Photoinduced Acylations Via Azolium-Promoted Intermolecular Hydrogen Atom Transfer

Joshua L. Zhu^a, Cullen R. Schull^a, Anthony T. Tam^a, Ángel Rentería-Gómez^b, Achyut Ranjan Gogoi^b, Osvaldo Gutierrez^{*b}, Karl A. Scheidt^{*a}

^aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. ^bDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, USA.

Supporting Information Table of Contents

General Information	S2
List of Compounds	S3
Reaction Optimization	S5
General Procedures and Characterization of New Compounds	S6
General procedure A for the synthesis of N-methyl-C2-acyl imidazoles:	S6
General procedure B for the synthesis of dimethylacylimidazoliums:	S9
Alternate Synthesis of Dimethylimidazolium Salts	S14
General procedure C for the triplet azolium-promoted acylation:	S16
Unsucessful Substrates	S29
Control Experiments	S30
TEMPO Trapping Experiment	S31
UV/Vis Data	S32
EDA Complex Studies	S35
X-Ray Crystal Structure Data	S66
Selected NMR Spectra	S68
References	S126

General Information

All reactions were carried out under an argon or nitrogen atmosphere in oven-dried glassware with magnetic stirring. All solvents were purified by passing through a bed of activated alumina, dried over 3Å molecular sieves, and then degassed using freeze-pump-thaw method (3-4 cycles). Purification of reaction products was carried out by flash chromatography on Biotage Isolera 4 systems with ultra-grade silica cartridges. Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light. ¹H NMR spectra were recorded on a Bruker AVANCE III 500 MHz w/ DCH Cryoprobe (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm, DMSO at 2.50 ppm). Data are reported as (ap = apparent, s = singlet, d = doublet, t = apparent triplet, q = quartet, m =multiplet, b = broad; coupling constant(s) in Hz; integration) Proton-decoupled ¹³C NMR spectra were recorded on a Bruker AVANCE III 500 MHz w/ DCH Cryoprobe (126 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.16 ppm, DMSO at 39.52 ppm). ¹⁹F and ¹¹B NMR spectra were recorded on a Bruker AVANCE III HD 500 MHz w/ BBO Prodigy Probe. Mass spectra were obtained on a WATERS Acquity-H UPLC-MS with a single quad detector (ESI) or an Agilent 7890 gas chromatograph equipped with a 5975C single quadrupole EI-MS. High-resolution mass spectrometry (HRMS) was obtained using an Agilent 6201 MSLC-TOF (ESI) or Bruker IMPACT II (ESI). Fluorescence data was obtained on an Agilent Cary Eclipse Fluorescence Spectrophotometer. FTIR data was collected at room temperature on a Bruker Tensor 37 FTIR Spectrometer equipped with a Mid IR detector and KBr beam splitter in attenuated total reflectance (ATR) mode in the range of 4000 to 600 cm⁻¹, averaged over 16 scans. The OPUS software was used for the data acquisition. All photochemical reactions were carried out using Kessil PhotoReaction PR160L 370 nm lights.

List of Compounds

1k

-N ⊕`Me

CO₂Me

Лe Me `Me Me 11

Reaction Optimization

OTf ⊕N N N Me Ph Me 1a	+ N DCE, 0.1 M 370 nm LEDs 2 h then Boc 1 equiv. DBU 2a MeCN, 0.1M 2 equiv. 5 min	Ph Ph 3a
entry #	deviation from standard	yield 3a (%) ^a
1	none	35
2	MeCN instead of DCE	15
3	PhCF ₃ instead of DCE	28
4	0.2 M instead of 0.1 M	27
5	0.025 M instead of 0.1 M	49
6	3 equiv. 2a , 0.025 M	58
7	3 equiv. 2a , 8.33 mM	67 ^b

^ayield determined by ¹H NMR with 1,3,5-trimethoxybenzene as a standard. ^bIsolated yield.

All reactions were set up inside a glovebox under a nitrogen atmosphere. To an oven-dried 2-dram vial equipped with a magnetic stir bar was added acyl azolium **1a** (17.5 mg, 0.050 mmol) and N-boc-pyrrolidine **2a** (2-3 equiv.), and 1,2-dichloroethane. The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100 % intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and concentrated, then resuspended in 1 mL MeCN. DBU (7.5 ul, 0.050 mmol) was added, and the mixture stirred, accompanied by a steady darkening of the reaction mixture. After 5 minutes, acetic acid (2.8 ul, 0.050 mmol) was added to neutralize the reaction mixture and the solution was concentrated. The yields were determined by ¹H NMR spectroscopy with 1,3,5-trimethylbenzene (0.010 mmol) as internal standard.

General Procedures and Characterization of New Compounds

General procedure A for the synthesis of N-methyl-C2-acyl imidazoles:

N-methyl-C2-acyl imidazoles **S1a** through **S1k** were prepared according to a modified literature procedure¹: To an oven-dried 100 mL round-bottom flask equipped with a magnetic stir bar was added the corresponding acyl chloride (12.0 mmol, 1.2 equiv.), followed by MeCN (40 mL, 0.25 M). 1-methyl-1H-imidazole (10.00 mmol, 1.0 equiv.) and triethylamine (20.00 mmol, 2.0 equiv.) were added dropwise, at which point a precipitate began to form. The mixture was stirred overnight, then concentrated and partitioned between water (50 mL) and ethyl acetate (20 mL). The layers were separated, and the aqueous layer extracted with ethyl acetate (2x20 mL), and the organic layers combined. The organic layers were washed with saturated sodium bicarbonate solution (20 mL) and brine (20 mL), then dried with Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/Hx 0-60%) to give the corresponding acyl imidazole **S1**.

(1-methyl-1H-imidazol-2-yl)(phenyl)methanone (**S1a**). Prepared according to general procedure A using 240.0 mmol benzoyl chloride, isolated as a translucent oil (26.9 g, 72%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.10 (m, 2H), 7.41 – 7.34 (m, 1H), 7.32 – 7.27 (m, 2H), 7.01 (s, 1H), 6.88 (s, 1H), 3.79 (s, 3H). Product matched literature characterization data.¹

(1-methyl-1*H*-imidazol-2-yl)(4-(trifluoromethyl)phenyl)methanone (**S1b**). Prepared according to general procedure A using 4-(trifluoromethyl)benzoyl chloride, isolated as a pale yellow crystalline solid (1.50 g, 59%). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.23 (s, 1H), 7.14 (s, 1H), 4.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.8, 142.5, 140.2, 140.1, 133.5 (q, *J* = 32.5 Hz), 130.8, 129.6, 127.3, 124.9 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 272.6 Hz), 36.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.11. m.p. 68-70 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1650, 1460, 1414, 1396, 1323, 1261,

1170, 1127, 1066, 904, 856, 777. HRMS (ESI/TOF) *m*/*z*: [M+H]⁺ Calcd. For C₁₂H₁₀F₃N₂O⁺ 255.0740; Found 255.0741.

4-(1-methyl-1*H*-imidazole-2-carbonyl)benzonitrile (**S1c**). Prepared according to general procedure A using 4-cyanobenzoyl chloride, isolated as a tan amorphous solid (1.34 g, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.41 – 8.35 (m, 2H), 7.81 – 7.75 (m, 2H), 7.26 (s, 1H), 7.17 (s, 1H), 4.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.4, 142.6, 140.9, 132.0, 131.3, 130.1, 127.8, 118.4, 115.8, 36.8. m.p. 63-64 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2230, 1634, 1478, 1412, 1398, 1257, 1171, 1148, 907, 782, 655. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₂H₁₀N₃O⁺ 212.0818; Found 212.0821.

(1-methyl-1*H*-imidazol-2-yl)(*p*-tolyl)methanone (**S1d**). Prepared according to general procedure A using 4-methylbenzoyl chloride, isolated as a tan amorphous solid (1.75 g, 87%). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.22 (s, 1H), 7.09 (s, 1H), 4.06 (s, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 184.0, 143.6, 143.3, 134.7, 130.9, 129.2, 128.9, 126.7, 36.5, 21.8. m.p. 58-59 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1641, 1607, 1463, 1412, 1396, 1293, 1166, 903, 764, 657. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₂H₁₃N₂O⁺ 201.1022; Found 201.1023.

(4-methoxyphenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1e**). Prepared according to general procedure A using 4-methoxybenzoyl chloride, isolated as a white amorphous solid (1.60 g, 74%). ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, *J* = 9.1 Hz, 2H), 7.19 (s, 1H), 7.07 (s, 1H), 6.96 (d, *J* = 9.0 Hz, 2H), 4.04 (s, 3H), 3.86 (s, 3H). Product matched literature characterization data.²

(4-(*tert*-butyl)phenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1f**). Prepared according to general procedure A using 4-(*tert*-butyl)benzoyl chloride, isolated as a pale yellow amorphous solid (1.67 g, 69%). ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.23 (s, 1H), 7.10 (s, 1H), 4.08 (s, 3H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 184.0, 156.2, 143.2, 134.5, 130.5, 129.1, 126.5, 125.0, 36.3, 35.0, 31.0. m.p. 75-77 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2962, 2904, 1641, 1604, 1460, 1412, 1396, 1265, 1169, 1107, 936, 905, 779, 658. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₅H₁₉N₂O⁺ 243.1492; Found 243.1496.

(4-fluorophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1g**). Prepared according to general procedure A using 4-fluorobenzoyl chloride, isolated as a tan amorphous solid (1.56 g, 77%). ¹H NMR (500 MHz, CDCl₃) δ 8.41 – 8.31 (m, 2H), 7.22 (s, 1H), 7.14 (t, *J* = 8.7 Hz, 2H), 7.11 (s,1H), 4.06 (s, 3H). Product matched literature characterization data.³

(4-chlorophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1h**). Prepared according to general procedure A using 4-chlorobenzoyl chloride, isolated as a white amorphous solid (1.19 g, 58%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.22 (s, 1H), 7.11 (s, 1H), 4.07 (s, 3H). Product matched literature characterization data.⁴

(3-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1i**). Prepared according to general procedure A using 3-bromobenzoyl chloride, isolated as a white powder (1.49 g, 56%).¹H NMR (500 MHz, CDCl₃) δ 8.41 (t, *J* = 1.8 Hz, 1H), 8.23 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.69 (ddd, *J* = 8.0, 2.1, 1.0 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 0.9 Hz, 1H), 7.14 (d, *J* = 0.9 Hz, 1H), 4.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.3, 142.5, 138.9, 135.4, 133.5, 129.5, 129.5, 129.3, 127.1, 122.1, 36.5. m.p. 55-56 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1643, 1561, 1473, 1454, 1423, 1396, 1253, 1170, 1146, 943, 907, 758, 724, 681. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₁H₁₀BrN₂O⁺ 264.9971; Found 264.9969.

(2-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone (**S1j**). Prepared according to general procedure A using 2-bromobenzoyl chloride, isolated as a white waxy solid (1.47 g, 55%). ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.21 (s, 1H), 7.14 (s, 1H), 4.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.7, 142.6, 139.8, 133.1, 131.3, 130.4, 129.6, 127.4, 126.8, 119.9, 36.2. m.p. 106-108 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1657, 1588, 1467, 1397, 1280, 1250, 1046, 1027, 935, 903, 755, 693, 645. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₁H₁₀BrN₂O⁺ 264.9971; Found 264.9969.

methyl 4-(1-methyl-1*H*-imidazole-2-carbonyl)benzoate (**S1k**). Prepared according to general procedure A using methyl 4-(chlorocarbonyl)benzoate, isolated as a white powder (1.97 g, 81%). ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.0 Hz, 2H), 8.14 (d, *J* = 8.5 Hz, 2H), 7.25 (s, 1H), 7.15 (s, 1H), 4.11 (s, 3H), 3.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 183.3, 166.4, 142.7, 140.8, 133.1, 130.5, 129.6, 129.1, 127.2, 52.3, 36.5. m.p. 147-149 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1723, 1649, 1443, 1413, 1290, 1259, 906, 868, 791, 721, 690. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₃H₁₃N₂O₃⁺ 245.0921; Found 245.0922.

(1-methyl-1H-imidazol-2-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2vl)phenvl)methanone (S11). To an oven-dried round-bottom flask equipped with a magnetic stir bar was added (4-bromophenyl)(1-methyl-1H-imidazol-2-yl)methanone (1.00 g, 3.77 mmol, 1.0 equiv.), followed by B₂Pin₂ (1.15 g, 4.53 mmol, 1.2 equiv.), potassium acetate (1.30 g, 13.2 mmol, 3.5 equiv.), and (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride (138 mg, 0.189 mmol, 0.05 equiv.). The flask was flushed with nitrogen then degassed DMF (19 mL, 0.2 M) was added, and the mixture heated to 85 °C for 24 hours. At this point, the mixture was cooled to room temperature, and diluted with 100 mL water and 100 mL ethyl acetate. The layers were separated, and the aqueous layer extracted with ethyl acetate (2x50 mL). The organic layers were combined and washed with water (5x 50 mL) and brine (50 mL). The organic layers were dried with Na₂SO₄, filtered, concentrated, and purified by column chromatography (EtOAc/hexanes 0-60%) to afford S11 as a tan amorphous solid (750 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.3 Hz, 2H), 7.91 (d, J = 8.2 Hz, 2H), 7.23 (s, 1H), 7.11 (s, 1H), 4.09 (s, 3H), 1.35 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 184.4, 143.0, 139.3, 134.3, 129.6, 129.3, 126.8, 84.0, 36.4, 24.8, 24.7. ¹¹B NMR (160 MHz, CDCl₃) δ 31.2 (br). m.p. 125-126 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2979, 1646, 1406, 1391, 1358, 1266, 1144, 1088, 903, 818, 777, 662. HRMS $(\text{ESI/TOF}) m/z: [M+H]^+$ Calcd. For $C_{17}H_{22}BN_2O_3^+$ 313.1718; Found 313.1718.

General procedure B for the synthesis of dimethylacylimidazoliums:

To an oven-dried 20 mL scintillation vial equipped with a magnetic stir bar was added the corresponding acyl imidazole **S1** (2.00 mmol), followed by 15 mL dichloromethane.

Methyl trifluoromethanesulfonate (4.00 mmol, 2.0 equiv.) was added dropwise, and the mixture stirred 24 hours. At this point, diethyl ether was added dropwise until solid stopped precipitating, and the suspension was filtered and washed with additional diethyl ether to provide dimethylacylimidazolium triflate 1.

2-benzoyl-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1a**). Prepared according to general procedure B using 100.0 mmol **S1a**, isolated as a fluffy white solid (33.0 g, 94%).¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.84 – 7.79 (m, 1H), 7.78 (s, 2H), 7.70 – 7.62 (m, 2H), 3.88 (s, 6H). Product matched literature characterization data.⁵

1,3-dimethyl-2-(4-(trifluoromethyl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1b**). Prepared according to general procedure B using **S1b**, isolated as a fluffy white solid (736 mg, 88%). ¹H NMR (500 MHz, DMSO) δ 8.11 (d, *J* = 8.1 Hz, 2H), 8.01 (s, 2H), 8.01 (d, *J* = 8.3 Hz, 2H), 3.79 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 180.0, 138.5, 137.9, 134.4 (q, *J* = 32.1 Hz), 131.4, 131.3, 126.5, 126.5, 126.5, 126.4, 126.2, 124.8, 124.7, 122.6, 122.2, 120.5, 119.6, 38.0. ¹⁹F NMR (470 MHz, DMSO) δ -61.87, -77.78. m.p. 190-191 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3120, 1680, 1526, 1414, 1328, 1258, 1240, 1163, 1134, 1067, 1017, 924, 861, 779, 638. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₃H₁₂F₃N₂O⁺ 269.0896; Found 269.0895.

2-(4-cyanobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1c**). Prepared according to general procedure B using **S1c**, isolated as a tan powder (554 mg, 74%). ¹H NMR (500 MHz, DMSO) δ 8.15 (d, *J* = 8.3 Hz, 2H), 8.08 (d, *J* = 8.4 Hz, 2H), 8.02 (s, 2H), 3.80 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 179.8, 138.5, 137.7, 133.4, 130.9, 126.2, 122.2, 119.6, 118.1, 117.2, 38.1. ¹⁹F NMR (470 MHz, DMSO) δ -77.75. m.p. 176-178 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3118, 2229, 1664, 1523, 1425, 1273, 1252, 1152, 1034, 926, 863, 771, 638. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₃H₁₂N₃O⁺ 226.0975; Found 226.0973.

1,3-dimethyl-2-(4-methylbenzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate (1d). Prepared according to general procedure B using S1d, isolated as a fluffy white solid (647, 89%). ¹H NMR (500 MHz, DMSO) δ 7.98 (s, 2H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 3.78 (s, 6H), 2.46 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 180.0, 147.6, 138.7, 132.2, 130.6, 130.2, 125.3, 122.0, 119.4, 37.2, 21.6. ¹⁹F NMR (470 MHz, DMSO) δ -77.75. m.p. 188-190 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3120, 1661, 1605, 1525 1447, 1260, 1242, 1227, 1160, 1032, 924, 800, 737, 639. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C_{13H15}N₂O⁺ 215.1179; Found 215.1178.

2-(4-methoxybenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1e**). Prepared according to general procedure B using **S1e**, isolated as a fluffy white solid (526 mg, 72%).¹H NMR (500 MHz, DMSO) δ 7.93 (s, 2H), 7.95 – 7.89 (m, 2H), 7.22 – 7.16 (m, 2H), 3.92 (s, 3H), 3.77 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 178.3, 165.7, 139.0, 133.2, 127.2, 124.9, 120.6 (q, *J* = 322.5 Hz), 115.0, 56.0, 36.8. ¹⁹F NMR (470 MHz, DMSO) δ - 77.75. m.p. 140-141 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3123, 1655, 1600, 1570, 1444, 1292, 1225, 1155, 1032, 925, 845, 637. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₃H₁₅N₂O₂⁺ 231.1128; Found 231.1130.

2-(4-(*tert*-butyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1f**). Prepared according to general procedure B using **S1f**, isolated as a white powder (677 mg, 83%). ¹H NMR (500 MHz, DMSO) δ 7.99 (s, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 6H), 1.34 (s, 9H). ¹³C NMR (126 MHz, DMSO) δ 179.9, 159.9, 138.7, 132.2, 130.5, 126.5, 125.3, 122.0, 119.4, 37.2, 35.4, 30.7. ¹⁹F NMR (470 MHz, DMSO) δ - 77.74. m.p. 178-180 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2968, 1670, 1604, 1426, 1275, 1262, 1180, 1156, 1032, 929, 785, 638. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₆H₂₁N₂O⁺ 257.1548; Found 257.1648.

2-(4-fluorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1g**). Prepared according to general procedure B using **S1g**, isolated as a white powder (627 mg, 85%). ¹H NMR (500 MHz, DMSO) δ 8.09 – 8.01 (m, 2H), 7.99 (s, 2H), 7.53 (t, *J* = 8.8 Hz, 2H), 3.79 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 179.1, 167.6, 165.6, 138.3, 133.9, 133.8, 131.6, 131.6, 125.6, 124.6, 122.0, 119.4, 117.0, 116.8, 37.4. ¹⁹F NMR (470 MHz, DMSO) δ -77.79, -100.76. m.p. 133-135 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3119, 1677, 1600, 1526, 1445, 1274, 1257, 1163, 1029, 924, 802, 775, 637. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₂H₁₂FN₂O⁺ 219.0928; Found 219.0926.

2-(4-chlorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1h**). Prepared according to general procedure B using **S1h**, isolated as a white powder (606 mg, 79%). ¹H NMR (500 MHz, DMSO) δ 8.01 (s, 2H), 7.97 (d, *J* = 8.6 Hz, 2H), 7.76 (d, *J* = 8.6 Hz, 2H), 3.81 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 179.6, 141.1, 138.2, 133.8, 132.4, 129.9, 125.8, 120.9 (q, *J* = 322.2 Hz), 37.7. ¹⁹F NMR (470 MHz, DMSO) δ -77.75. m.p. 178-180 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3121, 1676, 1658, 1589, 1446, 1273, 1259, 1241, 1169, 1093, 1031, 922, 851, 772, 626. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₂H₁₂ClN₂O⁺ 235.0633; Found 235.0630.

2-(3-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1i**). Prepared according to general procedure B using **S1i**, isolated as a white powder (755 mg, 88%). ¹H NMR (500 MHz, DMSO) δ 8.12 (t, *J* = 1.9 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 8.00 (s, 2H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.63 (t, *J* = 7.9 Hz, 1H), 3.79 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 179.3, 138.3, 137.8, 137.0, 132.3, 131.6, 129.4, 125.8, 122.6, 37.6. ¹⁹F NMR (470 MHz, DMSO) δ -77.77. m.p. 111-113 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3129, 1669, 1524, 1431, 1261, 1158, 1030, 952, 746, 722, 638. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₂H₁₂BrN₂O⁺ 279.0128; Found 279.0126.

2-(2-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1j**). Prepared according to general procedure B using **S1j**, isolated as a white powder (742 mg, 86%). ¹H NMR (500 MHz, DMSO) δ 8.06 (s, 2H), 7.92 – 7.87 (m, 1H), 7.86 – 7.81 (m, 1H), 7.74 – 7.69 (m, 2H), 3.76 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 180.1, 137.2, 136.3, 135.7, 134.1, 132.1, 129.2, 126.3, 119.4, 120.7 (q, *J* = 322.3 Hz), 37.5. ¹⁹F NMR (470 MHz, DMSO) δ -77.74. m.p. 117-118 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3121, 1682, 1524, 1438, 1265, 1146, 1030, 924, 751, 637. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₂H₁₂BrN₂O⁺ 279.0128; Found 279.0125.

2-(4-(methoxycarbonyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1k**). Prepared according to general procedure B using **S1k**, isolated as a white powder (753 mg, 92%). ¹H NMR (500 MHz, DMSO) δ 8.19 (d, *J* = 8.3 Hz, 2H), 8.06 (d, *J* = 8.2 Hz, 2H), 8.03 (s, 2H), 3.92 (s, 3H), 3.80 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 180.1, 165.4, 138.4, 137.9, 135.0, 130.6, 129.9, 125.9, 120.7 (q, *J* = 322.2 Hz), 52.9, 37.8. ¹⁹F NMR (470 MHz, DMSO) δ -77.8. m.p. 186-187 °C. FTIR (diamond, anvil, solid) cm⁻¹: 3128, 1726, 1676, 1526, 1438, 1274, 1156, 1031, 925, 752, 637. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₄H₁₅N₂O₃⁺ 259.1077; Found 259.1076.

1,3-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1*H*-imidazol-3ium trifluoromethanesulfonate (**1**I). Prepared according to general procedure B using **S1**I, isolated as a fluffy white solid (811 mg, 85%). (¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.94 (d, *J* = 7.2 Hz, 2H), 7.81 (d, *J* = 1.6 Hz, 2H), 3.88 (s, 6H), 1.36 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 180.9, 139.3, 136.3, 136.1, 129.2, 125.9, 122.0, 119.5, 84.9, 77.4, 37.7, 25.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -78.4. 11B NMR (160 MHz, CDCl₃) δ 30.5. m.p. 230-231 °C. FTIR (diamond, anvil, solid) cm⁻¹: 1668, 11508, 1401, 1363, 1264, 1247, 1144, 1090, 1029, 926, 781, 637. HRMS (ESI/TOF) *m/z*: [M-CF₃O₃S]⁺ Calcd. For C₁₈H₂₄BN₂O₃⁺ 327.1875; Found 327.1881.

