location and shape of the 

fish relative to the measurement planes. Very recently, Cameron et al. (in review) developed a 3D 

PIV system to quantify the flow field and coupled it with a weighted cross spectral density-based 

algorithm to detect the 2D motion of a Ranunculus penicillatus patch in the field. Nevertheless, it is 

not easy to reconstruct organism topologies or three-dimensional turbulent flow fields from planar 

data. Recent advances in high speed camera and synchronisation technologies to capture hundreds of 

positions at five to ten times the frequency of organism motion, allied to advances in tomographic, 

holographic, defocusing (Arroyo and Hinsch 2008) and scanning (Albagnac et al. 2013) 3D/3C PIV 

systems should help circumvent this problem. Scanning techniques, which measure temporal 

variations of all three velocity components within a finite volume, are particularly well-adapted for 

high-resolution hydraulic measurements and do not impose additional optical access constraints. 

At a broader scale, mobile animals alter the topographic roughness of the bed (e.g., Jones and Jago 

1993, Ziebis et al. 1996), which in turn alters the velocity profile. Evidence suggests (Wright et al. 

1997, Peine et al. 2009) that in most low-energy, fine-grained substrates, animals are the principle 

phenomenon altering roughness. However, the hydrodynamic impact of the roughness generated by 

mobile animals has rarely been quantified. For example, it has been widely noted that deposition of 

fine-grained sediment is promoted in pits that are constructed by a range of animals, including worms, 

bivalves, crustaceans and gastropods (Yager et al. 1993), but to our knowledge, no study details the 

alteration to flow characteristics created by biogenically constructed pits. Similarly, Thalassinidean 

shrimp burrows can cover large areas in cones and funnels with diameters hundreds of millimetres 

wide (Dworschak 1987). Each burrow is also subject to both passive irrigation and pumping by 

resident shrimp. Therefore, it seems likely that the hydrodynamic conditions over shrimp colonies are 

altered, but little is known of this alteration, especially in comparison to the biological literature 

focusing on nutrient and oxygen transfers, ecosystem engineering and functional behaviour of 

Thalassinidean shrimp. 



At an even broader scale, vegetation colonising the intertidal zone has been found to reduce erosion, 

enhance deposition and stabilise the coastline, thus improving growing conditions (e.g. Bouma et al. 

2009). Bouma et al. (2009) described both areal density (stems m-2) and scale-dependent feedbacks 

that were manifest through altered sedimentation patterns. However, in some circumstances (e.g. 

Fonseca and Fisher 1986, James and Barko 2000), transfer of results across species is limited and thus 

work needs to be expanded to a broader range of species, with targeted studies to identify organism 

characteristics that allow comparison of eco-hydraulic interactions across species. Whether living 

plants or dead leaves, seagrass meadows act as ecosystem engineers (sensu Jones et al. 1994, van der 

Heide et al. 2007). In the Mediterranean, leaf litter commonly gets washed up on beaches, with up to 

2 m of vertical accumulation, significantly reducing wave impact and erosion caused by waves and 

currents (Simeone and De Falco 2012). However, it remains unclear whether i) flow and turbulence 

fields are always modified in a way that reduces erosion and/or enhances deposition and ii) there are 

particular species, assemblages of species, stem, leaf and stand configurations and/or areal extents 

needed to sustain or attenuate hydrodynamic forcing (Coops et al. 1996). In addition, further study is 

needed to document and quantify the complex response of the coastal ecosystem when leaf litter is 

removed. To what extent do these actions promote the erosion of beaches, increase sedimentation 

down-current, and in turn reduce the density of sea grass meadows? 

6. Variation 

6.1. Theme Description 

Unless (part of) an individual of a particular species has been reproduced asexually (i.e. cloned), it 

cannot be expected to be either physically or behaviourally identical to another (part of an) individual 

of the same species. For example, the structure and function of the stems and leaves of individual R. 

penicillatus plants vary depending upon the extent of submergence. Seagrasses exhibit spatio-

temporal variations in stem areal density at the scale of entire meadows (e.g. Kelly et al. 2001) but are 

also formed of heterogeneous patches of variable size and shape that may force spatio-temporal 

variability in the mean and turbulent flow fields (Maltese et al. 2007). Likewise, while many 

landscape features appear to look and behave in the same manner, and indeed may share physical 

characteristics, none can be expected to be identical. In the 1:80 scale braided river experiments of Tal 

and Paola (2007, 2010), alfalfa seeds were initially distributed uniformly across a flume bed 

composed of uniform sediment with a constant water table elevation and with constant, uniform 

lighting. However, the resulting shoot growth patterns, and the behaviour of the braided channels, 

were highly variable; morphological variation emerged from apparent homogeneity or, at most, subtle 

heterogeneities (e.g. elevation or seed location differences of the order of a few grains in size) because 

of heterogeneity in process (flow and sediment dynamics). Variation may thus arise in a number of 



different ways, but a key challenge is how experimentalists account for it not only within 

experimental design but also while interpreting experimental results. 

6.2. Examples of knowledge gaps 

To date, laboratory experiments on the hydrodynamics of vegetation have generally been performed 

under constant flow depths with spatially uniform vegetation patterns in a monoculture or with 

artificial plants where all surrogates are identical. Similarly, the hydrodynamics of polychaete tube 

lawns has mainly been studied using surrogate tubes arranged on a regular grid (e.g. Friedrichs et al. 

2000) in contrast to natural lawns that form clumps and irregular patterns, creating a more 

heterogeneous environment. This approach has the advantage that the number of variables is reduced 

and input parameters can be controlled more easily. Conversely, it has the disadvantage that it does 

not replicate the natural variability in morphology and dynamic behaviour between individuals within 

a species or between different species that make up a community. For example, plant morphology is 

variable in time (seasonality) and space and the structure of vegetation patches varies (e.g. in height, 

density, vitality, number of leaves per shoot) even within species depending on their locations 

(Puijalon et al. 2008a). The combination of this variability, both at the scale of the individual and at 

the scale of the community, with the unsteadiness of the hydrodynamic regime, makes analysing 

flow-organism interaction a very complex scientific problem. While variation has been recognised 

and investigated in detail from a biological perspective (e.g. Neumeier 2005, Harder et al. 2006, 

Möller 2006, Stewart 2006, Puijalon et al. 2008a, Feagin et al. 2011, Möller et al. 2011, Miler et al. 

2012), its effect on the physical environment has not yet been fully addressed. It is therefore uncertain 

whether variation needs to be taken into account or whether the use of a representative morphology is 

sufficient for studies of organism-flow-interactions. 

In nature, the aquatic environment at a particular location and at an instant in time is controlled by 

many interacting external factors. A change to one of those factors, such as variability in upstream or 

downstream flow conditions induced by diurnal, seasonal or annual changes in tides, waves and/or 

currents, results in changes to the local hydraulics. Conversely, within a laboratory flume these 

external factors, or boundary conditions, are imposed depending upon the specific aims of the 

experimental study. Boundary conditions imposed at the inlet, outlet, bed and flume walls propagate 

and dissipate within flumes. At the inlet, biases introduced by pumps and incompletely removed by 

dampers may bear little resemblance to real world conditions and may render experimental results 

meaningless. Likewise, in contrast to the real world, secondary currents of the second kind (Prandtl 

1952) are generated adjacent to where the flume walls meet the flume bed. Thus, a key question is 

how imposed or inherited boundary conditions propagate and dissipate and what impact they have 

upon the validity of experimental results. 