Alternate Synthesis of Dimethylimidazolium Salts

2-benzoyl-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate (**1a**) can also be prepared using a two-step sequence. To a 20-mL scintillation vial was added (1-methyl-1H-imidazol-2-yl)(phenyl)methanone **S1a** (931 mg, 5.0 mmol) and 1,4-dioxane (5 mL), followed by iodomethane (1.56 mL, 25.0 mmol). The mixture was stirred and heated to 70 °C for 18 hours, after which it was cooled to room temperature. The precipitated solid was filtered and washed with 3 mL dioxane and 25 mL hexanes. This solid was resuspended in DCM (20 mL), and silver trifluoromethanesulfonate was added (1.32g, 5.15 mmol). The mixture was stirred for 24 hours, after which it was filtered and reconcentrated. The residue was triturated with 10 mL diethyl ether and 10 mL hexanes to afford **1a** as a fluffy white solid (1.58g, 90%).

Compounds 2a⁶, 2b⁷, 2c⁸, 2e⁹, 2f¹⁰, 2g¹¹, 2h¹², 2i⁶, 2j¹³, 2k¹⁴, 2l¹⁵, 2n¹⁶, 2p¹⁷, 2t¹⁸ were prepared according to literature procedures. Compounds 2o, 2q, 2r, 2s were purchased from Ambeed or Sigma-Aldrich and used as received.

allyl pyrrolidine-1-carboxylate (2d). Prepared according to a modified literature procedure¹⁹: To an oven-dried round-bottom flask equipped with a magnetic stir bar was added pyrrolidine (711 mg, 10.00 mmol), followed by DCM (15 mL). The solution was cooled to 0 °C and allyl chloroformate (1.12 mL, 10.50 mmol, 1.05 equiv.) was added dropwise, followed by sodium carbonate (1.0 M in H₂O, 15.0 mmol, 1.5 equiv.). The mixture was allowed to come up to room temperature and stirred overnight. At this point, the layers were separated and the aqueous layer extracted with DCM (2x20 mL). The organic layers were combined and washed with sat. NaHCO₃ (20 mL) and brine (20 mL), then dried with Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/Hx 0-20%) to give 2d as a clear oil (1.36 g, 88%). ¹H NMR (500 MHz, CDCl₃) δ 5.93 (dddt, J = 17.1, 10.7, 7.8, 5.4 Hz, 1H), 5.33 – 5.24 (m, 1H), 5.22 – 5.13 (m, 1H), 4.64 – 4.53 (m, 2H), 3.42 – 3.31 (m, 4H), 1.91 – 1.77 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 133.3, 117.0, 65.5, 46.2, 45.7, 25.8, 24.9. FTIR (diamond, anvil, oil) cm⁻¹: 3505, 2975, 2953, 2877, 1699, 1648, 1408, 1343, 1332, 1226, 1178, 1129, 1099, 979, 768. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₈H₁₄NO₂⁺ 156.1019; Found 156.1020.

tert-butyl dipropylcarbamate (**2m**). To a round-bottom flask equipped with a magnetic stir bar was added dipropylamine (1.35 mL, 9.9 mmol), followed by DCM (30 mL). Boc₂O (2.157 g, 9.9 mmol, 1.0 equiv.) was added portionwise, followed by DMAP (241.5 mg, 1.98 mmol, 0.2 equiv.). The mixture was stirred overnight, then concentrated. The residue was purified by silica gel chromatography (EtOAc/Hx 0-20%) to give **2m** as a clear oil (1.85 g, 93%). ¹H NMR (500 MHz, CDCl₃) δ 3.15 – 3.04 (m, 4H), 1.50 (q, *J* = 7.5 Hz, 4H), 1.43 (s, 9H), 0.84 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 78.9, 48.9, 48.8, 28.6, 22.1, 21.5, 11.4. FTIR (diamond, anvil, oil) cm⁻¹: 2966, 2933, 2876, 1691, 1462, 1413, 1382, 1364, 1244, 1154, 1104, 909, 868, 770. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₁H₂₃NO₂Na⁺ 224.1621; Found 224.1620.

General procedure C for the triplet azolium-promoted acylation:

All reactions were set up inside a glovebox under a nitrogen atmosphere. To an oven-dried 30 mL scintillation vial equipped with a magnetic stir bar was added acyl azolium 1 (0.20 mmol unless otherwise specified) and coupling partner 2 (3 equiv.), and 1,2-dichloroethane (24 mL unless otherwise specified). The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100 % intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and concentrated, then resuspended in 4 mL MeCN. DBU (1 equiv.) was added, and the mixture stirred, accompanied by a steady darkening of the reaction mixture. After 5 minutes, acetic acid (1 equiv.) was added to neutralize the reaction mixture and the solution was concentrated and purified by silica gel column chromatography (EtOAc/hexanes). Rotameric products are reported in the style of Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. *Science* 2016, *352*, 1304-1308.

tert-butyl 2-benzoylpyrrolidine-1-carboxylate (**3a**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a thick colorless oil (37 mg, 67%, mixture of rotamers 1:1.5 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 7.0 Hz, 1H, A), 7.95 (d, *J* = 7.0 Hz, 1H, B), 7.62 – 7.52 (m, 1H, A+B), 7.52 – 7.42 (m, 2H, A+B), 5.34 (dd, *J* = 9.2, 2.9 Hz, 1H, A), 5.19 (dd, *J* = 8.8, 3.8 Hz, 1H, B), 3.73 – 3.66 (m, 1H, B), 3.66 – 3.60 (m, 1H, A), 3.59 – 3.51 (m, 1H, B), 3.51 – 3.42 (m, 1H, A), 2.39 – 2.23 (m, 1H, A+B), 2.02 – 1.86 (m, 3H, A+B), 1.46 (s, 9H, A), 1.26 (s, 9H, B). Product matched literature characterization data.²⁰

3a was also prepared according to general procedure C but using 1.0 mmol acyl azolium **1a**, 3.0 mmol coupling partner **2a**, and 20 mL 1,2-dichloroethane (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a thick colorless oil (146 mg, 53%).

benzyl 2-benzoylpyrrolidine-1-carboxylate (**3b**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2b**. The reaction mixture was purified by silica

gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (38 mg, 62%, mixture of rotamers 1.13:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H, A), 7.93 – 7.87 (m, 2H, B), 7.61 – 7.54 (m, 1H, A+B), 7.51 – 7.29 (m, 5H, A+B), 7.21 – 7.09 (m, 2H, A+B), 5.39 (dd, *J* = 9.1, 3.0 Hz, 1H, A), 5.31 (dd, *J* = 9.2, 3.3 Hz, 1H, B), 5.19 (d, *J* = 12.5 Hz, 1H, A), 5.10 (d, *J* = 12.5 Hz, 1H, A), 5.06 (d, *J* = 12.5 Hz, 1H, B), 5.00 (d, *J* = 12.5 Hz, 1H, B), 3.80 – 3.69 (m, 1H, A+B), 3.59 (ddt, *J* = 24.9, 10.5, 7.2 Hz, 1H, A+B), 2.41 – 2.26 (m, 1H, A+B), 2.04 – 1.88 (m, 3H, A+B). Product matched literature characterization data.²¹

1-(2-benzoylpyrrolidin-1-yl)-2,2-dimethylpropan-1-one (**3c**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2c**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as an off-white crystalline solid (33 mg, 64%). 1H NMR (500 MHz, CDCl3) δ 8.01 – 7.99 (m, 2H), 7.55 – 7.52 (m, 1H), 7.45 – 7.42 (m, 2H), 5.54 (dd, J = 8.7, 4.7 Hz, 1H), 3.91 – 3.86 (m, 1H), 3.81 – 3.76 (m, 1H), 2.20 – 2.06 (m, 2H), 2.04 – 1.96 (m, 1H), 1.82 – 1.76 (m, 1H), 1.28 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 198.8, 176.5, 135.6, 133.2, 128.7, 128.6, 62.8, 48.6, 38.7, 27.7, 27.3, 26.2. m.p. 97-98 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2969, 2875, 1692, 1616, 1581, 1479, 1406, 1380, 1362, 1225, 1176, 1003, 987, 702. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₆H₂₂NO₂⁺ 260.1645; Found 260.1646.

allyl 2-benzoylpyrrolidine-1-carboxylate (**3d**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2d**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (29 mg, 56%, mixture of rotamers 1.22:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (ddd, *J* = 18.9, 8.3, 1.4 Hz, 2H, A+B), 7.59 (dt, *J* = 13.7, 7.4 Hz, 1H, A+B), 7.48 (dt, *J* = 12.4, 7.7 Hz, 2H, A+B), 5.95 (ddt, *J* = 17.2, 10.7, 5.4 Hz, 1H, A), 5.73 (ddt, *J* = 17.2, 10.6, 5.3 Hz, 1H, B), 5.43 – 5.17 (m, 2H, A+B), 5.14 – 5.00 (m, 1H, A+B), 4.66 – 4.54 (m, 2H, A), 4.54 – 4.44 (m, 2H, A), 3.77 – 3.66 (m, 1H, A+B), 3.65 – 3.51 (m, 1H, A+B), 2.43 – 2.26 (m, 1H, A+B), 2.05 – 1.85 (m, 3H, A+B). ¹³C NMR (126 MHz, CDCl₃) δ 198.2, 198.1, 154.9, 154.3, 135.0, 134.9, 133.6, 133.5, 133.2, 132.9, 128.9, 128.8, 128.7, 128.5, 117.4, 117.1, 66.1, 65.9, 61.6, 61.4, 47.2, 46.7, 31.0, 30.0, 24.3, 23.4. FTIR (diamond, anvil, oil) cm⁻¹: 2978, 2880, 1704, 1698, 1448, 1408, 1348, 1225, 1125, 991, 922, 768, 701. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₅H₁₇NO₃Na⁺ 282.1101; Found 282.1107.

2,2,2-trichloroethyl 2-benzoylpyrrolidine-1-carboxylate (**3e**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2e**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (29 mg, 41%, mixture of rotamers 1.13:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (ddt, *J* = 14.5, 7.0, 1.4 Hz, 2H, A+B), 7.59 (dtt, *J* = 55.5, 7.3, 1.3 Hz, 1H, A+B), 7.48 (td, *J* = 7.8, 1.9 Hz, 2H, A+B), 5.45 (dd, *J* = 9.3, 2.9 Hz, 1H, A), 5.40 (dd, *J* = 9.1, 3.0 Hz, 1H, B), 4.75 (dd, *J* = 85.8, 12.0 Hz, 2H, B), 4.63 (dd, *J* = 79.4, 11.9 Hz, 2H, A), 3.84 – 3.76 (m, 1H, A+B), 3.71 – 3.60 (m, 1H, A+B), 2.46 – 2.32 (m, 1H, A+B), 2.06 – 1.93 (m, 3H, A+B). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 197.3, 153.1, 152.4, 134.7, 134.7, 133.7, 128.9, 128.9, 128.7, 128.5, 95.7, 95.4, 75.0, 74.9, 61.9, 61.4, 47.5, 46.9, 30.8, 30.0, 24.2, 23.3. FTIR (diamond, anvil, oil) cm⁻¹: 2954, 2882, 1719, 1693, 1448, 1413, 1347, 1225, 1175, 1128, 1062, 984, 758, 702. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₄H₁₄Cl₃NO₃Na⁺ 371.9932; Found 371.9932.

2-(trimethylsilyl)ethyl 2-benzoylpyrrolidine-1-carboxylate (**3f**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2f**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (35 mg, 55%, mixture of rotamers 1.13:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.1, 1.1 Hz, 2H, A), 7.96 (dd, *J* = 8.5, 1.1 Hz, 2H, B), 7.63 – 7.53 (m, 1H, A+B), 7.48 (dt, *J* = 15.6, 7.8 Hz, 2H, A+B), 5.36 (dd, *J* = 9.2, 3.3 Hz, 1H, A), 5.27 (dd, *J* = 9.2, 3.6 Hz, 1H, B), 4.24 – 4.12 (m, 2H, A), 4.12 – 3.99 (m, 2H, B), 3.76 – 3.63 (m, 1H, A+B), 3.59 (dt, *J* = 10.5, 7.3 Hz, 1H, B), 3.51 (dt, *J* = 10.4, 7.3 Hz, 1H, A), 2.41 – 2.24 (m, 1H, A+B), 2.04 – 1.86 (m, 3H, A+B), 1.07 – 0.98 (m, 2H, A), 0.85 – 0.71 (m, 2H, B), 0.03 (s, 9H, A), -0.07 (s, 9H, B). ¹³C NMR (126 MHz, CDCl₃) δ 198.4, 198.2, 155.4, 154.9, 135.0, 134.9, 133.4, 128.8, 128.7, 128.6, 128.5, 63.6, 63.5, 61.4, 61.3, 47.0, 46.6, 31.0, 30.0, 24.4, 23.4, 17.9, 17.7, -1.3, -1.5. FTIR (diamond, anvil, oil) cm⁻¹: 2953, 2895, 1703, 1690, 1449, 1416, 1351, 1249, 1176, 1082, 936, 859, 837, 769, 699. HRMS (ESI/TOF) *m*/*z*: [M+Na]⁺ Calcd. For C₁₇H₂₅NO₃SiNa⁺ 342.1496; Found 342.1495.

tert-butyl 2-benzoylazetidine-1-carboxylate (**3g**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2g**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a yellow crystalline solid (18 mg, 34%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.84 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 5.54 (dd, J = 9.7, 5.6 Hz, 1H), 4.03 (td, J = 8.5, 6.2 Hz, 1H), 3.96 (ddd, J = 8.9, 8.0, 5.5 Hz, 1H), 2.65 (dtd, J = 11.2, 9.2, 6.3 Hz, 1H), 2.14 (ddt, J = 11.2, 8.9, 5.6 Hz, 1H), 1.56 – 1.22 (m, 9H). Product matched literature characterization data.²²

tert-butyl 2-benzoylpiperidine-1-carboxylate (**3h**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2h**. The reaction mixture was purified by silica gel column chromatography (0-15% EtOAc/hexanes) to yield the product as a colorless oil (21 mg, 37%, mixture of rotamers 1.38:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.85 (m, 2H, A+B), 7.59 – 7.50 (m, 1H, A+B), 7.49 – 7.40 (m, 2H, A+B), 5.66 (d, *J* = 6.7 Hz, 1H, A), 5.48 (d, *J* = 6.9 Hz, 1H, B), 3.99 (d, *J* = 13.4 Hz, 1H, B), 3.91 (d, *J* = 13.4 Hz, 1H, A), 3.21 (t, *J* = 12.8 Hz, 1H, B), 3.17 – 3.08 (m, 1H, A), 2.14 (d, *J* = 13.9 Hz, 1H, A), 2.03 (d, *J* = 14.0 Hz, 1H, B), 1.87 – 1.75 (m, 1H, A+B), 1.73 – 1.56 (m, 2H, A+B), 1.49 – 1.28 (m, 11H, A+B). Product matched literature characterization data.²³

tert-butyl 2-benzoylazepane-1-carboxylate (3i). Prepared according to general procedure C using acyl azolium 1a and coupling partner 2i. The reaction mixture was purified by silica gel column chromatography (0-15% EtOAc/hexanes) to yield the product as a white crystalline solid (35 mg, 58%, mixture of rotamers 1.17:1 A:B) ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.97 (m, 2H, A), 7.95 – 7.89 (m, 2H, B), 7.60 – 7.50 (m, 1H, A+B), 7.50 – 7.41 (m, 2H, A+B), 5.54 (dd, J = 11.9, 6.1 Hz, 1H, A), 5.23 (dd, J = 12.1, 5.2 Hz, 1H, B), 4.10 – 4.02 (m, 1H, B), 3.90 (ddt, *J* = 14.9, 4.2, 1.9 Hz, 1H, A), 3.23 (ddd, *J* = 14.7, 10.9, 1.5 Hz, 1H, B), 3.04 (ddd, *J* = 14.9, 11.8, 1.6 Hz, 1H, A), 2.23 (dddd, *J* = 15.7, 8.4, 6.2, 1.1 Hz, 1H, A), 2.17 (tdd, J = 8.8, 4.4, 1.3 Hz, 1H, B), 1.97 – 1.85 (m, 1H, A+B), 1.86 – 1.69 (m, 2H, A+B), 1.69 – 1.62 (m, 1H, A+B), 1.62 – 1.47 (m, 2H, A+B), 1.45 (s, 5H, A+B), 1.40 – 1.29 (m, 1H, A+B), 1.27 (s, 4H, A+B). ¹³C NMR (126 MHz, CDCl₃) δ 201.2, 200.9, 156.2, 155.2, 136.0, 135.9, 133.2, 128.8, 128.7, 128.6, 128.2, 80.3, 79.9, 61.7, 59.8, 44.4, 44.4, 30.8, 30.6, 30.1, 29.6, 29.5, 29.2, 28.6, 28.4, 26.8, 25.9. m.p. 64-66 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2975, 2930, 2855, 1688, 1578, 1509, 1392, 1366, 1274, 1206, 1159, 1006, 697. HRMS (ESI/TOF) m/z: [M+Na]⁺ Calcd. For C₁₈H₂₅NO₃Na⁺ 326.1727; Found 326.1736.

tert-butyl 1-benzoylisoindoline-2-carboxylate (**3***j*). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2***j*. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a yellow oil (60 mg, 93%, mixture of rotamers 1:1.91 A:B) ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 8.4, 0.9 Hz, 2H, A), 7.86 (dd, J = 8.2, 1.2 Hz, 2H, B), 7.63 – 7.55 (m, 3H, A), 7.48 (dt, J = 9.0, 7.7 Hz, 3H, B), 7.37 (d, J = 7.6 Hz, 2H, A), 7.34 – 7.26 (m, 2H, B), 7.21 – 7.16 (m, 1H, B), 7.16 – 7.11 (m, 1H, A), 7.04 (t, J = 8.0 Hz, 1H, A+B), 6.45 (d, J = 2.9 Hz, 1H, A), 6.21 (d, J = 3.0 Hz, 1H, B), 4.96 (dd, J = 14.7, 3.1 Hz, 1H, B), 4.91 (dd, J = 14.6, 3.0 Hz, 1H, A), 4.85 (d, J = 14.7 Hz, 1H, B), 4.79 (d, J = 14.5 Hz, 1H, A), 1.48 (s, 9H, A), 1.28 (s,

9H, B). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 196.8, 154.3, 153.7, 138.2, 137.2, 136.1, 135.9, 135.7, 133.4, 133.4, 129.0, 128.9, 128.9, 128.7, 128.6, 128.5, 127.8, 127.6, 123.6, 123.4, 123.0, 122.9, 80.8, 80.5, 69.1, 67.8, 52.6, 52.3, 28.5, 28.2. FTIR (diamond, anvil, oil) cm⁻¹: 2978, 2932, 1770, 1702, 1597, 1468, 1395, 1304, 1255, 1152, 1001, 948, 846, 765, 713, 694. HRMS (ESI/TOF) *m*/*z*: [M+Na]⁺ Calcd. For C₂₀H₂₁NO₃Na⁺ 346.1414; Found 346.1410.

tert-butyl cyclohexyl(2-oxo-2-phenylethyl)carbamate (**3k**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2k**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a white powder (36 mg, 57%, mixture of rotamers 1:2.04 A:B) ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 7.84 (m, 2H, A+B), 7.63 – 7.52 (m, 1H, A+B), 7.46 (dt, *J* = 19.4, 7.6 Hz, 2H, A+B), 4.60 (s, 2H, A), 4.48 (s, 2H, B), 4.12 (tt, *J* = 12.2, 3.7 Hz, 1H, B), 3.78 (tt, *J* = 11.5, 3.4 Hz, 1H, A), 1.89 – 1.80 (m, 2H, A+B), 1.79 – 1.71 (m, 2H, A+B), 1.64 – 1.56 (m, 1H, A+B), 1.49 (s, 9H, A), 1.41 – 1.34 (m, 1H, A+B), 1.32 (s, 9H, B), 1.31 – 1.19 (m, 1H, A+B), 1.12 (qd, *J* = 12.5, 3.6 Hz, 2H, A+B), 1.06 – 0.93 (m, 1H, A+B). ¹³C NMR (126 MHz, CDCl₃) δ 195.6, 195.3, 155.7, 155.2, 135.6, 135.5, 133.4, 133.4, 128.9, 128.7, 128.0, 127.7, 80.0, 79.9, 56.3, 54.3, 49.4, 48.8, 31.6, 31.3, 28.6, 28.3, 26.1, 25.9, 25.7. m.p. 99-100 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2929, 2855, 1704, 1688, 1449, 1365, 1245, 1221, 1166, 1105, 1010, 986, 909, 755, 690. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₉H₂₇NO₃Na⁺ 340.1883; Found 340.1880.

tert-butyl (2-oxo-2-phenyl-1-(pyridin-3-yl)ethyl)carbamate (**3l**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2l**. The reaction mixture was purified by silica gel column chromatography (0-30% acetone/hexanes) to yield the product as a yellow oil (30 mg, 48%). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 4.8 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.54 – 7.45 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.14 (dd, *J* = 7.5, 5.0 Hz, 1H), 6.43 – 6.34 (m, 2H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 195.6, 156.7, 155.3, 149.8, 137.3, 134.8, 133.6, 129.3, 128.7, 123.2, 123.0, 80.1, 61.6, 28.4. FTIR (diamond, anvil, oil) cm⁻¹: 2977, 1781, 1711, 1691, 1591, 1485, 1367, 1249, 1164, 1056, 998, 773, 688. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₈H₂₀N₂O₃Na⁺ 335.1366; Found 335.1362.

tert-butyl (1-oxo-1-phenylbutan-2-yl)(propyl)carbamate (**3m**). To an oven-dried 30 mL scintillation vial equipped with a magnetic stir bar in the glove box was added acyl azolium

1a (70 mg, 0.20 mmol) and coupling partner **2m** (121 mg, 0.60 mmol, 3 equiv.), and 24 mL 1,2-dichloroethane. The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100 % intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and concentrated. The reaction mixture was loaded onto a plug of silica with dichloromethane and flushed with additional dichloromethane (50 mL), which was discarded. The plug was then flushed with 20:80 MeOH:DCM (50 mL) and this flush was concentrated and resuspended in 4 mL MeCN. DBU (30 uL, 0.20 mmol, 1 equiv.) was added, and the mixture stirred, accompanied by a steady darkening of the reaction mixture. After 5 minutes, acetic acid (11.2 uL, 0.20 mmol, 1 equiv.) was added to neutralize the reaction mixture and the solution was concentrated and purified by silica gel column chromatography (0-5% EtOAc/hexanes) to yield the product as a colorless oil (23 mg, 37%, mixture of rotamers 2.23:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H, A), 7.96 (d, *J* = 7.7 Hz, 2H, B), 7.54 (t, *J* = 7.1 Hz, 1H, A+B), 7.43 (t, *J* = 7.4 Hz, 2H, A+B), 5.52 (dd, J = 8.4, 6.3 Hz, 1H, A), 5.18 (dd, J = 8.8, 5.7 Hz, 1H, B), 3.02 - 2.87 (m, 2H, B), 2.83 (dd, J = 9.3, 6.7 Hz, 2H, A), 2.07 – 1.82 (m, 2H, A+B), 1.72 (m, 1H, A+B), 1.50 (s, 9H, B), 1.44 (s, 9H, A), 1.39 – 1.22 (m, 1H, A+B), 0.99 – 0.90 (m, 3H, A+B), 0.76 - 0.65 (m, 3H, A+B). ¹³C NMR (126 MHz, CDCl₃) δ 199.6, 198.9, 156.1, 154.9, 136.3, 136.0, 133.4, 133.4, 128.7, 128.7, 128.4, 80.7, 80.2, 61.7, 59.9, 46.4, 45.7, 28.6, 28.5, 23.3, 22.3, 22.2, 21.8, 11.6, 11.6, 10.8, 10.6. FTIR (diamond, anvil, oil) cm⁻¹: 2969, 2935, 1683, 1456, 1407, 1366, 1314, 1249, 1148, 917, 862, 772, 690. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₈H₂₇NO₃Na⁺ 328.1883; Found 328.1882.