 



7. Scale and Scaling 

7.1. Theme Description 

This theme encompasses two key ideas: First, do biological (and biomechanical) processes scale in 

the same way as geomorphological and hydraulic processes? i.e., can biological processes operating at 

the large scale in the real world be scaled such that behaviours are replicated in physical experiments 

conducted at smaller scales? Second, are we measuring the correct variables at the most appropriate 

scales? To what extent are the variables we measure at the large scale the pertinent variables at a 

smaller scale? Do present technologies permit us to measure the same variable across scales? The 

answers to these questions are dependent upon which parameters can be controlled and measured in 

both the field and in the experimental set up. This presents us with difficulties because, for example, 

biocosms enable researchers to have good control of abiotic variables but poor control of hydraulic 

variables while experimental flume facilities enable there to be good control of hydraulic variables but 

not abiotic variables. Furthermore, velocity measurement techniques have finite sampling volume 

sizes and at smaller scales, the amount of spatial averaging incorporated within a velocity 

measurement may be so large as to smear significant spatio-temporal patterns. For example, a modern 

laboratory Acoustic Doppler Velocimeter (ADV) has a typical sampling volume of 85 mm3. This 

corresponds to a cylinder of 6 mm in diameter and 3 mm in height (Nortek AS 2009) and is probably 

too coarse for measurements in turbulent flows with integral length scales of the same order as found 

near the vicinity of biofilms or in vegetal canopies with thin stems (see for instance the criticism of 

the interpretation of ADV measurements of López and García 2001 by Barkdoll 2002). Even hot-film 

anemometry is generally limited to spot measurements within 2 mm of the object of interest (e.g. 

Biggs et al. 1998).  

7.2. Examples of knowledge gaps 

It is often necessary to scale biota and hence employ surrogates because in some situations it is not 

feasible to use 1:1 scale physical models. Many studies have scaled physical processes using Froude 

or Reynolds numbers as the basis for comparison (e.g. ASCE 1942, Yalin 1971, Peakall et al. 1996, 

Julien 2002, Wilson et al. 2003). However, when researching at the interface with ecology, it is also 

necessary to scale biological factors. The studies of Gran and Paola (2001) and Tal and Paola (2007, 

2010) scaled the stem diameter of live surrogate riparian trees (alfalfa), but the cohesive and frictional 

components of sediment shear strength do not scale linearly (Peakall et al. 2007) and neither do the 

tensile and frictional components of plant root strength (Pollen and Simon 2006). It may also be 

necessary to scale other parameters such as root-mass and stem or population density (see Nikora 

2010 for some suggestions of appropriate similarity numbers). Many biological parameters may not 

scale linearly and for others, the concept of scaling is difficult to envisage. For instance, when scaling 

population density of live surrogates is it necessary to scale competition and how can that be 



achieved? Does a direct relationship even exist between population density and competition (between 

either individual organisms or species), and/or is it possible to identify other reasonable metrics for 

competition? If not, it may be necessary to neglect some biological parameters, with implications for 

the reliability of experimental conclusions. 

Eco-hydraulic processes and hydraulic-organism interactions operate over a wide range of spatio-

temporal scales. While linkages between microscale turbulence and biological response (i.e. 

avoidance or tolerance through sheltering, reconfiguration and/or streamlining) can be expected to be 

present, the extent to which this is the case is still unknown. Thus, if our interest is in organism 

response, to what extent is a detailed description of turbulence needed? The answer to this question is 

a function of the ability of the organism to reconfigure (i.e., its stiffness or flexibility), the scale of 

interest and also the scientific approach of the investigator (e.g. reductionist or holistic). If our interest 

concerns inflexible organisms at the channel- or coastline-scale, then presumably the answer is that a 

detailed description of turbulence is not warranted and only a relative time-averaged value is needed 

(e.g. turbulent fluctuation normalised by the time-averaged velocity; Nikora et al. 2003). However, if 

our interest concerns very flexible structures at the patch scale, the converse is likely to be true and 

microscale turbulence may have a significant impact upon the behaviour of individual organisms. The 

ideal spatio-temporal resolution of measurements is also related to the scale of interest and, indeed, to 

the approach of the investigator. Given presently available technologies, perhaps the key question is 

how to up-scale detailed measurements of turbulence signals at a single place in space and over 

relatively short periods of time (of the order of minutes to hours to adequately characterise the full 

range of turbulent fluctuations; Soulsby 1980), first to describe the response of individual organisms 

and second to describe higher level responses of the ecosystem as a whole. 

There has been a great deal of research on the impacts of (especially) sessile animals on the physical 

environment. However, much of this previous research has a biological focus at a scale of relevance 

to organisms. Research at intermediate- and large-scales is largely missing from the existing literature. 

This is of importance both because of the bioengineering potential of aggregations of bivalves for 

protecting coasts and for assessing the significance of sessile animals at larger scales. For instance, 

mussels have been found to significantly alter near-bed hydraulics in flumes with a maximum flow 

depth of 1 m (Butman et al. 1994, Peine et al. 2005, Van Duren et al. 2006), but the significance of 

mussel beds in natural flows that can be tens of metres deep is unknown. There is also significant 

uncertainty associated with upscaling bioturbation fluxes obtained from laboratory experiments on a 

small number of organisms to the broader ecosystem scale, and the significance of bioturbation (in 

terms of sediment, nutrient and other fluxes) relative to physical processes remains largely unknown. 

In one exception, Grant (1983) found that, during high ebb flow, rays disturbed up to 24.2 cm3 m-2 of 

sediment, worms displaced 1.8 cm3 m-2 and amphipods disturbed 60-70 cm3 m-2. These are significant 



quantities, especially when accumulated; however they are minor compared to tidal sediment 

displacement which was measured to be between 6.1 × 103 and 1.2 × 104 cm3 m-2 during the high ebb 

flow. Similar studies need to be developed for other animal-related processes in order to assess their 

significance in comparison to acknowledged physical processes. 

Most studies investigating the impact of vegetation on coastal hydrodynamics have been performed 

over short durations and in the summer months, when above-ground biomass is high and incident 

wave conditions are slight to moderate (e.g. Paul and Amos 2011, Jadhav and Chen 2012). Field 

studies on unidirectional and channelled flows have also tended to focus on low or moderate 

discharges, due to difficulties associated with planning field campaigns to measure highly 

unpredictable events (e.g. Bakry et al. 1992 and references therein). Results obtained from such 

studies cannot easily be extrapolated to the annual scale for perennial species (e.g. Widdows et al. 

2008a, 2008b) and it is questionable whether results obtained in this manner can be up-scaled to 

extreme or catastrophic events (Feagin et al. 2009, Koch et al. 2009). Attempts have been made to 

investigate the effect of vegetation on extreme events in laboratory studies, but these experiments 

have been performed in small-scale model basins, a fact which raises doubts as to how well they 

express field conditions due to distorted scaling and edge effects (Lynett 2007). It is therefore 

desirable to undertake full-scale laboratory or field studies under extreme conditions to establish how 

present knowledge can be transferred to extreme events such as large magnitude, low frequency 

floods or storm surges (e.g., see Rueben et al. 2011 or Song and Irish in prep.). 

8. Technological and infrastructural needs 

In order to address the outstanding issues identified above, the participants in the Trondheim 

workshop noted a series of limitations of existing infrastructures and measurement technologies and 

made a number of suggestions for infrastructural and technological development. It was recognised 

that technological developments tend to be stepwise and therefore it is necessary to anticipate the 

refinement of existing techniques and technologies. However, it was also recognised that there must 

be an awareness of potentially new and/or ground-breaking technologies and techniques that may lead 

to a revolution in our understanding, rather than evolution. 

8.1. Importance of interdisciplinary research 

Perhaps the most obvious starting point for progress is the improvement of “human technology”. 