4-chloro-N-(1-oxo-1-phenylpentan-2-yl)benzamide (3n). To an oven-dried 30 mL scintillation vial equipped with a magnetic stir bar in the glove box was added acyl azolium 1a (70 mg, 0.20 mmol) and coupling partner 2n (127 mg, 0.60 mmol, 3 equiv.), and 24 mL 1,2-dichloroethane. The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100 % intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and concentrated. The reaction mixture was loaded onto a plug of silica with dichloromethane and flushed with additional dichloromethane (50 mL), which was discarded. The plug was then flushed with 20:80 MeOH:DCM (50 mL) and this flush was concentrated and resuspended in 4 mL MeCN. DBU (30 uL, 0.20 mmol, 1 equiv.) was added, and the mixture stirred, accompanied by a darkening of the reaction mixture. After 5 minutes, acetic acid (11.2 uL, 0.20 mmol, 1 equiv.) was added to neutralize the reaction mixture and the solution was concentrated and purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (29 mg, 45%) ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 8.4, 1.4 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.51 (t, J = 7.4 Hz, 7 7.7 Hz, 1H), 5.82 (td, J = 7.5, 4.4 Hz, 1H), 2.08 – 1.96 (m, 1H), 1.69 (dddd, J = 14.0, 10.6, 7.4, 4.8 Hz, 1H), 1.51 - 1.37 (m, 1H), 1.37 - 1.25 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C

NMR (126 MHz, CDCl₃) δ 199.2, 166.0, 138.0, 134.4, 134.2, 132.6, 129.1, 128.9, 128.8, 128.7, 54.3, 35.7, 18.5, 14.0. FTIR (diamond, anvil, oil) cm⁻¹: 3309, 3061, 2960, 2932, 2872, 1687, 1636, 1595, 1530, 1483, 1465, 1362, 1210, 1092, 1014, 967, 845, 757, 695, 668. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₁₈H₁₉ClNO₂⁺ 316.1099; Found 316.1099.

1-(tert-butyl) 2-methyl (2S)-5-benzoylpyrrolidine-1,2-dicarboxylate (30). Prepared according to general procedure C using acyl azolium 1a and coupling partner 20. The reaction mixture was purified by silica gel column chromatography (0-30% acetone/hexanes) to yield the product as a clear oil (33 mg, 50%, 1:1 dr). Diastereomer 1: mix of rotamers 1.04:1 A:B. ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.97 (m, 2H, A), 7.97 – 7.93 (m, 2H, B), 7.64 - 7.55 (m, 1H, A+B), 7.53 - 7.38 (m, 2H, A+B), 5.55 (dd, J = 9.6, 1.6 Hz, 1H, A), 5.46 (dd, J = 9.6, 1.7 Hz, 1H, B), 4.67 (dd, J = 9.3, 1.6 Hz, 1H, B), 4.56 (dd, J = 9.3, 1.6 Hz, 1H, A), 2.44 (ttd, J = 12.6, 9.6, 6.8 Hz, 1H, A+B), 2.30 (qdd, J = 13.0, A)9.2, 6.8 Hz, 1H, A+B), 1.99 (dddt, J = 13.0, 7.3, 6.0, 1.5 Hz, 1H, A+B), 1.95 – 1.88 (m, 1H, A+B), 1.41 (s, 9H, B), 1.27 (s, 9H, A). ¹³C NMR (126 MHz, CDCl₃) δ 198.3, 197.9, 173.7, 173.5, 153.6, 135.0, 134.7, 133.6, 129.0, 128.8, 128.7, 128.6, 128.4, 80.8, 80.7, 61.6, 61.5, 59.8, 59.6, 52.5, 52.3, 28.9, 28.9, 28.4, 28.2, 28.0, 27.9, 27.8. FTIR (diamond, anvil, oil) cm⁻¹: 2976, 1747, 1702, 1449, 1391, 1366, 1204, 1166, 1056, 992, 703. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₈H₂₃NO₅Na⁺ 356.1468; Found 356.1471. *Diastereomer 2*: mix of rotamers 1.02:1 A:B. ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H, A+B), 7.57 (dt, J = 14.6, 7.4 Hz, 1H, A+B), 7.47 (dt, J = 14.1, 7.7 Hz, 2H, A+B), 5.38 (dd, J = 8.4, 4.6 Hz, 1H, A), 5.20 (t, J = 7.6 Hz, 1H, A), 4.52 (dd, J = 7.6, 5.0 Hz, 1H, B), 4.40 (t, *J* = 7.2 Hz, 1H, B), 3.81 (s, 3H, B), 3.80 (s, 3H, A), 2.39 – 2.13 (m, 3H, A+B), 2.13 – 1.99 (m, 1H, A+B), 1.42 (s, 9H, B), 1.26 (s, 9H, A). ¹³C NMR (126 MHz, CDCl₃) δ 197.2, 197.0, 172.5, 172.4, 153.8, 153.8, 135.6, 135.4, 133.3, 133.3, 128.8, 128.7, 128.7, 128.5, 81.1, 80.9, 62.7, 61.9, 60.4, 59.9, 52.5, 52.3, 30.3, 29.5, 29.2, 28.8, 28.4, 28.2. FTIR (diamond, anvil, oil) cm⁻¹: 2977, 1757, 1738, 1697, 1449, 1394, 1366, 1201, 1157, 1125, 1071, 768, 701. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₈H₂₃NO₅Na⁺ 356.1468; Found 356.1470.

(3R)-4-((4-acetoxy-1-oxo-1-phenylbutan-2-yl)amino)-2,2-dimethyl-4-oxobutane-1,3-diyl diacetate (**3p**). To an oven-dried 30 mL scintillation vial equipped with a magnetic stir bar in the glove box was added acyl azolium **1a** (70 mg, 0.20 mmol) and coupling partner **2p** (199 mg, 0.60 mmol, 3 equiv.), and 24 mL 1,2-dichloroethane. The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100 % intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and concentrated. The reaction mixture was loaded onto a plug of silica with dichloromethane and flushed with additional dichloromethane (50 mL), which was discarded. The plug was then flushed with 20:80

MeOH:DCM (50 mL) and this flush was concentrated and resuspended in 4 mL MeCN. DBU (30 uL, 0.20 mmol, 1 equiv.) was added, and the mixture stirred, accompanied by a darkening of the reaction mixture. After 5 minutes, acetic acid (11.2 uL, 0.20 mmol, 1 equiv.) was added to neutralize the reaction mixture and the solution was concentrated and purified by silica gel column chromatography (0-80% EtOAc/hexanes) to yield the product as a colorless oil (46 mg, 53%, mix of diastereomers 1.1:1 A:B). ¹H NMR (500 MHz, $CDCl_3$) δ 7.96 (ddd, J = 8.8, 7.6, 1.4 Hz, 2H, A+B), 7.66 – 7.59 (m, 1H, A+B), 7.51 (td, J =7.9, 2.2 Hz, 2H, A+B), 7.17 (d, J = 7.5 Hz, 1H, A), 7.08 (d, J = 7.5 Hz, 1H, B), 5.72 - 5.58 (m, 1H, A+B), 5.08 (s, 1H, B), 5.02 (s, 1H, A), 4.15 – 4.11 (m, 1H, B), 4.11 (t, J = 6.2 Hz, 1H, A+B), 4.07 (s, 1H, B), 4.05 (s, 1H, A), 3.97 (ddd, *J* = 11.5, 6.3, 5.2 Hz, 1H, A), 3.84 (s, 1H, A), 3.82 (s, 1H, B), 2.41 – 2.28 (m, 1H, A+B), 2.21 (s, 3H, B), 2.20 (s, 3H, A), 2.10 (s, 3H, A), 2.06 (s, 3H, B), 2.08 – 2.00 (m, 1H, A+B), 1.94 (s, 3H, A), 1.93 (s, 3H, B), 1.09 (s, 3H, A), 1.06 (s, 3H, B), 1.06 (s, 3H, A), 1.03 (s, 3H, B). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 197.7, 171.1, 171.1, 170.8, 170.7, 170.0, 170.0, 168.2, 168.1, 134.3, 134.0, 133.9, 129.2, 129.1, 128.8, 69.5, 69.4, 60.2, 59.9, 51.5, 51.4, 37.4, 37.3, 32.5, 32.0, 21.6, 21.4, 21.0, 21.0, 21.0, 20.9, 20.9, 20.9, 20.8, 20.8. FTIR (diamond, anvil, oil) cm⁻¹: 3354, 2970, 1736, 1672, 1512, 1448, 1371, 1222, 1037, 1001, 988, 919, 735, 700, 637. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₂₂H₃₀NO₈⁺ 436.1966; Found 436.1973.

tert-butyl 2-(4-(trifluoromethyl)benzoyl)pyrrolidine-1-carboxylate (**3q**). Prepared according to general procedure C using acyl azolium **1b** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (42 mg, 61%, mix of rotamers 1:1.2 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.1 Hz, 2H), 8.05 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 5.30 (dd, *J* = 9.2, 3.7 Hz, 1H), 5.18 (dd, *J* = 9.1, 4.0 Hz, 1H), 3.72 – 3.65 (m, 1H), 3.65 – 3.59 (m, 1H), 3.55 (dt, *J* = 10.5, 6.9 Hz, 1H), 3.48 (dt, *J* = 10.5, 7.3 Hz, 1H), 2.39 – 2.23 (m, 1H), 2.01 – 1.83 (m, 3H), 1.45 (s, 9H), 1.25 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 198.22, 198.07, 154.57, 153.73, 138.03, 134.64 (q, *J* = 32.8 Hz), 134.52 (q, *J* = 32.7 Hz), 128.94, 128.64, 125.94 (q, *J* = 3.7 Hz), 125.78 (q, *J* = 3.7 Hz), 123.66 (q, *J* = 272.7 Hz), 123.61 (q, *J* = 272.8 Hz), 80.16, 80.04, 61.65, 61.32, 46.91, 46.72, 30.81, 29.75, 28.54, 28.30, 24.39, 23.67. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.2. FTIR (diamond, anvil, oil) cm⁻¹: 2979, 1697, 1693, 1399, 1367, 1325, 1165, 1129, 1067, 994, 851. HRMS (ESI/TOF) *m*/*z*: [M+Na]⁺ Calcd. For C₁₇H₂₀F₃NO₃Na⁺ 366.1288; Found 366.1302.

tert-butyl 2-(4-cyanobenzoyl)pyrrolidine-1-carboxylate (**3r**). Prepared according to general procedure C using acyl azolium **1c** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (31 mg, 52%, mix of rotamers 1:1.04 A:B). ¹H NMR (500 MHz, CDCl₃) δ

8.06 (d, J = 8.5 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 5.25 (dd, J = 9.1, 3.8 Hz, 1H), 5.14 (dd, J = 9.0, 4.2 Hz, 1H), 3.64 (dddd, J = 26.8, 10.5, 7.1, 5.5 Hz, 1H), 3.51 (ddt, J = 39.5, 10.5, 7.1 Hz, 1H), 2.39 – 2.23 (m, 1H), 2.01 – 1.82 (m, 3H), 1.44 (s, 9H), 1.24 (s, 9H). Product matched literature characterization data.²⁴

tert-butyl 2-(4-methylbenzoyl)pyrrolidine-1-carboxylate (**3s**). Prepared according to general procedure C using acyl azolium **1d** and coupling partner **2a** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as an off-white crystalline solid (37 mg, 64%, mix of rotamers 1:1.58 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 2H, A), 7.84 (d, *J* = 8.1 Hz, 2H, B), 7.26 (d, *J* = 8.2 Hz, 2H, B), 7.23 (d, *J* = 8.0 Hz, 2H, A), 5.31 (dd, *J* = 9.3, 2.9 Hz, 1H, A), 5.17 (dd, *J* = 8.9, 3.7 Hz, 1H, B), 3.70 – 3.64 (m, 1H, B), 3.63 – 3.58 (m, 1H, A), 3.53 (dt, *J* = 10.6, 6.6 Hz, 1H, B), 3.45 (dt, *J* = 10.3, 7.2 Hz, 1H, A), 2.41 (s, 3H, B), 2.38 (s, 3H, A), 2.34 – 2.21 (m, 1H, A+B), 1.97 – 1.83 (m, 3H, A+B), 1.45 (s, 9H, A), 1.25 (s, 9H, B). Product matched literature characterization data.²⁵

tert-butyl 2-(4-methoxybenzoyl)pyrrolidine-1-carboxylate (**3t**). Prepared according to general procedure C using acyl azolium **1e** and coupling partner **2a** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as an off-white powder (37 mg, 64%, mix of rotamers 1:1.48 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H, A), 7.97 – 7.91 (m, 2H, B), 6.97 – 6.93 (m, 2H, B), 6.93 – 6.89 (m, 2H, A), 5.30 (dd, J = 9.3, 3.0 Hz, 1H, A), 5.15 (dd, J = 8.7, 4.0 Hz, 1H, B), 3.88 (s, 3H, B), 3.86 (s, 3H, A), 3.74 – 3.64 (m, 1H, B), 3.64 – 3.58 (m, 1H, A), 3.54 (dt, J = 10.4, 6.7 Hz, 1H, B), 3.46 (dt, J = 10.5, 7.4 Hz, 1H, A), 2.37 – 2.21 (m, 1H, A+B), 2.01 – 1.84 (m, 3H, A+B), 1.46 (s, 9H, A), 1.25 (s, 9H, B). Product matched literature characterization data.²⁶

tert-butyl 2-(4-(*tert*-butyl)benzoyl)pyrrolidine-1-carboxylate (**3u**). Prepared according to general procedure C using acyl azolium **1f** and coupling partner **2a** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as an white solid (46 mg, 69%, mix of rotamers 1:1.48 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 2H, A), 7.87 (d, J = 8.5 Hz, 2H, B), 7.47 (d, J = 8.5 Hz, 2H, B), 7.44 (d, J = 8.4 Hz, 2H, A), 5.31 (dd, J = 9.3, 3.2 Hz, 1H, A), 5.17 (dd, J = 8.9, 3.6 Hz, 1H, B), 3.69 – 3.63 (m, 1H, B), 3.63 – 3.58 (m, 1H, A), 3.53 (dt, J = 10.2, 6.7 Hz, 1H, B), 3.45 (dt, J = 10.5, 7.3 Hz, 1H, A), 2.36 – 2.20 (m, 1H, A+B),

1.97 – 1.82 (m, 3H, A+B), 1.44 (s, 9H, A), 1.33 (s, 9H, B), 1.31 (s, 9H, A), 1.25 (s, 9H, B). ¹³C NMR (126 MHz, CDCl₃) δ 198.6, 198.2, 157.0, 154.5, 154.0, 132.6, 132.5, 128.6, 128.2, 125.7, 125.6, 79.8, 79.6, 61.5, 61.0, 46.9, 46.7, 35.2, 35.2, 31.2, 31.0, 30.0, 28.6, 28.3, 24.3, 23.6. m.p. 92-94 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2967, 1700, 1695, 1604, 1397, 1365, 1229, 1163, 1119, 992. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₂₀H₂₉NO₃Na⁺ 354.2040; Found 354.2039.

tert-butyl 2-(4-fluorobenzoyl)pyrrolidine-1-carboxylate (**3v**). Prepared according to general procedure C using acyl azolium **1g** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (32 mg, 55%, mix of rotamers 1:1.2 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H, A+B), 7.20 – 7.07 (m, 2H, A+B), 5.28 (dd, *J* = 9.2, 3.4 Hz, 1H, A), 5.14 (dd, *J* = 9.1, 4.1 Hz, 1H, B), 3.71 – 3.63 (m, 1H, B), 3.63 – 3.58 (m, 1H, A), 3.54 (dt, *J* = 10.6, 6.9 Hz, 1H, B), 3.46 (dt, *J* = 10.5, 7.3 Hz, 1H, A), 2.39 – 2.21 (m, 1H, A+B), 2.02 – 1.83 (m, 3H, A+B), 1.45 (s, 9H, A), 1.24 (s, 9H, B). Product matched literature characterization data.²⁷

tert-butyl 2-(4-chlorobenzoyl)pyrrolidine-1-carboxylate (**3w**). Prepared according to general procedure C using acyl azolium **1h** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (33 mg, 53%, mixture of rotamers 1:1.3 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.90 (m, 2H, A), 7.90 – 7.87 (m, 2H, B), 7.47 – 7.43 (m, 2H, B), 7.43 – 7.39 (m, 2H, A), 5.26 (dd, J = 9.2, 3.5 Hz, 1H, A), 5.13 (dd, J = 9.2, 4.1 Hz, 1H, B), 3.70 – 3.63 (m, 1H, B), 3.63 – 3.57 (m, 1H, A), 3.53 (dt, J = 10.5, 6.9 Hz, 1H, B), 3.45 (dt, J = 10.5, 7.3 Hz, 1H, A), 2.36 – 2.21 (m, 1H, A+B), 1.99 – 1.80 (m, 3H, A+B), 1.44 (s, 9H, A), 1.24 (s, 9H, B). Product matched literature characterization data.²⁸

tert-butyl 2-(3-bromobenzoyl)pyrrolidine-1-carboxylate (**3x**). Prepared according to general procedure C using acyl azolium **1i** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a yellow crystalline solid (40 mg, 57%, mixture of rotamers 1:1.25 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (t, *J* = 1.8 Hz, 1H, A), 8.07 (t, *J* = 1.8 Hz, 1H, B), 7.89 (dt, *J* = 7.8, 1.3 Hz, 1H, A), 7.86 (dt, *J* = 7.8, 1.3 Hz, 1H, B), 7.70 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H, B), 7.66 (ddd, *J* = 8.0, 2.0, 1.1 Hz, 1H, A), 5.12 (dd, *J* = 9.1, 4.0 Hz, 1H, B), 3.69 – 3.64 (m, 1H, B),

3.63 – 3.58 (m, 1H, A), 3.53 (dt, J = 10.5, 6.9 Hz, 1H, B), 3.46 (dt, J = 10.5, 7.3 Hz, 1H, A), 2.37 – 2.22 (m, 1H, A+B), 1.99 – 1.77 (m, 3H, A+B), 1.44 (s, 9H, A), 1.26 (s, 9H, B). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 197.5, 154.5, 153.7, 137.0, 136.9, 136.2, 136.2, 131.6, 131.3, 130.5, 130.3, 127.1, 126.7, 123.2, 123.1, 80.1, 79.9, 61.3, 61.1, 46.9, 46.7, 30.9, 29.8, 28.5, 28.3, 24.3, 23.6. m.p. 75-76 °C. FTIR (diamond, anvil, solid) cm⁻¹: 2975, 1690, 1566, 1477, 1395, 1365, 1207, 1161, 1122, 1082, 885, 772, 685. HRMS (ESI/TOF) *m*/*z*: [M+Na]⁺ Calcd. For C₁₆H₂₀BrNO₃Na⁺ 376.0519; Found 376.0520.

tert-butyl 2-(2-bromobenzoyl)pyrrolidine-1-carboxylate (**3y**). Prepared according to general procedure C using acyl azolium **1j** and coupling partner **2a** with 8 mL DCE (0.025 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a waxy white solid (33 mg, 47%, mixture of rotamers 1:1.27 A:B). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.7, 1.7 Hz, 1H, A), 7.64 (dd, *J* = 8.0, 1.2 Hz, 1H, B), 7.60 (dd, *J* = 8.1, 1.2 Hz, 1H, A), 7.48 (dd, *J* = 7.6, 1.8 Hz, 1H, B), 7.37 (q, *J* = 7.4 Hz, 1H, A+B), 7.32 (td, *J* = 7.7, 1.7 Hz, 1H, B), 7.30 – 7.27 (m, 1H, A), 5.03 – 4.97 (m, 1H, A+B), 3.72 – 3.65 (m, 1H, B), 3.65 – 3.60 (m, 1H, A), 3.51 – 3.44 (m, 1H, B), 3.44 – 3.36 (m, 1H, A), 2.18 – 1.83 (m, 4H, A+B), 1.46 (s, 9H, A), 1.39 (s, 9H, B). ¹³C NMR (126 MHz, CDCl₃) δ 201.9, 200.8, 154.7, 153.9, 140.0, 139.5, 134.2, 133.7, 132.1, 131.8, 129.5, 128.8, 127.3, 127.3, 119.9, 119.5, 80.3, 79.9, 64.3, 64.3, 47.0, 46.8, 29.1, 28.6, 28.4, 28.2, 24.0, 23.1. FTIR (diamond, anvil, solid) cm⁻¹: 2975, 1691, 1586, 1478, 1393, 1365, 1208, 1162, 1118, 1052, 986, 886, 770. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₆H₂₀BrNO₃Na⁺ 376.0519; Found 376.0514.

tert-butyl 2-(4-(methoxycarbonyl)benzoyl)pyrrolidine-1-carboxylate (**3z**). Prepared according to general procedure C using acyl azolium **1k** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a colorless oil (37 mg, 55%, mixture of rotamers 1.3:1 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 2H, A), 8.11 (d, *J* = 8.5 Hz, 2H, B), 8.03 (d, *J* = 8.5 Hz, 2H, B), 8.00 (d, *J* = 8.4 Hz, 2H, A), 5.31 (dd, *J* = 9.2, 3.5 Hz, 1H, B), 5.18 (dd, *J* = 9.1, 4.1 Hz, 1H, A), 3.95 (s, 3H, A), 3.94 (s, 3H, B), 3.72 – 3.65 (m, 1H, A), 3.65 – 3.59 (m, 1H, B), 3.59 – 3.51 (m, 1H, A), 3.51 – 3.43 (m, 1H, B), 2.39 – 2.24 (m, 1H, A+B), 2.00 – 1.84 (m, 3H, A+B), 1.45 (s, 9H, B), 1.24 (s, 9H, A). ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 198.3, 166.3, 166.3, 154.6, 153.8, 138.6, 138.5, 134.1, 134.0, 130.1, 129.9, 128.5, 128.2, 80.1, 80.0, 61.6, 61.4, 52.7, 52.6, 46.9, 46.7, 30.9, 29.8, 28.6, 28.3, 24.3, 23.7. FTIR (diamond, anvil, oil) cm⁻¹: 2975, 1725, 1689, 1394, 1365, 1278, 1161, 1107, 994, 881, 772, 718. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₁₈H₂₃NO₅Na⁺ 356.1468; Found 356.1468.