Crucially, to date, there has been a dearth of truly interdisciplinary studies (and interdisciplinary 

discussions) involving engineers, applied mathematicians, microbiologists, ecologists and fluid 

dynamicists. Disciplinary backgrounds lead scientists in disparate fields to ask fundamentally 

different questions (see Rice et al. 2010a and references therein). For example, microbiologists may 

focus on biofilm microbial or algal composition and succession, and relate it to biomass and function 



(nutrient degradation, carbon, nitrogen, and/or phosphorus cycles), but may provide very little 

quantitative information on either the properties of the flow or the mechanical properties (three-

dimensional structure, elasticity, porosity) of the biofilm. Hydraulics and fluid mechanics researchers 

provide a better description of the local flow conditions but ignore those variables studied by 

microbiologists and struggle to describe the properties of the turbulent boundary layer and mass 

transfer due to the lack of information on the biomechanical properties of the underlying biofilms. 

The characterisation of these biomechanical properties will likely require the application of existing 

techniques developed in other fields or scientific communities (e.g., cryosections or Confocal Laser-

Scanning Microscopy (CLSM) used by Battin et al. 2003 or 3D X-ray tomography used by Iltis et al. 

2011) or the development of new techniques (e.g., the use of rotating electrodes by Boulêtreau et al. 

(2011) to make biofilm thickness and elasticity measurements). Further, these biomechanical data are 

required for input into numerical models that may help to develop a more complete understanding of 

scale-dependent interactions and feedbacks. High resolution small-scale models can then be used to 

parameterise large-scale models to bridge gaps between processes operating at different scales (see 

also section 7.2). However, numerical models are limited without adequate parameterisation and 

validation datasets. Many experimental programmes suggest such data as an anticipated outcome, but 

few consider the spatio-temporal resolution of the model mesh during experimental design. To 

minimise the need for interpolation and extrapolation, measurements should be undertaken at a 

resolution and precision that is commensurate with that of the numerical model and at positions in 

space and instants in time that are coincident with the model mesh. 

Disciplinary backgrounds also lead scientists in disparate fields to take different approaches to 

physical modelling. For example, replication helps add confidence that the independent variable 

consistently drives response (or a range of responses) in the dependent variable and that this response 

is not caused by bias or chance. In hydraulic experiments, replication typically consists of collecting 

sufficient independent velocity samples in space and time to ensure convergence of mean and 

turbulent quantities (i.e. to increase confidence that those quantities accurately describe the flow field; 

Soulsby 1980). Conversely, in ecological experiments, replication typically consists of monitoring the 

responses of different individuals while changing only the independent variable (i.e. to increase 

confidence that a particular state or behaviour is broadly representative of the target (sub-) 

population). One approach to reconcile these different perspectives may be to place physical 

modelling within a Monte Carlo framework and use a large number of replicates covering the 

parameter space of interest, while simultaneously sampling velocities over sufficient space and time, 

to identify a “most likely” organism response. However, although selection based on similarity may 

limit variance caused by intraspecies variation (e.g. gender, life-cycle stage, size, fitness, etc...), 

variance will generally be large because of a range of interacting limiting factors (see Hart and Finelli 

1999). Often, it is dominated by ecological interactions and variability in organism response rather 



than measurement error (Lancaster and Downes 2010). Crucially, the resources necessary to adopt a 

Monte Carlo framework for experimental design generally make it impracticable. A more pragmatic 

approach may be to accept that experimental aims and objectives need to be specific and realistic and 

that trade-offs and compromises will be needed to explore the desired range of parameter space while 

performing sufficient replicates to ensure confidence in results. 

Thus, interdisciplinary discussion and collaboration, within and between research institutes, 

consultancies and management agencies, are key first steps for identifying and understanding the 

essential behaviours of flora and fauna under hydraulic stress. The result of such discussion and 

collaboration should be the identification and development of common themes, problems, questions 

and approaches across disparate fields and applications. 