tert-butyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)pyrrolidine-1carboxylate (**3aa**). Prepared according to general procedure C using acyl azolium **11** and coupling partner **2a**. The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a waxy white solid (32 mg, 40%, mixture of rotamers 1:1.56 A:B). ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.82 (m, 4H, A+B), 5.33 (dd, *J* = 9.3, 3.1 Hz, 1H, A), 5.20 (dd, *J* = 9.2, 4.0 Hz, 1H, B), 3.72 – 3.64 (m, 1H, B), 3.65 – 3.58 (m, 1H, A), 3.54 (dt, *J* = 10.7, 6.8 Hz, 1H, B), 3.46 (dt, *J* = 10.5, 7.4 Hz, 1H, A), 2.36 – 2.21 (m, 1H, A+B), 1.97 – 1.83 (m, 3H, A+B), 1.46 (s, 9H, A), 1.36 (s, 9H, B), 1.35 (s, 12H, A), 1.25 (d, *J* = 3.4 Hz, 12H, B). ¹³C NMR (126 MHz, CDCl₃) δ 199.3, 198.7, 154.6, 153.9, 137.3, 137.0, 135.1, 135.0, 127.6, 127.3, 84.4, 84.3, 80.0, 79.8, 61.5, 61.4, 46.9, 46.7, 30.9, 29.9, 29.8, 28.6, 28.5, 28.3, 25.0, 25.0, 24.2, 23.7. ¹¹B NMR (160 MHz, CDCl₃) δ 30.9. FTIR (diamond, anvil, solid) cm⁻¹: 2978, 1701, 1509, 1396, 1358, 1163, 1144, 1090, 992, 857, 651. HRMS (ESI/TOF) *m/z*: [M+Na]⁺ Calcd. For C₂₂H₃₂BNO₅Na⁺ 424.2266; Found 424.2268.

phenyl(1,2,3,4-tetrahydronaphthalen-1-yl)methanone (**5a**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2q** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-10% EtOAc/hexanes) to yield the product as a white solid (30 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.64 – 7.55 (m, 1H), 7.50 (dd, *J* = 8.3, 7.0 Hz, 2H), 7.22 – 7.14 (m, 2H), 7.14 – 7.06 (m, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 4.86 (t, *J* = 6.7 Hz, 1H), 2.98 – 2.88 (m, 1H), 2.88 – 2.77 (m, 1H), 2.25 – 2.15 (m, 1H), 2.15 – 2.05 (m, 1H), 2.00 – 1.89 (m, 1H), 1.87 – 1.73 (m, 1H). Product matched literature characterization data.²⁹

cyclopent-2-en-1-yl(phenyl)methanone (**5b**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2r** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-10% EtOAc/hexanes) to yield the product as a yellow oil (23 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dt, *J* = 7.1, 1.3 Hz, 2H), 7.60 – 7.52 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 5.94 (dq, *J* = 4.8, 2.4 Hz, 1H), 5.77 (dq, *J* = 4.6, 2.2 Hz, 1H), 4.50 (ddq, *J* = 8.9, 6.5, 2.5 Hz, 1H), 2.58 – 2.39 (m, 2H), 2.31 – 2.16 (m, 2H). Product matched literature characterization data.³⁰

2-(benzyloxy)-1,2-diphenylethan-1-one (**5c**). Prepared according to general procedure C using acyl azolium **1a** and coupling partner **2s** with 8 mL DCE (0.025 M). The reaction mixture was purified by silica gel column chromatography (0-10% EtOAc/hexanes) to yield the product as a colorless oil (34 mg, 57%). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.3 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.33 – 7.18 (m, 10H), 5.59 (s, 1H), 4.60 – 4.51 (m, 2H). Product matched literature characterization data.³¹

methyl 2-(4-(3-(4-chlorobenzamido)-1-oxo-1-phenylpropan-2-yl)phenoxy)-2methylpropanoate (**5d**). Prepared according to general procedure C using 0.10 mmol acyl azolium **1a** and 0.30 mmol coupling partner **2t** with 4 mL DCE (0.05 M). The reaction mixture was purified by silica gel column chromatography (0-20% EtOAc/hexanes) to yield the product as a waxy white solid (40 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.66 – 7.58 (m, 2H), 7.46 (ddt, *J* = 8.6, 7.1, 1.3 Hz, 1H), 7.38 – 7.31 (m, 4H), 7.20 – 7.13 (m, 2H), 6.77 – 6.73 (m, 2H), 6.71 (t, *J* = 6.5 Hz, 1H), 4.96 (dd, *J* = 8.9, 5.1 Hz, 1H), 3.95 (ddd, *J* = 13.4, 7.1, 5.1 Hz, 1H), 3.85 (ddd, *J* = 13.4, 8.9, 5.5 Hz, 1H), 3.72 (s, 3H), 1.55 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 199.8, 174.8, 166.6, 155.0, 137.8, 136.0, 133.5, 132.7, 130.3, 129.3, 129.1, 128.9, 128.7, 128.4, 119.6, 79.2, 77.4, 77.4, 77.2, 76.9, 52.7, 52.7, 43.2, 25.5, 25.4. FTIR (diamond, anvil, solid) cm⁻¹: 1737, 1678, 1640, 1596, 1570, 1486, 1288, 1176, 1093, 960, 847, 761, 668. HRMS (ESI/TOF) *m/z*: [M+H]⁺ Calcd. For C₂₇H₂₇CINO₅⁺ 480.1572; Found 480.1580.

Unsucessful Substrates

The following compounds were employed using general procedure C, unless otherwise specified, and were analyzed by LCMS and ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Control Experiments

Me ♥ N ↓ N Me 1a	N Boc 2a 3 equiv.	DCE, 8.33 mM 370 nm LEDs 2 h <i>then</i> 1 equiv. DBU MeCN, 0.1M 5 min	Ph Ph 3a
entry #	deviation from standard		yield 3a (%) ^a
1	none		67 ^b
2	no irradiation		0
3	465 nm LED irradiation		0
4	no DBU		0

 $^{\rm a}\mbox{yield}$ determined by $^{\rm 1}\mbox{H}$ NMR with 1,3,5-trimethoxybenzene as a standard. $^{\rm b}\mbox{Isolated}$ yield.

TEMPO Trapping Experiment

To an oven-dried 2-dram vial equipped with a magnetic stir bar was added acyl azolium **1a** (17.5 mg, 0.050 mmol) and N-boc-pyrrolidine **2a** (25.8 uL, 0.150 mmol, 3 equiv.), TEMPO (23.4 mg, 0.150 mmol, 3 equiv.) and 1,2-dichloroethane (6 mL). The vial was sealed and removed from the glovebox, then irradiated with stirring using four Kessil PhotoReaction PR160L 370 nm LEDs at 100% intensity radially arranged 2.5 cm from the vial. After 2 hours of irradiation, the vial was removed from irradiation and sampled for HRMS-ESI analysis.

2,2,6,6-tetramethylpiperidin-1-yl benzoate (6). HRMS (ESI/TOF) m/z: [M+Na]⁺ Calcd. for C₁₆H₂₃NO₂ 284.1621; Found 284.1621.

tert-butyl 2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pyrrolidine-1-carboxylate (7). HRMS (ESI/TOF) m/z: [M+Na]⁺ Calcd. For C₁₈H₃₄N₂O₃ 349.2462; Found 349.2463.

UV/Vis Data

UV/Vis data was collected at room temperature under an atmosphere of nitrogen. Solutions were prepared in 1,2-dichloroethane purchased from Sigma-Aldrich and measured in a quartz cuvette.

EDA Complex Studies

EDA complex studies were performed at room temperature under an atmosphere of nitrogen. Solutions were prepared in 1,2-dichloroethane purchased from Sigma-Aldrich and measured in a quartz cuvette.

Computational Details

All geometry optimizations of intermediates and transition states were achieved using spinunrestricted UB3LYP^{32,33}-D3^{34–37}/def2-SVP^{38,39} method, in dichloroethane solvent using the CPCM solvent model^{40–44} with "opt=noeigen" and "guess=mix" keywords as implemented in Gaussian16⁴⁵. Frequency calculations were also conducted at the same level of theory to obtain vibrational frequencies to determine the identity of stationary points as intermediates (no imaginary frequencies) or transition states (only one imaginary frequency), as well as obtaining the thermochemistry: enthalpy (DH) and free energy (DG) at the temperature of 298 K. TD-DFT optimization were also performed, with the same method stated previously, using 20 excitations above the excitation of interest. All structural figures were generated with CYLview⁴⁶. Distances in structural figures are shown in Å and energies are in kcal/mol.

Figure S1. Proposed mechanism supported by computational studies at the theoretical level: CPCM(DCE) uB3LYP-d3/def2-svp. Calculated energies, enthalpy (parentheses) and free Gibbs energies [brackets] are given in kcal mol⁻¹.

Figure S2. Proposed ketone unmasking mechanism supported by computational studies at the theoretical level: CPCM(DCE) uB3LYP-d3/def2-svp. Calculated energies, enthalpy (parentheses) and free Gibbs energies [brackets] are given in kcal mol⁻¹.

Table S1. Calculated Gibbs free energies for the first singlet excited state and triplet states of different acyl electrophiles computed at: CPCM(DCE) uB3LYP-d3/def2-svp level of theory.

Acyl Electrophile	Gibbs free energy of the first singlet excited state (S1) (in kcal/mol)	Gibbs Free energy of the triplet excited state (T1) (in kcal/mol)
Me N⊕ Ph Me 1a	65.4	55.5
CI Ph C	96.1	70.3
F D	101.2	72.5
MeO Ph E	98.0	74.2

	71.3	66.0
F		

Table S2. Cartesian coordinates (xyz format) and energies of all the structures involved in each reaction mechanism studied calculated at the CPCM(DCM) uB3LYP-d3/def2-svp level of theory.

¹ A				
E(sc	f(f) = -649.2320	95666 a.u.		
ν_{min}	$= 35.52 \text{ cm}^{-1}$			
С	-1.563026	-0.354463	-0.333466	
С	-0.261096	-0.512889	0.057235	
С	-0.820692	1.606621	0.379499	
Ν	-1.895158	0.960552	-0.115359	
Н	-2.270130	-1.068686	-0.745592	
Н	0.374687	-1.393637	0.066152	
Ν	0.183891	0.712570	0.497014	
С	-3.218320	1.546306	-0.358554	
Н	-3.782325	0.862432	-1.002239	
Н	-3.737157	1.688479	0.596933	
Н	-3.108349	2.515026	-0.859735	
С	1.525722	0.939986	1.046194	
Н	2.246346	1.071152	0.228560	
Н	1.523096	1.832366	1.679257	

Н	1.803081	0.067338	1.649462
С	-0.852212	3.048804	0.823861
0	-1.827736	3.410692	1.456807
С	0.270881	3.936831	0.457210
С	0.455107	5.119955	1.199128
С	1.110945	3.658280	-0.637767
С	1.482911	5.997615	0.864003
Н	-0.211794	5.327356	2.038051
С	2.128755	4.549089	-0.978759
Н	0.957766	2.760236	-1.240420
С	2.319740	5.712660	-0.224378
Н	1.635669	6.907853	1.447867
Н	2.772771	4.337350	-1.834776
Н	3.123877	6.404086	-0.487275

Zero-point correction	on=	0.23151	7 (Hartree/Parti	cle)		
Thermal correction	to Energy=	0.24	4878	,		
Thermal correction	to Enthalpy=	0.24	45822			
Thermal correction	to Gibbs Free I	Energy=	0.190748			
Sum of electronic a	and zero-point E	Energies=	-649.000578			
Sum of electronic a	and thermal Ene	ergies=	-648.987218			
Sum of electronic a	and thermal Entl	halpies=	-648.986273			
Sum of electronic a	and thermal Free	e Energies=	-649.04134	8		
S_1 (excited)						
E(scf) = -649.1958	17358 a.u.					
$v_{\rm min} = 43.73 \ {\rm cm}^{-1}$						
C -1.715724	-0.452839	0.376937	Ν	-2.028938	0.848401	0.056766
C -0.387659	-0.500774	0.693240	Н	-2.459125	-1.244255	0.355956
C -0.889189	1.620974	0.172412	Н	0.230002	-1.340837	0.996548

Ν	0.127520	0.771995	0.569684
С	-3.340744	1.340604	-0.340477
Н	-4.045101	0.500297	-0.330273
Н	-3.685297	2.114574	0.358827
Н	-3.298156	1.769485	-1.351112
С	1.510446	1.146616	0.820333
Н	1.969615	1.565159	-0.086087
Н	1.571755	1.884911	1.632140
Н	2.066305	0.249233	1.115686
С	-0.821539	2.991498	-0.076001
0	-1.765965	3.774470	-0.445122

0.345185	3.912913	0.019021
0.580562	4.627206	1.226598
1.128510	4.178166	-1.138492
1.671467	5.475245	1.311254
-0.077042	4.465132	2.082006
2.216124	5.029064	-1.040919
0.886278	3.675778	-2.076262
2.490102	5.677484	0.180990
1.894804	5.993504	2.245231
2.856268	5.206036	-1.906744
3.336787	6.363918	0.246776
	0.345185 0.580562 1.128510 1.671467 -0.077042 2.216124 0.886278 2.490102 1.894804 2.856268 3.336787	0.3451853.9129130.5805624.6272061.1285104.1781661.6714675.475245-0.0770424.4651322.2161245.0290640.8862783.6757782.4901025.6774841.8948045.9935042.8562685.2060363.3367876.363918

Zero-point correction= 0.228518 (Hartree/Particle) Thermal correction to Energy= 0.242318 Thermal correction to Enthalpy= 0.243262 Thermal correction to Gibbs Free Energy= 0.187463 Sum of electronic and zero-point Energies= -648.895963 Sum of electronic and thermal Energies= -648.882163 Sum of electronic and thermal Enthalpies= -648.881219 nergies= -648.937018

Sum of electronic and thermal Free Ene				
T_2 (excited) E(scf) = -649.216161986 a.u.				
Vmin	$= 47.46 \text{ cm}^{-1}$			
С	-1.647762	-0.330454	-0.353664	
С	-0.332010	-0.567229	-0.060163	
С	-0.763008	1.564249	0.406850	
Ν	-1.901714	0.986192	-0.058035	
Н	-2.411082	-0.990604	-0.755345	
Н	0.261688	-1.471796	-0.156982	
Ν	0.198137	0.603726	0.432557	
С	-3.187290	1.662317	-0.231483	
Н	-3.751271	1.146396	-1.017014	
Н	-3.754766	1.643481	0.708604	
Н	-3.009764	2.702839	-0.532364	
С	1.544429	0.725264	0.992917	
Н	2.290208	0.783429	0.188960	
Н	1.599037	1.627350	1.611734	

Н	1.743672	-0.155363	1.616348
С	-0.674455	2.948399	0.848592
0	-1.583877	3.267794	1.741983
С	0.317721	3.906293	0.452885
С	0.276691	5.220711	1.018665
С	1.344124	3.600622	-0.488257
С	1.231456	6.164899	0.669213
Н	-0.526414	5.479128	1.711284
С	2.277377	4.563565	-0.837246
Н	1.371217	2.626788	-0.977077
С	2.243142	5.848082	-0.252895
Н	1.184401	7.165688	1.104478
Н	3.039346	4.326422	-1.583155
Н	2.988017	6.595769	-0.532475

Zero-point correction=	0.229514 (Hartree/Particle)
Thermal correction to Energy=	0.243100
Thermal correction to Enthalpy=	0.244045
Thermal correction to Gibbs Free E	Energy= 0.188851
Sum of electronic and zero-point E	nergies= -648.898270
Sum of electronic and thermal Ener	rgies= -648.884683
Sum of electronic and thermal Enth	nalpies= -648.883739
Sum of electronic and thermal Free	e Energies= -648.938933

T₁ (excited)

E(scf) = -649.212601600 a.u. $v_{min} = 44.30 cm^{-1}$

Vmin	$= 44.30 \text{ cm}^{-1}$		
С	-1.630210	-0.413534	-0.167250
С	-0.298625	-0.540387	0.116861
С	-0.843884	1.614714	0.331854
Ν	-1.961749	0.913712	-0.029399
Н	-2.359727	-1.161833	-0.463150
Н	0.339696	-1.419024	0.124537
Ν	0.178255	0.709573	0.442289
С	-3.280123	1.482675	-0.305625
Н	-3.895359	0.708825	-0.778645
Н	-3.755089	1.818108	0.625008
Н	-3.179851	2.337328	-0.986687
С	1.524777	0.975123	0.939793
Н	2.190302	1.299413	0.128102
Н	1.482815	1.759206	1.706453

Н	1.916761	0.053903	1.386849
С	-0.793066	3.008988	0.637727
0	-1.885159	3.618094	1.037635
С	0.307518	3.911616	0.378156
С	0.445754	5.090158	1.184252
С	1.199495	3.713563	-0.716833
С	1.483845	5.978718	0.944485
Н	-0.256710	5.253849	2.001726
С	2.241307	4.598380	-0.926158
Н	1.052987	2.864193	-1.386659
С	2.392604	5.738997	-0.099243
Н	1.598716	6.862362	1.575630
Н	2.941614	4.429080	-1.746893
Н	3.210356	6.438164	-0.285901

Zero-point correction= 0.227966 (Hartree/Particle) Thermal correction to Energy= 0.241524 Thermal correction to Enthalpy= 0.242468 Thermal correction to Gibbs Free Energy= 0.187623 Sum of electronic and zero-point Energies= -648.912444 Sum of electronic and thermal Energies= -648.898886 Sum of electronic and thermal Enthalpies= -648.897942 Sum of electronic and thermal Free Energies= -648.952787

³A

E(scf) = -649.134997921 a.u.

v_{min}	$= 34.19 \text{ cm}^{-1}$		
С	-1.646821	-0.446806	-0.056965
С	-0.311496	-0.542787	0.214805
С	-0.869715	1.619315	0.287261
Ν	-1.988719	0.885033	-0.006722
Н	-2.375238	-1.219714	-0.284550
Н	0.333313	-1.414611	0.276304
Ν	0.163838	0.730661	0.442636
С	-3.315864	1.427794	-0.285628
Н	-3.967895	0.602868	-0.595200
Н	-3.730850	1.903854	0.612926
Н	-3.255845	2.169510	-1.093020
С	1.521704	1.036965	0.881200
Н	2.143608	1.372526	0.040017
Н	1.494279	1.823852	1.645706

Н	1.956844	0.129175	1.315595
С	-0.833185	3.024660	0.465611
0	-1.917822	3.735024	0.630308
С	0.314963	3.926033	0.296114
С	0.471854	5.012357	1.202061
С	1.197086	3.795523	-0.805163
С	1.539389	5.891086	1.051619
Н	-0.236033	5.125253	2.024015
С	2.269464	4.667142	-0.928882
Н	1.036780	3.004002	-1.539479
С	2.443303	5.719181	-0.004848
Н	1.672820	6.711255	1.759802
Н	2.975776	4.545798	-1.752952
Н	3.281716	6.409012	-0.123657

Zero-point correction=	0.228443 (Hartree/Particle)
Thermal correction to Energy=	0.242116
Thermal correction to Enthalpy=	0.243060
Thermal correction to Gibbs Free Ener	rgy= 0.186473
Sum of electronic and zero-point Ener	gies= -648.906555
Sum of electronic and thermal Energie	es= -648.892882
Sum of electronic and thermal Enthalp	bies= -648.891938
Sum of electronic and thermal Free Er	nergies= -648.948525

 $\begin{array}{l} \textbf{B} \\ E(scf) = -558.057741247 \ a.u. \\ \nu_{min} = 33.72 \ cm^{-1} \end{array}$

С	-1.150396	2.463536	-1.227068
С	-0.281562	2.219611	1.044312
С	-0.688892	3.677928	0.795503
С	-1.727497	3.565996	-0.330892
Н	-0.449011	2.874510	-1.976495
Н	-1.915701	1.891951	-1.773191
Н	-0.943262	1.731274	1.782376
Н	0.751224	2.111558	1.406534
Н	-1.075518	4.166624	1.701643
Н	0.183378	4.255758	0.446940
Н	-2.697905	3.243056	0.081838
Н	-1.888817	4.508983	-0.873088
Ν	-0.441948	1.602925	-0.276938

С	-0.034695	0.356991	-0.621426
0	-0.187481	-0.125667	-1.735860
0	0.550594	-0.260594	0.429266
С	1.099524	-1.613508	0.332987
С	2.228871	-1.650413	-0.700591
Н	2.715872	-2.637489	-0.682065
Н	1.842397	-1.462356	-1.709799
Н	2.985774	-0.887042	-0.461673
С	-0.016277	-2.609989	0.005652
Н	0.378994	-3.636558	0.048376
Н	-0.830510	-2.522080	0.741853
Н	-0.423096	-2.425475	-0.996136
С	1.646867	-1.858660	1.739487

Н	2.092560	-2.862491	1.804482
н	2.419274	-1.114598	1.986923

Zero-point correction=	0.255399 (Hartree/Particle)
Thermal correction to Energy=	0.268358
Thermal correction to Enthalpy=	0.269303
Thermal correction to Gibbs Free En	ergy= 0.216023
Sum of electronic and zero-point Ene	ergies= -557.802342
Sum of electronic and thermal Energ	ies= -557.789383
Sum of electronic and thermal Enthal	lpies= -557.788439
Sum of electronic and thermal Free E	Energies= -557.841719

CH_3CN E(scf) = -132.662767981 a.u.			
v_{min}	$= 389.82 \text{ cm}^{-1}$		
С	1.151074	0.415360	-0.000001
Ν	2.310072	0.415522	0.000004
С	-0.307679	0.415403	-0.000014
Н	-0.685717	0.900471	0.912286
Н	-0.685719	0.962950	-0.876234
Н	-0.685858	-0.617126	-0.036041

Zero-point correction=	0.044981 (Hartree/Particle)
Thermal correction to Energy=	0.048584
Thermal correction to Enthalpy=	0.049528
Thermal correction to Gibbs Free Ene	ergy= 0.020962
Sum of electronic and zero-point Ener	rgies= -132.617787
Sum of electronic and thermal Energie	es= -132.614184
Sum of electronic and thermal Enthalp	pies= -132.613240
Sum of electronic and thermal Free En	nergies= -132.641806

3_int0'

·	e_mto			
E(sc	$\overline{E(scf)} = -781.808888141$ a.u.			
ν_{min}	$= 16.54 \text{ cm}^{-1}$			
С	3.020875	-0.107801	3.050995	
Н	2.275011	-0.033344	3.856167	
С	-1.322952	0.409719	1.327589	
С	-2.442812	-1.068154	0.083384	
Н	-2.831590	-2.037427	-0.215133	
С	-2.573040	0.156619	-0.506738	
Н	-3.105352	0.451691	-1.406235	

С	-1.902360	2.511789	0.038906
Н	-2.001482	3.040180	0.995721
Н	-0.979332	2.837336	-0.459970
Н	-2.762827	2.754772	-0.595599
Ν	-1.681212	-0.907490	1.218026
Ν	-1.895673	1.070945	0.270912
С	-0.563764	0.975238	2.380591

0	-0.283300	0.326969	3.480959
С	0.251843	2.198865	2.351237
С	1.100634	2.489816	1.253715
С	0.279648	3.029807	3.506633
С	1.873272	3.641681	1.275525
Н	1.137239	1.808447	0.402894
С	1.076563	4.169629	3.521172
Н	-0.347463	2.772648	4.361020
С	1.868296	4.482977	2.408644
Н	2.499221	3.891429	0.416205

Н	1.081952	4.818936	4.398816
Н	2.496227	5.376557	2.419863
С	-1.251352	-1.990350	2.099424
Н	-1.521712	-1.763688	3.138769
Н	-1.760105	-2.909494	1.786400
Н	-0.164720	-2.123520	2.019315
Н	3.467110	0.884211	2.885495
Н	3.810039	-0.814073	3.347474
С	2.360269	-0.561338	1.834635
Ν	1.800569	-0.899536	0.877156

Zero-point correction= 0.2	274614 (Hartree/Particle)
Thermal correction to Energy=	0.293723
Thermal correction to Enthalpy=	0.294667
Thermal correction to Gibbs Free Energy=	= 0.223726
Sum of electronic and zero-point Energies	-781.534274
Sum of electronic and thermal Energies=	-781.515166
Sum of electronic and thermal Enthalpies	-781.514221
Sum of electronic and thermal Free Energ	ies= -781.585162

3_int0 E(scf) = -1207.21853322 a.u.