8.2. Limitations of existing facilities 

Before describing potential areas for improvement, it is perhaps beneficial to first outline some basic 

limitations of existing technologies and facilities. Some of these limitations follow directly from the 

lack of interdisciplinary collaboration during the design and construction of experimental facilities. 

For example, most studies conducted in fluid dynamics laboratories have been geared towards 

investigating responses to hydrodynamic forcing and have ignored behavioural changes and longer-

term responses triggered by abiotic stresses (perhaps due to toxic effects or long term fitness effects). 

Therefore, many experimental facilities can only house species that are relatively insensitive to abiotic 

stimuli and do not permit researchers to control some key abiotic factors that are needed for healthy 

organisms and/or natural behaviours (e.g. temperature or oxygen content). Furthermore, most 

hydraulics facilities have little control over the source of water- many use domestic or commercial 

water supply networks that have been chemically treated to alter or reduce the bio-geochemical 

activity that is crucial for the natural function of ecological systems. Changing the bio-geochemical 

constituents of the water, whether ground- or surface-water, may also have implications when 

sediment is incorporated in experiments. Adding sediment to a flume is not trivial and ensuring that it 

is adequately recirculated, without artificially sorting it, through pumps is already challenging even 

before one considers the control of nutrient fluxes and biotically mediated interactions between the 

water and the sediment. These fluxes are sensitive to the chemical signatures of the surface water, 

pore-water and the constituent components of the sediment bed itself. Adequately studying these 

fluxes, behaviours and responses requires large, deep facilities where key parameters can be 

controlled for long periods of time. Such facilities are often prohibitively expensive to construct and 

run and so an additional consideration is another human factor: funding. 

8.3. Desirable improvements to facilities 

Addressing the limitations identified in section 8.2 will first require many of the issues and themes 

described in sections 3 to 7 to be tackled by the scientific community. For example, while there is 



undoubtedly a need for new facilities that are flexible and capable of employing ranges of widths and 

depths and with holding facilities, etc... that ensure organism integrity, what range of widths and 

depths is required? It is known that boundary and territorial conditions are important for animals and 

plants, but how wide does a flume need to be to house a certain number of individuals and/or species? 

To answer this question, it will be necessary to improve direct observations of animals and plants in 

the natural environment, perhaps exploiting microsensors and nanotechnologies to develop location 

sensors, or using smaller tracers for plants and animals. Alternatively, perhaps it is possible to use 

chemical indicators to detect and measure the stress caused to organisms by different stimuli. 

Whichever methodologies are adopted, it will also be necessary to develop behavioural screening 

devices to identify and isolate organism responses to specific stimuli. In addition, the depth of the 

flume is a key limiting factor, both from the perspective of maximum water depth, but also maximum 

sediment thickness. Benthic organisms are likely to be sensitive to hyporheic flow, and thus a flume 

must be deep enough to ensure flow through the porous bed, not preferential flow along the flume 

floor. 

While hydraulic flume facilities have excellent control over flow rates and velocity fields they 

generally have limited control over abiotic factors. Conversely, the biocosms employed in aquaculture 

research have greater control over abiotic factors, but have little or no control over flow/wave 

conditions. Biocosms are generally installed in situ as an enclosure within the field environment. 

Therefore, problems associated with modifications to the bio-geochemical properties of the ground- 

and surface-water are minimised. There are a handful of facilities across the world (e.g., the St. 

Anthony Falls Laboratory, Minneapolis, USA; the Silverstream flume near Christchurch, New 

Zealand; and the Stroud Water Research Center, Pennsylvania, USA) that extract natural stream water 

to ensure that bio-geochemical properties are unchanged, but more hydraulic flumes need to be built 

with this provision. It is thus desirable to transfer knowledge and technologies to produce hybrid 

facilities capable of ensuring control over both hydraulic and abiotic variables. This should make it 

possible to study the behaviour of sensitive species, such as sponges, that need better control of 

abiotic factors. In addition, almost all fish species and many aquatic invertebrates are sensitive to 

underwater sounds and vibrations. Although acoustic ecology is a well-established area of research, 

relatively little is known about the response of aquatic organisms to environmental noises. However, 

animals are known to respond to anthropogenic sounds and noise is regularly and successfully used to 

manipulate the movement of fish in rivers in relation to engineered features, such as turbines and fish 

passages (Knudsen et al. 1994, Popper and Hastings 2009). Therefore, it is likely that aquatic 

organisms will be sensitive to the vibration and noise produced by pumps and also ambient laboratory 

noise. Improvements are thus needed to reduce these disturbances, either through improvements to 

pump technologies and/or by sound-proofing flume walls. 



However, in all likelihood, the single most important factor limiting advancement of eco-hydraulic 

experimentation is time. It is presently not feasible for researchers to adequately control key 

parameters, run experiments and take detailed measurements for prolonged periods of time. First, it is 

not straightforward to ensure continuous, reliable operation of complex equipment such as pumps, 

lasers, high-speed cameras etc... Furthermore, measurement techniques such as Laser Doppler 

Anemometry (LDA) and PIV are incredibly memory intensive and have associated high data storage 

requirements (of the order of 80GB of data per minute with a modern 100Hz, 5MP camera) and it is 

difficult to prevent memory buffers from becoming full, causing data loss. After image acquisition 

and storage, PIV requires significant computing power to process images, cross-correlate between 

images and extract velocity fields. Thus, improvements also need to be made to computing facilities 

in order to extract and post-process the resulting data. Solutions to all these issues are necessarily 

expensive. This has implications for funding streams. In particular, the transnational access 

components of HYDRALAB IV, whereby the European Commission provides funds to large or 

unique affiliated laboratories to enable researchers from other countries to perform experiments in 

those installations, may provide a model for new funding mechanisms. Within each member state, 

funding bodies may provide funds such that researchers from other institutions within the member 

state can gain access to facilities that are capable of performing experiments for prolonged periods of 

time. 

9. Conclusion 

This review has described the outcomes of discussions between contributors to the PISCES work 

package of HYDRALAB IV and a panel of invited experts to identify coherent themes undermining 

existing and future efforts to further understand eco-hydraulic interactions. Five dominant issues were 

defined and discussed: abiotic factors; adaptation; complexity and feedback; variation; and scale and 

scaling. Examples of areas where knowledge is currently lacking, and thus of avenues for future 

research, have been presented, with reference to biofilms, plants, sessile and mobile fauna in shallow 

water fluvial and marine environments. Finally, limitations in existing practices and experimental 

facilities have been identified and suggestions for future improvements have been made. 

It is our contention that physical modelling, informed by interdisciplinary discussion and 

collaboration, will play a crucial role in advancing our knowledge of organism-fluid interactions. The 

exploitation of infrastructural and technological advances will be central to this advance. Results 

obtained from studies performed over short durations and under low to moderate hydraulic forcing 

(e.g. incident wave conditions or discharges) cannot be easily extrapolated to the seasonal or annual 

scale, nor up-scaled to extreme or catastrophic events. There is therefore a desperate need for large, 

deep, and flexible hydraulic facilities that can permit the study of biogeochemical, biological, 

ecological and sedimentary interactions under extreme conditions (e.g., floods or storm surges) for 



extended periods. Furthermore, knowledge and technology will need to be transferred between 

disparate fields to design and construct hybrid facilities capable of ensuring control and measurement 

of both hydraulic and abiotic variables. For maximum flexibility, such a facility should be capable of 

sourcing natural stream and/or unfiltered water to ensure that bio-geochemical properties are 

unchanged and simultaneously also be capable of using salt water. Because of construction, 

maintenance and staffing costs, it is likely that this would inevitably be a shared facility and would 

require the implementation of imaginative funding mechanisms, such as the transnational access 

components of HYDRALAB IV that enable researchers from European countries to perform 

experiments in large or unique affiliated laboratories. 
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