 $v_{\rm min} = 19.41 \ {\rm cm}^{-1}$

С	3.560261	0.985282	1.515364
С	3.136551	-0.039620	3.667198
С	3.745904	1.349417	3.880634
С	3.399969	2.080180	2.573522
Н	4.611067	0.877762	1.185682
Н	2.951363	1.118089	0.612290
Н	3.635189	-0.874725	4.182638
Н	3.343889	1.843133	4.775595
Н	4.838632	1.267167	3.999292
Н	2.351846	2.419373	2.592238
Н	4.040584	2.949371	2.372117
Ν	3.173657	-0.226234	2.235160
С	2.895065	-1.465481	1.662702
0	2.677781	-2.450260	2.339467
0	2.915545	-1.376360	0.337756
С	2.771558	-2.561867	-0.539807
С	1.387357	-3.180228	-0.347228
Н	1.274799	-4.033028	-1.032895

Н	1.247233	-3.534380	0.681527
Н	0.606566	-2.446998	-0.588965
С	3.901258	-3.547070	-0.240722
Н	3.875085	-4.362364	-0.978921
Н	4.876739	-3.042996	-0.316251
Н	3.799008	-3.979722	0.762621
С	2.913324	-1.959618	-1.934735
Н	2.817112	-2.749782	-2.693632
Н	2.129208	-1.207692	-2.110222
Н	3.895508	-1.477834	-2.050700
Н	2.060986	-0.077847	3.961269
С	-1.067385	-1.129464	1.124000
С	-1.584129	-0.699368	-1.018904
Н	-1.585307	-0.157291	-1.959975
С	-2.212758	-1.855948	-0.665586
Н	-2.854367	-2.512735	-1.245544
С	-2.212919	-3.390723	1.309243
Н	-1.347522	-3.746533	1.882239

Н	-3.065515	-3.273805	1.991756	
Н	-2.461779	-4.130112	0.538472	
Ν	-0.875718	-0.255883	0.077387	
Ν	-1.881891	-2.134594	0.646306	
С	-0.478901	-1.006955	2.411252	
0	0.552662	-0.240953	2.599387	
С	-0.982552	-1.698931	3.619008	
С	-2.346582	-1.668872	3.971601	
С	-0.059198	-2.344481	4.469351	
С	-2.783920	-2.315626	5.127878	
Н	-3.058305	-1.134566	3.337862	

С	-0.505143	-2.988743	5.622914
Н	0.995711	-2.359480	4.188386
С	-1.866460	-2.977861	5.955539
Н	-3.844191	-2.296510	5.391303
Н	0.210970	-3.505038	6.266833
Н	-2.212517	-3.478348	6.863060
С	-0.040324	0.937818	0.097463
Н	1.018247	0.648377	0.102889
Н	-0.255098	1.526411	-0.802315
Н	-0.254269	1.536856	0.990696

Zero-point correction=	0.484958 (Hartree/Particle)
Thermal correction to Energy=	0.513005
Thermal correction to Enthalpy=	0.513949
Thermal correction to Gibbs Free Ener	rgy= 0.424667
Sum of electronic and zero-point Ener	gies= -1206.733575
Sum of electronic and thermal Energie	es= -1206.705528
Sum of electronic and thermal Enthalp	bies= -1206.704584
Sum of electronic and thermal Free En	ergies= -1206.793866

Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=				
3_T E(sc	3_TS1 E(scf) = -1207.2171579 a.u.			
C	3.788194	0.902308	1.611739	
С	2.888775	-0.118525	3.583573	
С	3.304923	1.299238	3.944730	
С	3.303223	1.996773	2.573400	
Н	4.888527	0.885988	1.516194	
Н	3.364888	0.958168	0.600836	
Н	3.094205	-0.945769	4.278512	
Н	2.624250	1.760343	4.673197	
Н	4.316032	1.286722	4.387540	
Н	2.275909	2.289350	2.305829	
Н	3.937717	2.892165	2.535954	
Ν	3.367165	-0.337903	2.276176	
С	3.116743	-1.563521	1.637610	
0	2.721518	-2.528014	2.256848	
0	3.354095	-1.468012	0.340997	
С	3.003795	-2.555744	-0.606222	

С	1.497961	-2.814100	-0.531167
Н	1.217463	-3.542039	-1.306548
Н	1.207781	-3.215721	0.447798
Н	0.940903	-1.883782	-0.714813
С	3.833700	-3.798097	-0.286123
Н	3.659738	-4.557703	-1.062934
Н	4.905821	-3.549639	-0.279790
Н	3.558874	-4.221285	0.688000
С	3.393952	-1.957588	-1.954414
Н	3.179700	-2.677859	-2.757311
Н	2.823975	-1.036402	-2.147349
Н	4.467503	-1.718088	-1.974496
Н	1.704914	-0.178262	3.406465
С	-1.197698	-1.126399	1.138396
С	-1.902439	-0.702031	-0.950702
Н	-1.997454	-0.154977	-1.884050

С	-2.469017	-1.875398	-0.553645
Н	-3.139433	-2.547812	-1.080689
С	-2.280116	-3.405770	1.416521
Н	-1.364064	-3.748940	1.913265
Н	-3.070380	-3.296308	2.171593
Н	-2.587196	-4.149541	0.671384
Ν	-1.117576	-0.243308	0.086984
Ν	-2.024988	-2.146569	0.726637
С	-0.467076	-1.012175	2.360137
0	0.607309	-0.271670	2.326399
С	-0.879206	-1.684172	3.607794
С	-2.217134	-1.635051	4.048326
С	0.078971	-2.345424	4.403306

С	-2.589453	-2.245137	5.247990
Н	-2.962285	-1.100770	3.453612
С	-0.299872	-2.952937	5.600869
Н	1.108058	-2.415933	4.048060
С	-1.633395	-2.905565	6.028577
Н	-3.629337	-2.195315	5.580258
Н	0.448334	-3.476282	6.201545
Н	-1.925925	-3.381085	6.967861
С	-0.371611	1.011048	0.063627
Н	0.706948	0.815817	0.005476
Н	-0.695119	1.585281	-0.812849
Н	-0.574931	1.586014	0.975483

Zero-point correction=	0.482886 (Hartree/Particle)
Thermal correction to Energy=	0.509981
Thermal correction to Enthalpy=	0.510925
Thermal correction to Gibbs Free Ener	rgy= 0.424002
Sum of electronic and zero-point Ener	gies= -1206.734272
Sum of electronic and thermal Energie	es= -1206.707177
Sum of electronic and thermal Enthalp	bies= -1206.706233
Sum of electronic and thermal Free Er	nergies= -1206.793156

 $\begin{array}{l} \textbf{3_TS2} \\ E(scf) = -1207.20410828 \ a.u. \\ v_{min} = -746.60 \ cm^{-1} \end{array}$

С	3.500465	0.882652	1.603315
С	3.125113	-0.478442	3.598691
С	3.416220	0.940616	4.031145
С	4.061816	1.617750	2.833889
Н	4.271762	0.684669	0.845027
Н	2.698904	1.449936	1.104154
Н	3.978016	-1.136207	3.864164
Н	2.363893	1.492194	4.316747
Н	3.933041	1.046739	4.995606
Н	3.901802	2.705613	2.799409
Н	5.154109	1.466695	2.908489
Ν	2.969213	-0.371206	2.153920
С	2.546274	-1.430631	1.410230
0	2.143695	-2.478139	1.898876

0	2.619163	-1.145518	0.099497
С	2.441395	-2.164316	-0.945643
С	0.999586	-2.675255	-0.951116
Н	0.865915	-3.383595	-1.782596
Н	0.762558	-3.187672	-0.010367
Н	0.297701	-1.840962	-1.101015
С	3.451578	-3.294845	-0.738205
Н	3.407603	-3.988214	-1.591558
Н	4.471850	-2.885716	-0.677321
Н	3.236955	-3.853326	0.181661
С	2.746372	-1.387492	-2.225396
Н	2.634590	-2.043170	-3.101506
Н	2.055138	-0.537745	-2.332174
Н	3.775916	-0.999681	-2.205089

С	-0.021675	0.629370	3.358723
С	-0.171127	0.600477	1.130534
Н	-0.123103	0.988366	0.117421
С	-0.508125	-0.640300	1.589140
Н	-0.782061	-1.541745	1.052474
С	-0.504979	-1.814622	3.796852
Н	-0.057457	-1.614019	4.775959
Н	-1.558595	-2.093318	3.934731
Н	0.051994	-2.620614	3.302538
Ν	0.129385	1.378612	2.227878
Ν	-0.398702	-0.619843	2.961661
С	0.197252	1.097054	4.700207
0	1.199098	1.954290	4.927929
С	-0.687733	0.826639	5.806942
С	-2.032462	0.405390	5.613670
1	1		

С	-0.219385	1.024112	7.136323
С	-2.850505	0.149080	6.705567
Н	-2.429456	0.296334	4.602453
С	-1.055392	0.778185	8.219767
Н	0.809758	1.351039	7.288969
С	-2.369957	0.333750	8.014603
Н	-3.878581	-0.183295	6.544431
Н	-0.680705	0.922291	9.235827
Н	-3.021889	0.136012	8.868401
С	0.394968	2.815886	2.197021
Н	0.306080	3.161863	1.161393
Н	-0.338841	3.340387	2.823966
Н	1.400926	3.032302	2.574108
Н	2.238581	-0.923243	4.073663

•	
Zero-point correction=	0.480794 (Hartree/Particle)
Thermal correction to Energy=	0.507826
Thermal correction to Enthalpy=	0.508770
Thermal correction to Gibbs Free Ene	ergy= 0.423290
Sum of electronic and zero-point Ener	rgies= -1206.723314
Sum of electronic and thermal Energi	es= -1206.696282
Sum of electronic and thermal Enthal	pies= -1206.695338
Sum of electronic and thermal Free E	nergies= -1206.780818

3_TS3 E(scf) =

J 155						
$\overline{E(scf)} = -781.789858331$ a.u.						
Vmin	= -1426.21 cm	-1				
С	2.264411	-0.163037	3.974996			
Н	1.050083	-0.017147	3.698605			
С	-1.273815	0.385300	1.260942			
С	-2.563847	-0.996369	0.074741			
Н	-2.945929	-1.942594	-0.297940			
С	-2.919264	0.288885	-0.244634			
Н	-3.673255	0.659106	-0.933504			
С	-2.298663	2.585496	0.542171			
Н	-2.105998	2.945959	1.559730			
Н	-1.602593	3.076509	-0.151020			
Н	-3.330577	2.824481	0.259251			
Ν	-1.557767	-0.930314	1.002614			

-2.135957	1.133627	0.502217
-0.301739	0.856050	2.197410
-0.200108	0.093742	3.296202
0.485551	2.063245	2.042148
0.895567	2.511080	0.761883
0.901041	2.789540	3.185790
1.663150	3.665081	0.632754
0.632976	1.929180	-0.124451
1.674733	3.936809	3.045356
0.584992	2.455413	4.175599
2.057252	4.382625	1.770555
1.976083	3.997598	-0.359525
	-2.135957 -0.301739 -0.200108 0.485551 0.895567 0.901041 1.663150 0.632976 1.674733 0.584992 2.057252 1.976083	-2.1359571.133627-0.3017390.856050-0.2001080.0937420.4855512.0632450.8955672.5110800.9010412.7895401.6631503.6650810.6329761.9291801.6747333.9368090.5849922.4554132.0572524.3826251.9760833.997598

Н	1.975886	4.497834	3.933029
Н	2.667143	5.282699	1.666053
С	-0.836652	-2.085061	1.538016
Н	-1.080715	-2.229977	2.596941
Н	-1.128846	-2.968829	0.959672

Н	0.244035	-1.921717	1.434143
Н	2.433692	0.542798	4.798900
Н	2.308877	-1.219225	4.274696
С	3.001855	0.138438	2.790370
Ν	3.559099	0.396419	1.801065

0.270035 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.287517 Thermal correction to Enthalpy= 0.288461 Thermal correction to Gibbs Free Energy= 0.223077 Sum of electronic and zero-point Energies= -781.519824 Sum of electronic and thermal Energies= -781.502342 Sum of electronic and thermal Enthalpies= -781.501398 Sum of electronic and thermal Free Energies= -781.566781

3_TS4

E(scf) = -1207.18135058 a.u.

Vmin	=	-1	169	.35	cm^{-1}

~			
С	5.835769	1.744991	-2.584516
С	7.645704	2.516088	-3.626467
Н	8.210762	3.060160	-4.377735
С	8.064459	1.754309	-2.576027
Н	9.063316	1.505589	-2.229707
С	6.953045	0.457889	-0.735036
Н	7.411949	-0.512692	-0.965752
Н	7.537652	0.962488	0.045641
Н	5.934473	0.290054	-0.374787
Ν	6.264791	2.498495	-3.620566
Ν	6.931399	1.288777	-1.936245
С	4.414200	1.558680	-2.189134
0	3.618931	2.594489	-2.487676
С	3.821224	0.179865	-2.247544
С	4.568380	-0.966547	-2.570345
С	2.450298	0.037900	-1.961547
С	3.958343	-2.224353	-2.594883
Н	5.625630	-0.887041	-2.829478
С	1.846414	-1.218524	-1.981272
Н	1.862559	0.928082	-1.732875
С	2.598280	-2.357268	-2.298012
Н	4.551963	-3.104543	-2.853221

Н	0.782874	-1.310557	-1.748631
Н	2.126042	-3.342136	-2.312459
С	5.415658	3.180917	-4.598187
Н	6.019731	3.394981	-5.487604
Н	4.576596	2.530942	-4.873900
Н	5.022386	4.111919	-4.171905
С	1.708026	2.509274	0.859479
С	4.062047	2.422090	0.503662
С	3.657508	3.872980	0.397235
С	2.145095	3.781612	0.119064
Н	1.385637	2.705528	1.895562
Н	5.016405	2.106583	0.939893
Н	4.352119	1.915764	-0.892103
Н	3.859671	4.381260	1.359050
Н	4.211895	4.409856	-0.385497
Н	1.588968	4.665699	0.458083
Ν	2.942423	1.703242	0.903977
С	2.903603	0.393270	1.381278
0	1.868427	-0.095937	1.781682
0	4.105233	-0.179098	1.327454
С	4.359617	-1.493193	1.977534
С	3.497034	-2.574121	1.328157

Н	3.814367	-3.558343	1.704709
Н	2.434210	-2.432804	1.556477
Н	3.629387	-2.559571	0.237261
С	4.105967	-1.352374	3.478231
Н	4.378850	-2.291738	3.981743
Н	4.722774	-0.542670	3.897310
Н	3.048831	-1.142317	3.685474

С	5.838059	-1.741775	1.692784
Н	6.164555	-2.652905	2.214530
Н	6.008334	-1.886379	0.616703
Н	6.451163	-0.899293	2.045924
Н	1.981492	3.660247	-0.961005
Н	0.905993	1.945624	0.363465

Zero-point correction=	0.480749 (Hartree/Particle)
Thermal correction to Energy=	0.507969
Thermal correction to Enthalpy=	0.508914
Thermal correction to Gibbs Free	Energy= 0.422533
Sum of electronic and zero-point	Energies= -1206.700602
Sum of electronic and thermal En	ergies= -1206.673381
Sum of electronic and thermal En	thalpies= -1206.672437
Sum of electronic and thermal Fre	ee Energies= -1206.758818

3_TS5

 $\overline{E(scf)} = -1207.16349864$ a.u.

 $v_{\rm min} = -1591.09 \ {\rm cm}^{-1}$

С	0.317502	4.076806	0.224932
С	-1.281353	4.334824	1.750094
Н	-2.044775	4.027199	2.458606
С	-0.847410	5.576779	1.393125
Н	-1.158839	6.563341	1.723705
С	0.841440	6.501373	-0.215687
Н	0.177202	6.967891	-0.956012
Н	1.137128	7.243520	0.536505
Н	1.733576	6.127750	-0.726546
Ν	-0.555946	3.417023	1.014972
Ν	0.146431	5.400822	0.450593
С	1.360451	3.483296	-0.668390
0	1.674109	2.185772	-0.416861
С	1.169841	3.710370	-2.152334
С	0.057385	4.384266	-2.684799
С	2.147545	3.203336	-3.029272
С	-0.052328	4.581740	-4.064193
н	-0.736064	4.751832	-2.031211
С	2.033264	3.400620	-4.404880
Н	2.992424	2.646845	-2.621751

С	0.934788	4.095285	-4.927756
Н	-0.919834	5.111443	-4.464967
Н	2.802671	3.007888	-5.073880
Н	0.844472	4.248691	-6.005683
С	-0.732149	1.964243	1.120836
Н	-1.727099	1.776291	1.541049
Н	-0.653129	1.508234	0.129860
Н	0.042553	1.549857	1.777279
Н	2.430327	4.113092	-0.304996
С	3.330450	3.576628	1.685318
С	4.485623	2.066336	0.180664
С	4.749124	3.524482	-0.270543
С	3.701590	4.347429	0.448542
Н	4.033599	3.802851	2.517288
Н	5.389687	1.572037	0.569178
Н	4.067231	1.434113	-0.612272
Н	5.758594	3.850625	0.038674
Н	4.707766	3.641206	-1.364079
Н	3.822029	5.433468	0.517218
Ν	3.486369	2.202581	1.250404

С	2.871700	1.147657	1.899302
0	2.093929	1.307218	2.823052
0	3.258215	-0.004386	1.360652
С	2.718221	-1.307782	1.793067
С	1.203198	-1.333379	1.583027
Н	0.835312	-2.361873	1.715036
Н	0.688696	-0.684891	2.302683
Н	0.956424	-1.003640	0.562464
С	3.112183	-1.564257	3.247872

Н	2.795121	-2.577108	3.538763
Н	4.204486	-1.496259	3.365710
Н	2.634781	-0.838960	3.918873
С	3.417660	-2.284217	0.850015
Н	3.114213	-3.315159	1.083846
Н	3.151859	-2.067753	-0.195640
Н	4.509934	-2.206485	0.957158
Н	2.318092	3.749132	2.079265

Zero-point correction=	0.480249 (Hartree/Particle)
Thermal correction to Energy=	0.507497
Thermal correction to Enthalpy=	0.508441
Thermal correction to Gibbs Free En	nergy= 0.421009
Sum of electronic and zero-point En	ergies= -1206.683249
Sum of electronic and thermal Energy	gies= -1206.656001
Sum of electronic and thermal Entha	alpies= -1206.655057
Sum of electronic and thermal Free	Energies= -1206.742489

3_int1 E(scf) = -1207.23749824 a.u.

v · :	$= 13.33 \text{ cm}^{-1}$		
C C	3.770983	0.899787	1,494500
C	3 245957	0.026751	3 637786
c	3 536625	1 481734	3 836368
C	3.337192	2.050319	2.416071
н	4.847177	0.939767	1.257118
н	3.215916	0.856389	0.548974
н	3.300793	-0.761904	4.388208
н	2.886144	1.952675	4.589678
н	4 581547	1 634867	4 177518
н	2 269854	2 269479	2 252247
н	3 906170	2 971268	2.232217
N	3 494264	-0 300424	2 306552
C	3 282731	-1 563531	1 805002
0	2 940695	-2 504001	2 506405
0	3 481539	-1 591939	0 481540
c	3.031985	-2 722036	-0 346182
c	1 521402	-2 904824	-0 171542
н	1 155417	-3 663199	-0 879455
н	1 277064	-3 227506	0 848715
н	1.003345	-1.956366	-0.378285
			0.0,0200

С	3.820419	-3.983464	0.010178
Н	3.563636	-4.787826	-0.695913
Н	4.901167	-3.788608	-0.066566
Н	3.591632	-4.316392	1.029661
С	3.361223	-2.253683	-1.762472
Н	3.073197	-3.025412	-2.491415
Н	2.817840	-1.326314	-1.998784
Н	4.440097	-2.061772	-1.862154
Н	1.100298	-0.242601	3.011578
С	-1.291740	-1.018174	1.051583
С	-2.162066	-0.341048	-0.891820
Н	-2.359058	0.330513	-1.722456
С	-2.623606	-1.602329	-0.645381
Н	-3.281937	-2.238958	-1.229127
С	-2.196000	-3.382939	1.063183
Н	-1.243770	-3.690471	1.511438
Н	-2.987364	-3.449273	1.821494
Н	-2.432991	-4.048282	0.224708
Ν	-1.340420	0.012810	0.153844
Ν	-2.074139	-2.021495	0.546467

С	-0.503467	-1.050488	2.241905
0	0.637148	-0.341565	2.152238
С	-0.858412	-1.770160	3.452383
С	-2.209410	-1.879574	3.859264
С	0.150645	-2.331785	4.271295
С	-2.538987	-2.541536	5.039700
Н	-2.995556	-1.416214	3.258593
С	-0.192008	-2.987521	5.452742
Н	1.193542	-2.296089	3.947749

С	-1.533335	-3.097723	5.841986
Н	-3.585486	-2.611833	5.345349
Н	0.594034	-3.429475	6.069703
Н	-1.795259	-3.613979	6.768466
С	-0.688527	1.315137	0.291508
Н	0.385741	1.227869	0.086722
Н	-1.151691	2.006708	-0.421443
Н	-0.827653	1.692776	1.311682

Zero-point correction=	0.485212 (Hartree/Particle)
Thermal correction to Energy=	0.513489
Thermal correction to Enthalpy=	0.514433
Thermal correction to Gibbs Free Ener	.gy= 0.423859
Sum of electronic and zero-point Ener	gies= -1206.752286
Sum of electronic and thermal Energie	-1206.724010
Sum of electronic and thermal Enthalp	oies= -1206.723065
Sum of electronic and thermal Free En	ergies= -1206.813639
	-

3_int2

\$

 $\overline{E(scf)} = -1207.22421689$ a.u.

J.J.

 $v_{\rm min} = 22.62 \ {\rm cm}^{-1}$

· mm			
С	3.585786	0.836564	1.547744
С	3.185677	-0.507477	3.561692
С	3.669945	0.849742	3.950420
С	4.232056	1.547959	2.753567
Н	4.306941	0.617264	0.747995
Н	2.778394	1.437588	1.097103
Н	3.917275	-1.297575	3.836788
Н	1.952059	1.793432	4.535661
Н	3.975360	1.078474	4.975033
Н	4.055509	2.636128	2.754918
Н	5.334007	1.422933	2.736779
Ν	3.040588	-0.405764	2.111452
С	2.580664	-1.455290	1.380418
0	2.162655	-2.492293	1.880940
0	2.631969	-1.179297	0.065992
С	2.436585	-2.206600	-0.967326
С	0.992267	-2.710878	-0.950935
Н	0.844095	-3.424003	-1.775848
Н	0.765023	-3.216268	-0.003960

Н	0.292393	-1.874179	-1.098120
С	3.443940	-3.340061	-0.761743
Н	3.385728	-4.042023	-1.607171
Н	4.466838	-2.935255	-0.718216
Н	3.238725	-3.888108	0.166554
С	2.729662	-1.443425	-2.258083
Н	2.603776	-2.106652	-3.126580
Н	2.041525	-0.591106	-2.364352
Н	3.761337	-1.060787	-2.254115
С	-0.049197	0.710263	3.420559
С	-0.155487	0.701174	1.189866
Н	-0.111791	1.105412	0.182988
С	-0.428037	-0.562257	1.628073
Н	-0.640079	-1.471667	1.077211
С	-0.414587	-1.763134	3.819838
Н	-0.016975	-1.551163	4.817543
Н	-1.455345	-2.101519	3.911832
Н	0.204999	-2.527530	3.333978
Ν	0.072662	1.481364	2.302454

Ν	-0.346738	-0.551472	3.002202	
С	0.128507	1.163055	4.778814	
0	1.137618	2.029440	5.035955	
С	-0.770109	0.849333	5.858081	
С	-2.072261	0.331688	5.626072	
С	-0.366764	1.088509	7.198136	
С	-2.917074	0.040500	6.691919	
Н	-2.427390	0.182419	4.604515	
С	-1.223751	0.798252	8.255092	
Н	0.628749	1.492138	7.386498	

С	-2.499321	0.268141	8.011662
Н	-3.916216	-0.355145	6.495148
Н	-0.895642	0.980324	9.281314
Н	-3.167292	0.039286	8.845165
С	0.314025	2.923908	2.273728
Н	-0.192924	3.343968	1.397042
Н	-0.087898	3.381529	3.184231
Н	1.390084	3.136148	2.205686
Н	2.242714	-0.801224	4.052544

Zero-point correction=	0.484767 (Hartree/Particle)
Thermal correction to Energy=	0.512788
Thermal correction to Enthalpy=	0.513733
Thermal correction to Gibbs Free End	ergy= 0.425522
Sum of electronic and zero-point Ene	ergies= -1206.739450
Sum of electronic and thermal Energy	ies= -1206.711428
Sum of electronic and thermal Enthal	pies= -1206.710484
Sum of electronic and thermal Free E	Energies= -1206.798695

3_int3

E(scf) = -781.831945847 a.u.

 $v_{\rm min} = 18.04 \ {\rm cm}^{-1}$

С	4.722704	0.074700	4.522173
Н	0.609138	-0.045461	3.368836
С	-1.525510	0.367000	1.072173
С	-2.859850	-0.929592	-0.165463
Н	-3.256054	-1.850829	-0.582661
С	-3.223337	0.368510	-0.382123
Н	-4.005977	0.787156	-1.008035
С	-2.587274	2.605305	0.545701
Н	-2.328493	2.900826	1.569092
Н	-1.951679	3.159170	-0.158356
Н	-3.640526	2.843096	0.353933
Ν	-1.817451	-0.924776	0.732235
Ν	-2.406797	1.163728	0.392667
С	-0.516318	0.768920	2.005019
0	-0.321868	-0.086454	3.019225
С	0.248343	2.000227	1.901916
С	0.572574	2.564145	0.644855

С	0.725748	2.637546	3.072744
С	1.326753	3.732845	0.566450
Н	0.254010	2.062559	-0.271791
С	1.481765	3.803927	2.984466
Н	0.480218	2.219625	4.050623
С	1.783218	4.359901	1.733725
Н	1.573706	4.151211	-0.412154
Н	1.833181	4.289715	3.897899
Н	2.375657	5.275415	1.668532
С	-1.095237	-2.117079	1.173169
Н	-1.330864	-2.340371	2.220620
Н	-1.393937	-2.954480	0.532053
Н	-0.014591	-1.950524	1.079300
Н	5.485765	0.066178	3.740117
Н	5.009553	0.156750	5.573326
С	3.383382	-0.019126	4.178826
Ν	2.252265	-0.097682	3.888807

Zero-point correction=	0.274287 (Hartree/Particle)
Thermal correction to Energy=	0.293144
Thermal correction to Enthalpy=	0.294089
Thermal correction to Gibbs Free E	Energy= 0.223025
Sum of electronic and zero-point E	nergies= -781.557659
Sum of electronic and thermal Ener	rgies= -781.538801
Sum of electronic and thermal Enth	alpies= -781.537857
Sum of electronic and thermal Free	Energies= -781.608921

3_int4

 $\overline{E(scf)} = -1207.18810089$ a.u.

 $v_{min} = 14.47 \text{ cm}^{-1}$

С	5.824723	1.756058	-2.422627	C	1.687943
С	7.556826	1.979081	-3.787490	C	4.055819
Н	8.076498	2.188450	-4.718045	C	3.587350
С	8.031688	1.597537	-2.565151	С	2.161882
Н	9.044705	1.408238	-2.222047	Н	1.220016
С	7.009286	1.078568	-0.319506	Н	4.985038
Н	7.786925	0.314866	-0.201447	Н	4.458799
Н	7.258117	1.956955	0.291158	Н	3.561540
Н	6.051046	0.661084	0.009188	Н	4.239245
Ν	6.183658	2.065879	-3.679769	Н	1.490066
Ν	6.938920	1.460672	-1.731291	N	2.943635
С	4.404483	1.745374	-1.910961	С	2.920723
0	3.693909	2.816742	-2.338058	0	1.882188
С	3.690578	0.394771	-2.053079	0	4.167765
С	4.389019	-0.781254	-2.353840	С	4.431460
С	2.304004	0.351243	-1.857094	С	3.781842
С	3.698638	-1.993835	-2.463707	Н	4.109751
Н	5.469448	-0.769105	-2.511716	Н	2.688255
С	1.621569	-0.862091	-1.952953	Н	4.089032
Н	1.763743	1.273247	-1.638762	С	3.938884
С	2.317344	-2.037892	-2.259137	Н	4.218921
Н	4.248909	-2.906551	-2.703144	н	4.402421
Н	0.541914	-0.889017	-1.789572	Н	2.847247
Н	1.782447	-2.987264	-2.335768	С	5.954001
С	5.267381	2.452252	-4.755010	Н	6.279803
Н	5.759382	2.261746	-5.715580	Н	6.303846
Н	4.353674	1.847939	-4.692004	Н	6.424682
Н	5.011378	3.515470	-4.664474	Н	2.208766

C	1 6070/2	2 554702	1 1 1 0 1 1 0
C C	1.067945	2.554792	1.119148
C	4.055819	2.638559	1.224930
С	3.587350	4.055905	1.093441
С	2.161882	3.888334	0.525943
Н	1.220016	2.682096	2.110239
Н	4.985038	2.302540	1.683157
Н	4.458799	1.953892	-0.796877
Н	3.561540	4.555945	2.083354
Н	4.239245	4.667232	0.448818
Н	1.490066	4.718977	0.781518
Ν	2.943635	1.799073	1.273270
С	2.920723	0.446165	1.524262
0	1.882188	-0.175116	1.667554
0	4.167765	-0.057227	1.570552
С	4.431460	-1.404527	2.116110
С	3.781842	-2.470713	1.234083
Н	4.109751	-3.467130	1.567706
Н	2.688255	-2.417521	1.285411
Н	4.089032	-2.334941	0.187842
С	3.938884	-1.462011	3.563146
Н	4.218921	-2.428755	4.007774
Н	4.402421	-0.659557	4.157560
Н	2.847247	-1.358789	3.613057
С	5.954001	-1.511328	2.054999
н	6.279803	-2.457284	2.511669
н	6.303846	-1.497453	1.012519
Н	6.424682	-0.678880	2.599520
н	2.208766	3.811320	-0.571751

Zero-point correction= 0.483989 (Hartree/Particle) Thermal correction to Energy= 0.512243 Thermal correction to Enthalpy= 0.513188 Thermal correction to Gibbs Free Energy= 0.422609 Sum of electronic and zero-point Energies= -1206.704111 Sum of electronic and thermal Energies= -1206.675858 Sum of electronic and thermal Enthalpies= -1206.674913 Sum of electronic and thermal Free Energies= -1206.765492

3_int5

 $\overline{E(scf)} = -1207.17945098$ a.u.

 $v_{min} = 14.53 \text{ cm}^{-1}$

С	0.485051	4.208235	0.220104	
С	-1.185428	4.628621	1.617906	
Н	-1.997228	4.398968	2.301586	
С	-0.686715	5.826191	1.195649	
Н	-0.979661	6.844428	1.434393	
С	1.168689	6.532185	-0.373745	
Н	1.146980	6.336009	-1.453890	
Н	0.758805	7.528643	-0.176756	
Н	2.204681	6.486994	-0.009749	
Ν	-0.450738	3.634807	0.997192	
Ν	0.348362	5.544503	0.327580	
С	1.521552	3.539931	-0.664326	
0	1.801215	2.242824	-0.339650	
С	1.089521	3.537791	-2.139720	
С	-0.230723	3.229594	-2.497882	
С	2.047833	3.769528	-3.137030	
С	-0.594008	3.173336	-3.846473	
Н	-0.984036	3.042403	-1.729314	
С	1.682060	3.712765	-4.483466	
Н	3.079076	4.000744	-2.858722	
С	0.361019	3.414188	-4.839820	
Н	-1.625409	2.939904	-4.120483	
Н	2.429048	3.905102	-5.257116	
Н	0.076347	3.370405	-5.893761	
С	-0.664072	2.199672	1.226138	
Н	-1.688245	2.066623	1.592952	

Н	-0.526967	1.648315	0.291967
Н	0.061847	1.837869	1.965503
Н	2.433434	4.165732	-0.595524
С	3.459089	3.576816	2.076576
С	4.671542	2.188692	0.475983
С	5.087107	3.652894	0.221574
С	4.366785	4.438843	1.269757
Н	3.779195	3.479003	3.136919
Н	5.482402	1.609799	0.949634
Н	4.360259	1.656722	-0.431075
Н	6.182971	3.779241	0.277850
Н	4.810538	3.977866	-0.800975
Н	4.532285	5.495021	1.483360
Ν	3.531518	2.285881	1.397331
С	2.863196	1.193366	1.907344
0	2.044969	1.285888	2.807452
0	3.245847	0.081268	1.283761
С	2.595922	-1.220805	1.508103
С	1.109671	-1.118725	1.159438
Н	0.668762	-2.126597	1.139009
Н	0.567996	-0.515942	1.898409
Н	0.986656	-0.660132	0.166827
С	2.829802	-1.672518	2.950300
Н	2.433199	-2.690409	3.084027
Н	3.907429	-1.689038	3.174690
Н	2.328786	-1.000912	3.658625

С	3.325572	-2.130142	0.521182
Н	2.940526	-3.157424	0.599636
Н	3.177408	-1.776355	-0.510249

Н	4.404806	-2.142079	0.735364
	0 110 - 00		

H 2.413586 3.934912 2.126253

Zero-point correction=	0.483	575 (Hartree/Particle)
Thermal correction to	Energy= 0).512067
Thermal correction to	Enthalpy=	0.513011
Thermal correction to	Gibbs Free Energy=	0.421952
Sum of electronic and	zero-point Energies=	-1206.695875
Sum of electronic and	thermal Energies=	-1206.667384
Sum of electronic and	thermal Enthalpies=	-1206.666440
Sum of electronic and	thermal Free Energies	-1206.757499

1_int6

E(scf) = - [120	7.3	31	154	4243	a.u.
----	-----	---------	-----	-----	----	-----	------	------

· ·					
Vmin	=	31	.35	cm ⁻¹	

С	3.230165	-1.799077	3.776347	Н	5.721365	-0.086254	-1.094298
С	1.031015	-2.686432	3.293808	Н	5.177065	0.586728	0.469358
С	1.541993	-3.301078	4.626297	Н	6.002943	-0.996458	0.417376
С	3.061844	-3.058218	4.628764	Н	-0.101423	-0.930632	5.306370
Н	4.215675	-1.705371	3.307382	С	-0.435550	-0.942301	2.194653
Н	3.032530	-0.888896	4.367056	С	-0.398813	0.588340	0.580705
Н	0.733937	-3.458485	2.571847	Н	-0.142711	1.527261	0.099996
Н	1.074447	-2.803710	5.486927	С	-1.132465	-0.467606	0.135912
Н	1.294065	-4.367904	4.698037	Н	-1.637326	-0.633485	-0.810603
Н	3.472018	-2.945897	5.642700	С	-1.753853	-2.726687	0.986987
Н	3.581879	-3.898539	4.141963	Н	-1.004438	-3.501402	1.183395
Ν	2.189960	-1.970422	2.755062	Н	-2.609324	-2.845624	1.661380
С	2.376114	-1.895805	1.401713	Н	-2.091361	-2.818916	-0.051098
0	1.557950	-2.316376	0.593718	N	0.031341	0.280267	1.855820
0	3.526897	-1.281557	1.099344	Ν	-1.149157	-1.403991	1.145832
С	3.947896	-1.036413	-0.289587	C	-0.164487	-1.692631	3.502897
С	2.941070	-0.109549	-0.974099	0	0.234299	-0.692045	4.431949
Н	3.309579	0.156751	-1.976294	С	-1.459013	-2.353823	3.994017
Н	1.961511	-0.593011	-1.072733	С	-2.533816	-1.505036	4.314341
Н	2.822600	0.818243	-0.393424	С	-1.621132	-3.737932	4.140796
С	4.114251	-2.365854	-1.028231	С	-3.744408	-2.028652	4.769961
Н	4.555630	-2.181179	-2.019355	Н	-2.418701	-0.424283	4.201361
Н	4.790819	-3.029206	-0.467557	С	-2.833921	-4.262232	4.600454
Н	3.148832	-2.869937	-1.157714	Н	-0.819579	-4.429160	3.884934
С	5.296065	-0.339944	-0.112098	C	-3.897496	-3.412410	4.914828

Н	-4.570675	-1.355468	5.009758
Н	-2.944802	-5.343589	4.708204
Н	-4.844238	-3.826091	5.270015
С	0.896501	1.186895	2.623947

Н	1.785307	0.648042	2.963345
Н	1.191773	2.002023	1.954172
Н	0.357350	1.583184	3.489589

Zero-point correction=	0.491278 (Hartree/Particle)
Thermal correction to Energy=	0.517871
Thermal correction to Enthalpy=	0.518815
Thermal correction to Gibbs Free Ener	rgy= 0.435923
Sum of electronic and zero-point Ener	gies= -1206.820264
Sum of electronic and thermal Energie	es= -1206.793672
Sum of electronic and thermal Enthalp	bies= -1206.792727
Sum of electronic and thermal Free Er	nergies= -1206.875619

¹Int7

$$\begin{split} E(scf) &= -1669.14251444 \text{ a.u.} \\ v_{min} &= 15.25 \text{ cm}^{-1} \end{split}$$

•	10.20 0111						
С	3.516634	-1.588510	3.540237	C	0.095852	-1.485683	3.920974
С	1.237899	-2.502443	3.549872	0	0.592605	-0.506296	4.793032
С	2.001837	-3.027363	4.780669	C	-1.136122	-2.156055	4.560068
С	3.171846	-2.047286	4.964738	C	-2.194755	-1.314925	4.940708
Н	4.354645	-2.159285	3.109319	C	-1.238664	-3.526100	4.829356
н	3.785594	-0.522524	3.490279	C	-3.319603	-1.821659	5.588916
н	0.806752	-3.314673	2.949720	н	-2.125107	-0.245379	4.734920
н	1.370003	-3.100353	5.672389	C	-2.368737	-4.040238	5.477901
Н	2.373233	-4.038896	4.553518	н	-0.449123	-4.218521	4.538912
Н	2.848030	-1.191576	5.569954	C	-3.408112	-3.192236	5.865934
н	4.034248	-2.514385	5.461379	н	-4.126744	-1.146848	5.883863
Ν	2.293560	-1.858951	2.768933	н	-2.429290	-5.111764	5.682313
С	2.241090	-1.854485	1.406308	н	-4.286034	-3.595153	6.376491
0	1.296482	-2.290921	0.761055	C	1.293565	1.201596	2.650331
0	3.341730	-1.279765	0.893300	н	2.166848	1.013755	2.010384
С	3.554418	-1.137515	-0.554845	н	1.013370	2.261115	2.591999
С	2.470974	-0.235136	-1.149610	н	1.509107	0.917690	3.680227
н	2.688230	-0.051530	-2.212715	C	-2.072259	2.851655	8.869935
н	1.480415	-0.698009	-1.063346	C	-2.558199	1.763908	9.832777
н	2.455793	0.736245	-0.631156	C	-2.976206	0.459418	9.141354
С	3.588969	-2.517579	-1.214813	C	-0.900923	2.449265	7.967302
н	3.876709	-2.411567	-2.271820	C	-1.186252	1.243701	7.048123
Н	4.333789	-3.157432	-0.716848	C	-1.010884	-0.097783	7.728699
Н	2.608227	-3.005890	-1.161019	н	-1.793317	3.749092	9.447348
С	4.924152	-0.464751	-0.627766	н	-3.425103	2.149326	10.395484
Н	5.204826	-0.292979	-1.677375	н	-3.608455	0.678282	8.264060
Н	4.905652	0.504034	-0.106035	н	-0.003951	2.233989	8.574389
Н	5.690665	-1.099556	-0.158310	н	-2.206133	1.326688	6.635740
Н	0.379711	-0.701127	5.789172	C	-1.687527	-1.650336	9.505113
С	-0.334682	-0.763819	2.632029	н	-1.972945	-1.466676	10.552266
С	-0.445408	0.700221	0.954941	C	-0.246081	-2.132000	9.423610
Н	-0.191734	1.594834	0.394789	н	-0.156332	-3.132907	9.872310
С	-1.329578	-0.298487	0.692289	Ν	-1.855676	-0.402500	8.754000
Н	-2.003331	-0.449150	-0.145551	Ν	-0.043562	-0.862406	7.308068
С	-1.969911	-2.471548	1.724285	C	0.192735	-2.141765	7.963139
Н	-1.271093	-3.294093	1.907539	н	-3.602877	-0.134107	9.820813
Н	-2.764093	-2.480007	2.479442	н	-1.777525	1.528175	10.577219
н	-2.408050	-2.598008	0.727916	н	-2.919758	3.152032	8.226293
Ν	0.169160	0.395946	2.153456	н	-0.640847	3.309970	7.329744
Ν	-1.250145	-1.196712	1.735176	н	-0.500849	1.251337	6.192937

Н	-0.345748	-2.937165	7.415494	Н	0.401412	-1.448907
н	1.266130	-2.379801	7.884587	Н	-2.376290	-2.419113

9.998834 9.106924

Zero	-point corre	ection=	0.73817	'3 (Hartro	ee/Particle)		
Thermal correction to Energy= 0.775				75783			
The	Thermal correction to Enthalpy= 0.776727						
The	Thermal correction to Gibbs Free Energy= 0.667352						
Sun	n of electron	nic and zero-	point Energies=	-1668	.404342		
Sun	n of electron	nic and therm	al Energies=	-1668.	366732		
Sun	n of electror	nic and therm	al Enthalpies=	-1668	.365788		
Sun	n of electror	nic and therm	al Free Energies=	-166	8.475162		
¹ TS6							
E(scf) = -1206.80	0759536 a.u.					
v_{min} =	-78.76 cm ⁻¹						
С	3.224590	-1.694082	3.876685	Н	5.035265	-2.915596	-0.108848
С	1.106191	-2.727560	3.461882	Н	3.426312	-3.063986	-0.874057
С	1.757949	-3.479367	4.666901	С	5.155569	-0.162459	-0.047335
С	3.218606	-2.972392	4.730261	Н	5.602422	0.033168	-1.033518
Н	4.191501	-1.478789	3.408261	Н	4.882427	0.800170	0.411033
Н	2.907582	-0.821904	4.468660	Н	5.909490	-0.649944	0.589358
Н	0.696919	-3.404460	2.705491	С	-0.499771	-0.893060	1.952611
Н	1.216683	-3.251831	5.596292	С	-0.474622	0.670958	0.308985
Н	1.712092	-4.568263	4.521561	Н	-0.183632	1.596541	-0.180812
Н	3.562068	-2.789402	5.759357	С	-1.315046	-0.324391	-0.086791
Н	3.896512	-3.713522	4.277773	Н	-1.907091	-0.439045	-0.991199
Ν	2.210928	-1.986211	2.863274	С	-2.044021	-2.523512	0.898897
С	2.390461	-1.958683	1.514839	Н	-1.339389	-3.362695	0.977659
0	1.666993	-2.524353	0.706482	Н	-2.759609	-2.582866	1.729582
0	3.461322	-1.199053	1.187708	Н	-2.586615	-2.599692	-0.052242
С	3.921558	-1.053116	-0.194689	Ν	0.003998	0.302065	1.559865
С	2.848882	-0.354348	-1.034626	Ν	-1.316678	-1.263215	0.936658
Н	3.242063	-0.155265	-2.043446	С	0.009943	-1.776455	3.998454
Н	1.948135	-0.973657	-1.115849	0	0.348931	-0.801308	4.687356
Н	2.571800	0.607775	-0.577340	С	-1.363173	-2.383703	4.225172
С	4.307219	-2.419005	-0.769192	С	-2.388343	-1.536514	4.677187
Н	4.772454	-2.286289	-1.757982	С	-1.644884	-3.747109	4.052167

С	-3.672536	-2.027048	4.909845
Н	-2.152117	-0.481428	4.830160
С	-2.929760	-4.246516	4.299671
Н	-0.869320	-4.437728	3.717800
С	-3.949662	-3.388727	4.719442
н	-4.463540	-1.350165	5.244091

Н	-3.132157	-5.311638	4.159795
Н	-4.954722	-3.777002	4.903543
С	0.997525	1.068156	2.305135
Н	1.997000	0.911520	1.872708
Н	0.746722	2.137830	2.262417
Н	0.997994	0.717967	3.342766

Zero-point correction=	0.475146 (Hartree/Particle)
Thermal correction to Energy=	0.501829
Thermal correction to Enthalpy=	0.502774
Thermal correction to Gibbs Free Ene	rgy= 0.417623
Sum of electronic and zero-point Ener	gies= -1206.332449
Sum of electronic and thermal Energie	es= -1206.305766
Sum of electronic and thermal Enthalp	bies= -1206.304822
Sum of electronic and thermal Free Er	nergies= -1206.389972

¹Int8

$$\begin{split} E(scf) &= -902.209525971 \text{ a.u.} \\ v_{min} &= 20.17 \text{ cm}^{-1} \end{split}$$

• • • • • • • • • • • • • • • • • • • •			
С	3.586558	-2.060188	3.904654
С	1.310736	-2.887988	3.661084
С	1.791831	-3.094137	5.124909
С	3.324205	-3.073364	5.021828
Н	4.543478	-2.210655	3.388313
Н	3.562864	-1.022095	4.284884
Н	1.047232	-3.842005	3.178903
Н	1.447866	-2.254615	5.750239
Н	1.393470	-4.018833	5.563744
Н	3.811513	-2.800555	5.969045
Н	3.697379	-4.064287	4.716537
Ν	2.467753	-2.307172	2.997591
С	2.413346	-2.019020	1.670803
0	1.455793	-2.303270	0.964671
0	3.539077	-1.402146	1.263169
С	3.744399	-0.992309	-0.128951

С	2.684299	0.037281	-0.529305
Н	2.912711	0.432750	-1.530845
Н	1.684788	-0.414248	-0.543300
Н	2.684240	0.876857	0.183110
С	3.736097	-2.219624	-1.043998
Н	4.008277	-1.919083	-2.067388
Н	4.473112	-2.958907	-0.693447
Н	2.744585	-2.688358	-1.062121
С	5.132754	-0.353687	-0.092414
Н	5.410210	0.007788	-1.093792
Н	5.146053	0.497636	0.604923
Н	5.885101	-1.086167	0.237539
С	0.100786	-1.941208	3.622257
0	0.263767	-0.752741	3.415899
С	-1.256959	-2.502830	3.910262
С	-2.350912	-1.616653	3.909005

-1.481989	-3.863077	4.191329			
-3.638308	-2.076956	4.178452			
-2.164444	-0.563233	3.692194			
-2.772670	-4.323472	4.465342			
-0.656516	-4.575923	4.201491			
	-1.481989 -3.638308 -2.164444 -2.772670 -0.656516	-1.481989 -3.863077 -3.638308 -2.076956 -2.164444 -0.563233 -2.772670 -4.323472 -0.656516 -4.575923			

С	-3.851620	-3.433503	4.457903
Н	-4.480091	-1.380227	4.172668
Н	-2.935951	-5.381433	4.683577
Н	-4.860488	-3.796431	4.669983

	с з	3					
Zerc The The Sun Sun Sun	p-point correct rmal correct rmal correct rmal correct of electron of electron of electron of electron of electron	ction= tion to Energy tion to Enthal tion to Gibbs tic and zero-p tic and therma tic and therma	0.34679 y= 0.30 py= 0.3 Free Energy= ooint Energies= al Energies= al Enthalpies= al Free Energies=	4 (Hartre 56085 67029 0.29747 -901. -901.8 -901.3 -901	ee/Particle) 75 862732 843441 842497 912051		
С							
E(scf) = -804.822	476916 a.u.					
v_{min} =	$= 43.19 \text{ cm}^{-1}$						
С	-0.372638	-1.083226	2.349910	С	-0.282060	-2.856248	5.656505
0	0.764323	-1.029372	1.995537	Н	1.150497	-2.225512	4.160874
С	-0.871286	-1.694611	3.606600	С	-1.634707	-2.892529	6.019247
С	-2.227130	-1.733642	3.975647	Н	-3.657728	-2.360262	5.462194
С	0.100656	-2.260871	4.456562	Н	0.474219	-3.293771	6.312052
С	-2.603270	-2.331816	5.179058	Н	-1.934306	-3.359798	6.960550
Н	-2.981757	-1.296865	3.321785	Cl	-1.653333	-0.356021	1.272711
Zero	-point corre	ction=	0.10110	1 (Hartre	ee/Particle)		
The	ermal correct	tion to Energ	y= 0.10	08440	,		
The	ermal correct	tion to Enthal	py= 0.1	09384			
The	ermal correct	tion to Gibbs	Free Energy=	0.06793	31		
Sun	n of electron	ic and zero-p	oint Energies=	-804.	721376		
Sun	n of electron	ic and therm	al Energies=	-804.7	/14037		
Sun	n of electron	ic and therm	al Enthalpies=	-804.	713092		
Sun	n of electron	ic and therma	al Free Energies=	-804	.754546		
C (S.	!)						
E(scf) = -804.807	822268 a.u.					
v _{min} =	$= 77.15 \text{ cm}^{-1}$						
С	-0.367542	-1.167216	2.281280	C	-0.855884	-1.686573	3.536715
0	0.800383	-1.115058	1.907052	С	-2.193696	-1.668469	4.004778

С	0.087789	-2.184872	4.476609	С	-1.657337	-2.948141	6.057150
С	-2.593086	-2.353601	5.199318	Н	-3.660518	-2.403870	5.427677
Н	-2.936699	-1.074010	3.468308	Н	0.466565	-3.346058	6.271025
С	-0.309915	-2.865173	5.670642	Н	-1.963987	-3.490491	6.950751
Н	1.149657	-2.008316	4.286158	Cl	-1.694250	-0.462697	1.191769

Zero-point correction=	0.095885 (Hartree/Particle)
Thermal correction to Energy=	0.104202
Thermal correction to Enthalpy=	0.105146
Thermal correction to Gibbs Free Ene	rgy= 0.062273
Sum of electronic and zero-point Ener	-804.567767
Sum of electronic and thermal Energie	es= -804.559449
Sum of electronic and thermal Enthal	bies= -804.558505
Sum of electronic and thermal Free En	nergies= -804.601378
	-

C (T	$l) = -804\ 703$	332657 ค.บ					
$V \cdot =$	$= 63.48 \text{ cm}^{-1}$	<i>552057</i> a.u.					
v min	05.40 cm	4 00 4 4 00	2 25 4020		0.040044	2 252266	
C	-0.389827	-1.094439	2.354920	C	-0.248811	-2.859866	5.664898
0	0.783315	-1.055315	2.016138	Н	1.178802	-2.240540	4.174454
С	-0.885478	-1.674387	3.564136	C	-1.616536	-2.897797	6.042320
С	-2.278054	-1.722879	3.966899	н	-3.673467	-2.341374	5.447897
С	0.135623	-2.282191	4.486264	н	0.503465	-3.297802	6.325360
С	-2.624141	-2.305173	5.145666	н	-1.932129	-3.355967	6.980256
Н	-3.033112	-1.288228	3.313077	Cl	-1.648168	-0.358588	1.246944

Zero-point correction=			0.0	95646 (Hartr	ee/Particle)		
The	ermal correct	tion to Energ	y=	0.103871			
The	ermal correct	tion to Enthal	lpy=	0.104815			
The	ermal correct	tion to Gibbs	Free Energy=	0.0608	08		
Sur	n of electron	ic and zero-p	oint Energies	-804	.607687		
Sur	n of electron	ic and therm	al Energies=	-804.:	599462		
Sur	n of electron	ic and therm	al Enthalpies=	-804.	598517		
Sur	n of electron	ic and therm	al Free Energi	es= -804	4.642525		
_							
D							
E(sci	() = -444.524	987675 a.u.					
v_{min} =	$= 72.65 \text{ cm}^{-1}$						
С	-0.399947	-1.023289	2.378354	Н	-2.956435	-1.216038	3.349426
0	0.714025	-0.942316	1.959310	C	-0.283989	-2.893932	5.636535
С	-0.857266	-1.668790	3.625886	Н	1.156241	-2.250131	4.148546
С	-2.213762	-1.687396	3.994026	C	-1.636609	-2.911645	6.002123
С	0.107593	-2.274352	4.450928	Н	-3.652105	-2.325968	5.471140
С	-2.598796	-2.309740	5.182461	Н	0.463653	-3.364677	6.278797

Н	-1.941981	-3.397912	6.931944	F	-1.419382	-0.475572	1.670507
Zer	o-point corre	ection=	0.1029	65 (Hartre	ee/Particle)		
Th	ermal correct	tion to Energ	y= 0.1	09865	,		
Th	ermal correct	tion to Entha	lpy= 0.	110809			
Th	ermal correct	tion to Gibbs	Free Energy=	0.0710	18		
Su	m of electron	ic and zero-p	oint Energies=	-444.	422022		
Su	m of electron	ic and therm	al Energies=	-444.4	415123		
Su	m of electron	ic and therm	al Enthalpies=	-444.	414179		
Su	m of electron	ic and therm	al Free Energies=	-444	4.453970		
n /((1)						
D (S F(sc	$f_{1} = -444516$	570634 a u					
Vmin	$= 99.68 \text{ cm}^{-1}$	57005 T d.u.					
С	-0.387703	-1.010725	2.354320	С	-0.307234	-2.902671	5.657360
0	0.755043	-0.926079	1.923751	н	1.152650	-2.257745	4.160807
С	-0.841639	-1.637747	3.567507	С	-1.654327	-2.941516	6.059390
С	-2.199086	-1.684418	3.984856	н	-3.651586	-2.324875	5.469677
С	0.096498	-2.265621	4.437586	н	0.466443	-3.363470	6.275609
C	-2.590684	-2.326038	5.209310	н	-1.959004	-3.425803	6.986211
н	-2.966312	-1.222424	3.362202	F	-1.431818	-0.452627	1.631397
Zer	o-point corre	ction=	0.0974	58 (Hartre	ee/Particle)		
The	ermal correct	tion to Energ	y = 0.1	04749			
I no	ermal correct	tion to Entha	py = 0.	103694	15		
1 II Suu	ermai correct	uic and zero r	oint Energies	0.0033	15		
Sui	n of electron	uic and therm	al Energies=	-444. -444.2	200002		
Sui	m of electron	ic and therm	al Enthalpies=	-444	252427		
Su	m of electron	ic and therm	al Free Energies=	-444	4.292605		
			6				
D (7	']) 2 444 401	025005					
E(sc	f) = -444.401	835905 a.u.					
Vmin		1 021442	2 206645	C	0 245721	2 00/790	E 62002E
	-0.419298	-1.021443	2.300043	L L	1 1070/0	-2.904780	J.059055 A 160472
C C	0.723783	-0.932008	2 500145	п С	1.107940	-2.207088	6.022670
C C	-0.872230	-1.044960	2.200029	с u	-1.01000	-2.927470	
C C	-2.200088	-1.075900	5.90000		-3.009903	-2.314009	5.450000
C C	0.146043	-2.299293	4.479202		0.498531	-3.378999	0.284207
	-2.621924	-2.286671	5.148869	н г	-1.934/20		0.948072
н	-3.009145	-1.204283	3.345075	F	-1.422623	-0.455580	1.048238
Zer	o-point corre	ection=	0.0971	62 (Hartre	ee/Particle)		
Th	ermal correct	tion to Energ	v = 0.1	.05012			
Th	ermal correct	tion to Entha	lpy=0.	105956			
Th	ermal correct	tion to Gibbs	Free Energy=	0.06333	37		

Su	n of electror	nic and zero-p	ooint Energies=	-444.	304674		
Sui	n of electror	nic and therm	al Energies=	-444.2	296824		
Su	n of electror	nic and therm	al Enthalpies=	-444.	295880		
Su	n of electror	nic and therm	al Free Energies=	-444	1.338499		
Е							
E(sc	f) = -459.813	061148 a.u.					
ν_{min}	$= 55.31 \text{ cm}^{-1}$						
С	-0.214215	-1.031804	2.383456	С	-1.752530	-2.895185	5.932141
0	0.972989	-0.888728	2.174375	Н	-3.724375	-2.526769	5.118176
С	-0.782972	-1.674682	3.605415	Н	0.326550	-3.130184	6.491133
С	-2.167183	-1.812156	3.804153	Н	-2.131617	-3.371393	6.839961
С	0.111124	-2.151987	4.577986	0	-1.160822	-0.621406	1.524894
С	-2.647586	-2.421132	4.965623	С	-0.707365	0.005938	0.321683
Н	-2.859081	-1.440851	3.047350	Н	-1.608636	0.270457	-0.243948
С	-0.372317	-2.760111	5.737158	Н	-0.121678	0.909274	0.550462
Η	1.183291	-2.037574	4.407616	Н	-0.078680	-0.682630	-0.263123
Zer	o-point corre	ection=	0.14342	25 (Hartre	ee/Particle)		
The	ermal correc	tion to Energ	y= 0.1	52163			
The	ermal correct	tion to Entha	lpy= 0.1	53107			
The	ermal correc	tion to Gibbs	Free Energy=	0.10908	86		
Sui	n of electror	nic and zero-p	oint Energies=	-459.	669637		
Sui	n of electror	nic and therm	al Energies=	-459.6	560898		
Su	n of electror	nic and therm	al Enthalpies=	-459.	659954		
Sui	n of electror	nic and therm	al Free Energies=	-455	9.703976		
Е (S	1)						
E(sc	f) = -459.789	9509126 a.u.					
ν_{min}	$= 46.87 \text{ cm}^{-1}$						
С	-0.337225	-1.056357	2.419273	С	-1.741841	-2.908021	5.958668
0	0.941867	-0.879945	2.138702	Н	-3.727690	-2.549058	5.155709
С	-0.804239	-1.666854	3.586769	Н	0.353546	-3.118863	6.479353
С	-2.214781	-1.826729	3.825403	Н	-2.104890	-3.385595	6.870829
С	0.117020	-2.151709	4.580972	0	-1.169680	-0.596740	1.480623
С	-2.652732	-2.434732	4.988508	C	-0.655987	0.026270	0.288402
Н	-2.928496	-1.465387	3.083562	Н	-1.538618	0.307881	-0.296065
С	-0.359506	-2.755596	5.733790	Н	-0.069138	0.922794	0.538665
Η	1.192854	-2.042776	4.425560	Н	-0.035568	-0.679507	-0.284214
Zer	o-point corre	ection=	0.13977	2 (Hartre	ee/Particle)		
The	ermal correc	tion to Energ	y= 0.1	49070			
The	ermal correc	tion to Entha	lpy= 0.1	50014			
The	ermal correc	tion to Gibbs	Free Energy=	0.10480	JI 510700		
Sui	n ot electror	nic and zero-p	boint Energies=	-459.	512/29		
Sui	n of electror	nic and therm	ai Energies=	-459.5	003431		

Sui Sui	m of electror m of electror	nic and therm	al Enthalpies= al Free Energies	-459. = -459	502487 9.547701		
Е (7	71)		-				
E(sc	f) = -459.686	473374 a.u.					
ν_{min}	$= 48.82 \text{ cm}^{-1}$						
С	-0.233861	-1.035971	2.393546	С	-1.750830	-2.901746	5.950403
0	0.973589	-0.890476	2.192058	Н	-3.755187	-2.532993	5.093018
С	-0.787760	-1.658578	3.570730	Н	0.356849	-3.119333	6.508696
С	-2.232255	-1.820582	3.791989	Н	-2.135718	-3.374291	6.854837
С	0.150959	-2.163486	4.618719	0	-1.176473	-0.616227	1.509161
С	-2.682380	-2.411131	4.924169	С	-0.693478	0.005795	0.321841
Н	-2.917885	-1.455041	3.027723	Н	-1.578397	0.277085	-0.267283
С	-0.331307	-2.751219	5.743499	Н	-0.106024	0.907642	0.557645
Η	1.218522	-2.038133	4.437314	Н	-0.053466	-0.682238	-0.253553
Zer	o-point corre	ection=	0.137	306 (Hartre	ee/Particle)		
Th	ermal correc	tion to Energ	y= 0	.147174			
Th	ermal correc	tion to Entha	lpy=	0.148118			
Th	ermal correc	tion to Gibbs	Free Energy=	0.10074	49		
Su	m of electror	nic and zero-p	point Energies=	-459.	549168		
Su	m of electror	ic and therm	al Energies=	-459.5	39299		
Sui	m of electron	ic and therm	al Enthalpies=	-459.	538355		
Sui	m of electror	ic and therm	al Free Energies	-459	0.585/25		
F							
E(sc	f) = -570.217	'328294 a.u.					
v_{min}	$= 52.71 \text{ cm}^{-1}$						
С	-0.373179	-1.019459	2.335470	Н	0.466641	-3.354330	6.248253
0	0.676658	-0.415054	2.291751	Н	-1.940821	-3.399562	6.900986
С	-0.861212	-1.712052	3.561988	С	-1.036790	-0.246001	0.072913
С	-2.216119	-1.730833	3.937408	С	-2.157271	-2.014437	0.823070
С	0.104032	-2.282085	4.411356	Ν	-1.191092	-1.080600	1.174997
С	-2.598483	-2.331765	5.139308	Ν	-2.610502	-1.808935	-0.383453
Н	-2.969216	-1.251558	3.309652	С	-1.926990	-0.701435	-0.860495
С	-0.284944	-2.897178	5.600567	Н	-0.322544	0.571421	0.084755
Н	1.155771	-2.240847	4.121471	Н	-2.116864	-0.294795	-1.853292
С	-1.637160	-2.923134	5.965619	Н	-2.444229	-2.825069	1.490102
Н	-3.650635	-2.333287	5.432849				
Zer	o-point corre	ection=	0.162	374 (Hartre	ee/Particle)		
Th	ermal correc	tion to Energ	y= 0	.172146	,		
Th	ermal correc	tion to Entha	lpy=	0.173090			
Th	ermal correc	tion to Gibbs	Free Energy=	0.12604	41		
Su	m of electror	nic and zero-p	ooint Energies=	-570.	054954		
Su	m of electror	nic and therm	al Energies=	-570.0)45182		

Sur Sur	n of electror n of electror	nic and therm	al Enthalpies= al Free Energies=	-570. = -57(044238).091288		
F <i>(</i> \$	37)						
$\mathbf{E}(\mathbf{sc})$	$f_{1} = -570.189$	805394 a u					
Vmin ³	$= 34.89 \text{ cm}^{-1}$	000000000000					
С	-0.148005	-1.844202	2.141207	н	0.379814	-2.828246	6.593851
0	1.015484	-1.988880	1.721956	н	-2.055271	-2.514761	7.113463
С	-0.713087	-2.006771	3.434331	С	-1.536184	-0.195273	0.745827
С	-2.100549	-1.837032	3.755296	С	-1.673612	-2.259543	0.096459
С	0.163871	-2.375139	4.509805	Ν	-1.149940	-1.425423	1.062130
С	-2.559050	-2.020418	5.055186	Ν	-2.398434	-1.604377	-0.823992
Н	-2.817545	-1.568759	2.977623	С	-2.341500	-0.328269	-0.460189
С	-0.316615	-2.549657	5.797142	н	-1.267666	0.685504	1.324476
Н	1.223130	-2.513600	4.285494	Н	-2.838983	0.477168	-0.999158
С	-1.684307	-2.375266	6.096262	н	-1.492304	-3.333407	0.113167
Н	-3.624195	-1.884643	5.264937				
Zero	o-point corre	ection=	0.1585	508 (Hartre	ee/Particle)		
The	ermal correc	tion to Energ	y= 0.	168889			
The	ermal correc	tion to Entha	lpy= 0	.169833			
The	ermal correct	$\frac{1}{1}$	Free Energy=	0.1211:	040004		
Sur	n of electron	ic and zero-p	oint Energies=	-309.	940224		
Sur	n of electron	hic and therm	al Energies-	-309.5	078800		
Sur	n of electror	hic and therm	al Free Energies=	= -569.	928899		
Sui				505			
F (<i>T</i>	1)						
E(sc	f) = -570.105	438266 a.u.					
V _{min} :	$= 49.88 \text{ cm}^{-1}$	1 026402	2 244044		0 5 40 400	2 202 422	6 24 00 40
C	-0.416/53	-1.026493	2.344944	н	0.540429	-3.202432	6.310048
0	0.070387	-0.428580	2.282880	H C	-1.864497	-3.446441	0.944545
C	-0.885126	-1./21369	3.569102	C	-0.901026	-0.339280	0.056912
C	-2.23/319	-1.847041	3.948359		-2.355207	-1.829955	0.8360/1
C	0.10/119	-2.201350	4.450203	IN N	-1.222243	-1.051474	1.200950
	-2.585100	-2.459707	2.122328		-2./59300	-1.5/8924	-0.459030
H	-3.030314	-1.430349	3.324458	C II	-1.920951	-0.709462	-0.943097
C II	-0.242179	-2.823417	5.04//15	н	-0.034936	0.313894	0.016872
H	1.154899	-2.074107	4.171893	н	-1.984124	-0.309142	-1.95/300
C II	-1.590223	-2.960505	6.004983	н	-2./441/3	-2.627260	1.462704
H Zarr	-3.6361/6	-2.53/599	5.43/30/	112 (Uantre	Dortiala)		
	ormal correct	tion to Energ	v= 0.137.	167668	e/Faiticle)		
The	ermal correct	tion to Entha	y = 0.	168612			
The	ermal correct	tion to Gibbs	Free Energy=	0.11931	19		
Sur	n of electror	nic and zero-p	point Energies=	-569.	948295		

Sum of electronic and thermal Energies=	-569.937770
Sum of electronic and thermal Enthalpies=	-569.936826
Sum of electronic and thermal Free Energies=	-569.986119

X-Ray Crystal Structure Data

Single crystals of $C_{17}H_{23}NO_3$ (**3h**) were obtained by slow evaporation in hexanes at room temperature over two days. A suitable crystal was selected and mounted in inert oil on a **XtaLAB Synergy R, DW system, HyPix** diffractometer. The crystal was kept at 100(1) K during data collection. Using Olex2,⁴⁷ the structure was solved with the SHELXT⁴⁸ structure solution program using Intrinsic Phasing and refined with the SHELXL⁴⁹ refinement package using Least Squares minimization.

Crystal Data for C₁₇H₂₃NO₃ (M =289.36 g/mol): monoclinic, space group P2₁/c (no. 14), a = 10.03920(10) Å, b = 10.4971(2) Å, c = 16.1820(2) Å, β = 103.0700(10)°, V = 1661.12(4) Å³, Z = 4, T = 100(1) K, μ (Cu K α) = 0.633 mm⁻¹, *Dcalc* = 1.157 g/cm³, 30746 reflections measured (9.044° ≤ 2 Θ ≤ 156.41°), 3452 unique (R_{int} = 0.0308, R_{sigma} = 0.0190) which were used in all calculations. The final R_1 was 0.0379 (I > 2 σ (I)) and wR_2 was 0.0948 (all data). Further information can be found in the CIF file. This crystal structure was deposited in the Cambridge Crystallographic Data Centre and assigned as 2195739.

Refinement Details: No special refinement necessary.

Single crystals of C₂₂H₃₀F₃N₃O₆S (**4a**) were obtained by vapor diffusion in dichloromethane and heptanes at room temperature over three days. A suitable crystal was selected and mounted in inert oil on a **XtaLAB Synergy R**, **DW system**, **HyPix** diffractometer. The crystal was kept at 100.15 K during data collection. Using Olex2,⁴⁷ the structure was solved with the SHELXT⁴⁸ structure solution program using Intrinsic Phasing and refined with the SHELXL⁴⁹ refinement package using Least Squares minimization.

Crystal Data for C₂₂H₃₀F₃N₃O₆S (M=521.55 g/mol): orthorhombic, space group Pbca (no. 61), a = 17.9290(8) Å, b = 15.4082(8) Å, c = 18.3130(10) Å, V = 5059.0(4) Å³, Z = 8, T = 100.15 K, μ (CuK α) = 1.709 mm⁻¹, *Dcalc* = 1.370 g/cm³, 25198 reflections measured (8.976° $\leq 2\Theta \leq 133.108^{\circ}$), 4430 unique ($R_{int} = 0.1183$, $R_{sigma} = 0.0452$) which were used in all calculations. The final R_1 was 0.0950 (I > 2 σ (I)) and wR_2 was 0.2872 (all data). Further information can be found in the CIF file. This crystal structure was deposited in the Cambridge Crystallographic Data Centre and assigned as 2195740.

Refinement Details: No special refinement necessary.

Selected NMR Spectra

¹H NMR spectrum of (1-methyl-1H-imidazol-2-yl)(phenyl)methanone **S1a** (500 MHz, CDCl₃)

¹H NMR spectrum of (1-methyl-1H-imidazol-2-yl)(phenyl)methanone **S1b** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of (1-methyl-1H-imidazol-2-yl)(phenyl)methanone S1b (470 MHz, CDCl₃)

¹H NMR spectrum of 4-(1-methyl-1*H*-imidazole-2-carbonyl)benzonitrile **S1c** (500 MHz, CDCl₃)

¹³C NMR spectrum of 4-(1-methyl-1*H*-imidazole-2-carbonyl)benzonitrile **S1c** (126 MHz, CDCl₃)

¹³C NMR spectrum of (1-methyl-1*H*-imidazol-2-yl)(*p*-tolyl)methanone **S1d** (126 MHz, CDCl₃)

¹H NMR spectrum of (4-methoxyphenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1e** (500 MHz, CDCl₃)

¹H NMR spectrum of (4-(*tert*-butyl)phenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1f** (500 MHz, CDCl₃)

S72
¹³C NMR spectrum of (4-(*tert*-butyl)phenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1f** (126 MHz, CDCl₃)

¹H NMR spectrum of (4-fluorophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1g** (500 MHz, CDCl₃)

¹H NMR spectrum of (4-chlorophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1h** (500 MHz, CDCl₃)

¹H NMR spectrum of (3-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1i** (500 MHz, CDCl₃)

¹³C NMR spectrum of (3-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1i** (126 MHz, CDCl₃)

¹H NMR spectrum of (2-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1j** (500 MHz, CDCl₃)

¹³C NMR spectrum of (2-bromophenyl)(1-methyl-1*H*-imidazol-2-yl)methanone **S1j** (126 MHz, CDCl₃)

 $^{1}\mathrm{H}$ NMR spectrum of methyl 4-(1-methyl-1*H*-imidazole-2-carbonyl)benzoate **S1k** (500 MHz, CDCl_3)

¹³C NMR spectrum of methyl 4-(1-methyl-1*H*-imidazole-2-carbonyl)benzoate **S1k** (126 MHz, CDCl₃)

¹H NMR spectrum of (1-methyl-1*H*-imidazol-2-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone **S1I** (500 MHz, CDCl₃)

¹³C NMR spectrum of (1-methyl-1*H*-imidazol-2-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone **S1I** (126 MHz, CDCl₃)

¹¹B NMR spectrum of (1-methyl-1*H*-imidazol-2-yl)(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone **S1I** (160 MHz, CDCl₃)

¹H NMR spectrum of 2-benzoyl-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1a** (500 MHz, CDCl₃)

¹H NMR spectrum of 1,3-dimethyl-2-(4-(trifluoromethyl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1b** (500 MHz, DMSO)

¹³C NMR spectrum of 1,3-dimethyl-2-(4-(trifluoromethyl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1b** (126 MHz, DMSO)

¹⁹F NMR spectrum of 1,3-dimethyl-2-(4-(trifluoromethyl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1b** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-cyanobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1c** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-cyanobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1c** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-cyanobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1c** (470 MHz, DMSO)

¹H NMR spectrum of 1,3-dimethyl-2-(4-methylbenzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1d** (500 MHz, DMSO)

¹³C NMR spectrum of 1,3-dimethyl-2-(4-methylbenzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1d** (126 MHz, DMSO)

¹⁹F NMR spectrum of 1,3-dimethyl-2-(4-methylbenzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **1d** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-methoxybenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1e** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-methoxybenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1e** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-methoxybenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1e** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-(*tert*-butyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1f** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-(*tert*-butyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1f** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-(*tert*-butyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1f** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-fluorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1g** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-fluorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1g** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-fluorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1g** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-chlorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1h** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-chlorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1h** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-chlorobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1h** (470 MHz, DMSO)

¹H NMR spectrum of 2-(3-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1i** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(3-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1i** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(3-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1i** (470 MHz, DMSO)

¹H NMR spectrum of 2-(2-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1j** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(2-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1j** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(2-bromobenzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1j** (470 MHz, DMSO)

¹H NMR spectrum of 2-(4-(methoxycarbonyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1k** (500 MHz, DMSO)

¹³C NMR spectrum of 2-(4-(methoxycarbonyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1k** (126 MHz, DMSO)

¹⁹F NMR spectrum of 2-(4-(methoxycarbonyl)benzoyl)-1,3-dimethyl-1*H*-imidazol-3-ium trifluoromethanesulfonate **1k** (470 MHz, DMSO)

¹H NMR spectrum of 1,3-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **11** (500 MHz, CDCl₃)

¹³C NMR spectrum of 1,3-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **11** (126 MHz, CDCl₃)

¹⁹F NMR spectrum of 1,3-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **11** (470 MHz, CDCl₃)

¹¹B NMR spectrum of 1,3-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate **11** (160 MHz, CDCl₃)

¹³C NMR spectrum of allyl pyrrolidine-1-carboxylate 2d (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl dipropylcarbamate **2m** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl dipropylcarbamate **2m** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-benzoylpyrrolidine-1-carboxylate **3a** (500 MHz, CDCl₃)

¹H NMR spectrum of benzyl 2-benzoylpyrrolidine-1-carboxylate **3b** (500 MHz, CDCl₃)

¹H NMR spectrum of 1-(2-benzoylpyrrolidin-1-yl)-2,2-dimethylpropan-1-one **3c** (500 MHz, CDCl₃)

 1 H NMR spectrum of allyl 2-benzoylpyrrolidine-1-carboxylate 3d (500 MHz, CDCl₃)

¹³C NMR spectrum of allyl 2-benzoylpyrrolidine-1-carboxylate 3d (126 MHz, CDCl₃)

¹H NMR spectrum of 2,2,2-trichloroethyl 2-benzoylpyrrolidine-1-carboxylate **3e** (500 MHz, CDCl₃)

¹³C NMR spectrum of 2,2,2-trichloroethyl 2-benzoylpyrrolidine-1-carboxylate **3e** (126 MHz, CDCl₃)

¹H NMR spectrum of 2-(trimethylsilyl)ethyl 2-benzoylpyrrolidine-1-carboxylate **3f** (500 MHz, CDCl₃)

S102

¹³C NMR spectrum of 2-(trimethylsilyl)ethyl 2-benzoylpyrrolidine-1-carboxylate **3f** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-benzoylazetidine-1-carboxylate **3g** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-benzoylpiperidine-1-carboxylate **3h** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-benzoylazepane-1-carboxylate **3i** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl 2-benzoylazepane-1-carboxylate **3i** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 1-benzoylisoindoline-2-carboxylate **3j** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl 1-benzoylisoindoline-2-carboxylate **3j** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl cyclohexyl(2-oxo-2-phenylethyl)carbamate 3k (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl cyclohexyl(2-oxo-2-phenylethyl)carbamate **3k** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl (2-oxo-2-phenyl-1-(pyridin-3-yl)ethyl)carbamate **31** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl (2-oxo-2-phenyl-1-(pyridin-3-yl)ethyl)carbamate **3**I (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl (1-oxo-1-phenylbutan-2-yl)(propyl)carbamate **3m** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl (1-oxo-1-phenylbutan-2-yl)(propyl)carbamate **3m** (126 MHz, CDCl₃)

¹H NMR spectrum of 4-chloro-*N*-(1-oxo-1-phenylpentan-2-yl)benzamide **3n**(500 MHz, CDCl₃)

¹³C NMR spectrum of 4-chloro-*N*-(1-oxo-1-phenylpentan-2-yl)benzamide **3n** (126 MHz, CDCl₃)

¹H NMR spectrum of 1-(*tert*-butyl) 2-methyl (2*S*)-5-benzoylpyrrolidine-1,2-dicarboxylate **30** diastereomer 1 (500 MHz, CDCl₃)

¹³C NMR spectrum of 1-(*tert*-butyl) 2-methyl (2*S*)-5-benzoylpyrrolidine-1,2-dicarboxylate **30** diastereomer 1 (126 MHz, CDCl₃)

¹H NMR spectrum of 1-(*tert*-butyl) 2-methyl (2*S*)-5-benzoylpyrrolidine-1,2-dicarboxylate **30** diastereomer 2 (500 MHz, CDCl₃)

¹³C NMR spectrum of 1-(*tert*-butyl) 2-methyl (2*S*)-5-benzoylpyrrolidine-1,2-dicarboxylate **30** diastereomer 2 (126 MHz, CDCl₃)

¹H NMR spectrum of (3*R*)-4-((4-acetoxy-1-oxo-1-phenylbutan-2-yl)amino)-2,2-dimethyl-4-oxobutane-1,3-diyl diacetate **3p** (500 MHz, CDCl₃)

¹³C NMR spectrum of (3*R*)-4-((4-acetoxy-1-oxo-1-phenylbutan-2-yl)amino)-2,2-dimethyl-4-oxobutane-1,3-diyl diacetate **3p** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-(trifluoromethyl)benzoyl)pyrrolidine-1-carboxylate **3q** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl 2-(4-(trifluoromethyl)benzoyl)pyrrolidine-1-carboxylate **3q** (126 MHz, CDCl₃)

¹⁹F NMR spectrum of *tert*-butyl 2-(4-(trifluoromethyl)benzoyl)pyrrolidine-1-carboxylate **3q** (470 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-cyanobenzoyl)pyrrolidine-1-carboxylate **3r** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-methylbenzoyl)pyrrolidine-1-carboxylate **3s** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-methoxybenzoyl)pyrrolidine-1-carboxylate **3t** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-(*tert*-butyl)benzoyl)pyrrolidine-1-carboxylate **3u** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl 2-(4-(*tert*-butyl)benzoyl)pyrrolidine-1-carboxylate **3u** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-fluorobenzoyl)pyrrolidine-1-carboxylate 3v (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-chlorobenzoyl)pyrrolidine-1-carboxylate **3w** (500 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(3-bromobenzoyl)pyrrolidine-1-carboxylate $3x(500 \text{ MHz}, \text{CDCl}_3)$

¹³C NMR spectrum of *tert*-butyl 2-(3-bromobenzoyl)pyrrolidine-1-carboxylate **3x** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(2-bromobenzoyl)pyrrolidine-1-carboxylate **3y** (500 MHz, CDCl₃)

¹³C NMR spectrum of *tert*-butyl 2-(2-bromobenzoyl)pyrrolidine-1-carboxylate **3y** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-(methoxycarbonyl)benzoyl)pyrrolidine-1-carboxylate **3z** (500 MHz, CDCl₃)

S120

¹³C NMR spectrum of *tert*-butyl 2-(4-(methoxycarbonyl)benzoyl)pyrrolidine-1-carboxylate **3z** (126 MHz, CDCl₃)

¹H NMR spectrum of *tert*-butyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)pyrrolidine-1-carboxylate **3aa** (500 MHz, CDCl₃)

Supporting Information

¹³C NMR spectrum of *tert*-butyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)pyrrolidine-1-carboxylate **3aa** (126 MHz, CDCl₃)

¹¹B NMR spectrum of *tert*-butyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)pyrrolidine-1-carboxylate **3aa** (160 MHz, CDCl₃)

¹H NMR spectrum of phenyl(1,2,3,4-tetrahydronaphthalen-1-yl)methanone **5a** (500 MHz, CDCl₃)

¹H NMR spectrum of cyclopent-2-en-1-yl(phenyl)methanone **5b** (500 MHz, CDCl₃)

¹H NMR spectrum of 2-(benzyloxy)-1,2-diphenylethan-1-one **5c** (500 MHz, CDCl₃)

¹H NMR spectrum of methyl 2-(4-(3-(4-chlorobenzamido)-1-oxo-1-phenylpropan-2yl)phenoxy)-2-methylpropanoate **5d** (500 MHz, CDCl₃)

Supporting Information

¹³C NMR spectrum of methyl 2-(4-(3-(4-chlorobenzamido)-1-oxo-1-phenylpropan-2yl)phenoxy)-2-methylpropanoate **5d** (126 MHz, CDCl₃)

References

(1) Ma, J.; Harms, K.; Meggers, E. Enantioselective Rhodium/Ruthenium Photoredox Catalysis En Route to Chiral 1,2-Aminoalcohols. *Chem. Commun.* **2016**, *52*, 10183–10186.

(2) Tjutrins, J.; Arndtsen, B. A. An Electrophilic Approach to the Palladium-Catalyzed Carbonylative C–H Functionalization of Heterocycles. *J. Am. Chem. Soc.* **2015**, *137*, 12050–12054.

(3) Yoshida, K.; Oyama, K.; Watanabe, N. Synthesis of 2-Aroyl-1-Methyl-1H-Imidazoles Using Aryl Carboxylic Acids. *HETEROCYCLES* **2017**, *95*, 1177.

(4) Zarganes-Tzitzikas, T.; Neochoritis, C. G.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A. Synthesis of 2-Keto-Imidazoles Utilizing N-Arylamino-Substituted N-Heterocyclic Carbenes. *J. Org. Chem.* **2011**, *76*, 1468–1471.

(5) Meng, Q.-Y.; Döben, N.; Studer, A. Cooperative NHC and Photoredox Catalysis for the Synthesis of β -Trifluoromethylated Alkyl Aryl Ketones. *Angew. Chem. Int. Ed.* **2020**, *59*, 19956–19960.

(6) McLean, E. B.; Mooney, D. T.; Burns, D. J.; Lee, A.-L. Direct Hydrodecarboxylation of Aliphatic Carboxylic Acids: Metal- and Light-Free. *Org. Lett.* **2022**, *24*, 686–691.

(7) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Nickel-Catalyzed Barton

Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. *Angew. Chem. Int. Ed.* **2017**, *56*, 260–265.

(8) Guissart, C.; Barros, A.; Rosa Barata, L.; Evano, G. Broadly Applicable Ytterbium-Catalyzed Esterification, Hydrolysis, and Amidation of Imides. *Org. Lett.* 2018, *20*, 5098–5102.
(9) Honzawa, S.; Sugihara, T.; Uchida, M.; Tashiro, T. Alpha-Oxidation of Amine Derivatives by Bis(2,2,2-Trichloroethyl) Azodicarboxylate and Application of Its Products as Iminium Ion Equivalents. *HETEROCYCLES* 2017, *95*, 994.

(10) Lundkvist, J. R. M.; Vargas, H. M.; Caldirola, P.; Ringdahl, B.; Hacksell, U. Resolved Pyrrolidine, Piperidine, and Perhydroazepine Analogs of the Muscarinic Agent N-Methyl-N-(1-Methyl-4-Pyrrolidino-2-Butynyl)Acetamide. *J. Med. Chem.* **1990**, *33*, 3182–3189.

(11) Ackerman, L. K. G.; Martinez Alvarado, J. I.; Doyle, A. G. Direct C–C Bond Formation from Alkanes Using Ni-Photoredox Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 14059–14063.

(12) Li, H.; Tang, X.; Pang, J. H.; Wu, X.; Yeow, E. K. L.; Wu, J.; Chiba, S. Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings. *J. Am. Chem. Soc.* **2021**, *143*, 481–487.

(13) McManus, J. B.; Onuska, N. P. R.; Nicewicz, D. A. Generation and Alkylation of α-Carbamyl Radicals via Organic Photoredox Catalysis. *J. Am. Chem. Soc.* 2018, *140*, 9056–9060.
(14) Choi, G.; Hong, S. H. Selective Monomethylation of Amines with Methanol as the C1 Source. *Angew. Chem. Int. Ed.* 2018, *57*, 6166–6170.

(15) Speckmeier, E.; Maier, T. C. ART—An Amino Radical Transfer Strategy for C(Sp2)– C(Sp3) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. *J. Am. Chem. Soc.* **2022**, *144*, 9997–10005.

(16) Prosser, A. R.; Banning, J. E.; Rubina, M.; Rubin, M. Formal Nucleophilic Substitution of Bromocyclopropanes with Amides En Route to Conformationally Constrained β -Amino Acid Derivatives. *Org. Lett.* **2010**, *12*, 3968–3971.

(17) Casey, J. P.; Berry, D.; Castro, A.; Taylor, S. J.; Massari, F. E.; Prousfoot, J.; Bogart, E.; Briggs, T. F. Multibiotic Agents and Methods of Using the Same. WO2018226732A1, December 13, 2018.

(18) Farizyan, M.; Mondal, A.; Mal, S.; Deufel, F.; van Gemmeren, M. Palladium-Catalyzed Nondirected Late-Stage C–H Deuteration of Arenes. *J. Am. Chem. Soc.* **2021**, *143*, 16370–16376.

(19) Grossmann, O.; Maji, R.; Aukland, M. H.; Lee, S.; List, B. Catalytic Asymmetric Additions of Enol Silanes to In Situ Generated Cyclic, Aliphatic N-Acyliminium Ions. *Angew. Chem. Int. Ed.* **2022**, *61*, e202115036.

(20) Lee, G. S.; Won, J.; Choi, S.; Baik, M.-H.; Hong, S. H. Synergistic Activation of Amides and Hydrocarbons for Direct C(Sp3)–H Acylation Enabled by Metallaphotoredox Catalysis. *Angew. Chem. Int. Ed.* **2020**, *59*, 16933–16942.

(21) Gribkov, D. V.; Pastine, S. J.; Schnürch, M.; Sames, D. Ruthenium Catalyzed Decarbonylative Arylation at Sp3 Carbon Centers in Pyrrolidine and Piperidine Heterocycles. *J. Am. Chem. Soc.* **2007**, *129*, 11750–11755.

(22) Rayner, P. J.; Smith, J. C.; Denneval, C.; O'Brien, P.; Clarke, P. A.; Horan, R. A. J. Mechanistic Interrogation of the Asymmetric Lithiation-Trapping of N-Thiopivaloyl Azetidine and Pyrrolidine. *Chem. Commun.* **2016**, *52*, 1354–1357.

(23) Li, C.; Ji, Y.; Cao, Q.; Li, J.; Li, B. Concise and Facile Synthesis of (R,R)-Dexmethylphenidate Hydrochloride and Its Three Stereoisomers. *Synth. Commun.* **2017**, *47*, 1301–1306.

(24) Monticelli, S.; Holzer, W.; Langer, T.; Roller, A.; Olofsson, B.; Pace, V. Sustainable Asymmetric Organolithium Chemistry: Enantio- and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb "Amine." *ChemSusChem* **2019**, *12*, 1147–1154.

(25) Zhou, Z. H.; Tang, Y. L.; Li, K. Y.; Liu, B.; Tang, C. C. Synthesis of Optically Active N-Protected α-Aminoketones and α-Amino Alcohols. *Heteroat. Chem.* **2003**, *14*, 603–606.

(26) Le, C. "Chip"; MacMillan, D. W. C. Fragment Couplings via CO2 Extrusion– Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox. *J. Am. Chem. Soc.* **2015**, *137*, 11938–11941.

(27) Lei, C.; Zhu, D.; Tangcueco, V. I. T.; Zhou, J. S. Arylation of Aldehydes To Directly Form Ketones via Tandem Nickel Catalysis. *Org. Lett.* **2019**, *21*, 5817–5822.

(28) Mazur, M.; Dymek, B.; Koralewski, R.; Sklepkiewicz, P.; Olejniczak, S.; Mazurkiewicz, M.; Piotrowicz, M.; Salamon, M.; Jedrzejczak, K.; Zagozdzon, A.; Czestkowski, W.;

Matyszewski, K.; Borek, B.; Bartoszewicz, A.; Pluta, E.; Rymaszewska, A.; Mozga, W.; Stefaniak, F.; Dobrzański, P.; Dzwonek, K.; Golab, J.; Golebiowski, A.; Olczak, J. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. *J. Med. Chem.* **2019**, *62*, 7126–7145.

(29) Li, L.; Cai, P.; Guo, Q.; Xue, S. Et2Zn-Mediated Rearrangement of Bromohydrins. J. Org. Chem. 2008, 73, 3516–3522.

(30) Trongsiriwat, N.; Li, M.; Pascual-Escudero, A.; Yucel, B.; Walsh, P. J. Palladium-Catalyzed Allylic Alkylation of 2-Aryl-1,3-Dithianes, an Umpolung Synthesis of β , γ -Unsaturated Ketones. *Adv. Synth. Catal.* **2019**, *361*, 502–509.

(31) Shrestha, M. L.; Qi, W.; McIntosh, M. C. Acyclic 1,4-Stereocontrol via the Allylic Diazene Rearrangement: Development, Applications, and the Essential Role of Kinetic E Stereoselectivity in Tosylhydrazone Formation. *J. Org. Chem.* **2017**, *82*, 8359–8370.

(32) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.

(33) Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, *98*, 5648–5652.

(34) Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. *J. Comput. Chem.* **2004**, *25*, 1463–1473.

(35) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(36) Grimme, S. Density Functional Theory with London Dispersion Corrections. *WIREs Comput. Mol. Sci.* **2011**, *1*, 211–228.

(37) Ehrlich, S.; Moellmann, J.; Grimme, S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. *Acc. Chem. Res.* **2013**, *46*, 916–926.

(38) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

(39) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057–1065.

(40) Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. *J. Chem. Soc. Perkin Trans.* 2 1993, No. 5, 799–805.

(41) Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. *Chem. Rev.* **1994**, *94*, 2027–2094.

(42) Andzelm, J.; Kölmel, C.; Klamt, A. Incorporation of Solvent Effects into Density Functional Calculations of Molecular Energies and Geometries. *J. Chem. Phys.* **1995**, *103*, 9312–9320.

(43) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* **1998**, *102*, 1995–2001.

(44) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. *J. Comput. Chem.* **2003**, *24*, 669–681.

(45) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

(46) Legault, C. Y. (2009) CYLview, 1.0b, Université de Sherbrooke: Sherbrooke, Canada, Http://Www.Cylview.Org.

(47) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.

(48) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. Found. Adv.* **2015**, *71*, 3–8.

(49) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71*, 3–8.