cm1c04061_si_001.pdf (2.1 MB)
Download filePhase Behavior and Superprotonic Conductivity in the System (1–x)CsH2PO4 – xH3PO4: Discovery of Off-Stoichiometric α‑[Cs1–xHx]H2PO4
journal contribution
posted on 2022-02-11, 20:33 authored by Louis
S. Wang, Sawankumar V. Patel, Erica Truong, Yan-Yan Hu, Sossina M. HaileCsH2PO4 has
garnered interest as a proton-conducting
electrolyte due to its exceptional conductivity at intermediate temperatures
(228–300 °C) at which it adopts a cubic structure with
a high degree of disorder. Here, through a study of mixtures of CsH2PO4 (CDP) and CsH5(PO4)2, the cubic phase was discovered to form solid solutions of
composition [Cs1–xHx]H2PO4, with x extending to at least 2/9. A phase diagram of the composition space
(1–x)CsH2PO4 – xH3PO4, 0 ≤ x ≤ 2/9 was developed through thermal analysis, high-temperature
in situ X-ray diffraction experiments, and variable-temperature NMR
spectroscopy. At temperatures above about 90 °C, monoclinic,
stoichiometric CDP exists in equilibrium with Cs7(H4PO4)(H2PO4)8.
These two phases displayed eutectoid behavior, with a eutectoid reaction
temperature and composition of 155 °C and x =
0.18, respectively, to form cubic [Cs1–xHx]H2PO4.
The structural studies revealed, rather remarkably, that the cubic
phase accommodates vacancies on the cation site that are charge-balanced
by excess protons, where the latter are chemically associated with
phosphate groups. The conductivities of cubic phases of various compositions,
measured by impedance spectroscopy, are comparable to that of CDP.
The excellent proton conductivities of off-stoichiometric, cubic [Cs1–xHx]H2PO4 at temperatures well below the superprotonic
transition of stoichiometric CDP present the opportunity to extend
the low-temperature operating limit of CDP-based devices. More generally,
the off-stoichiometric phase behavior demonstrated here introduces
a new approach for the modification of superprotonic solid acid compounds.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
structural studies revealedray diffraction experimentsconducting electrolyte due90 ° c155 ° ctemperature operating limitform solid solutionseutectoid reaction temperature4 </ sub3 </ subtemperature nmr spectroscopystoichiometric cdp presentstoichiometric cdp exists2 </ subexcellent proton conductivitiesx </impedance spectroscopy≤ 2least 2></ sub>< subform cubicvarious compositionsthermal analysissuperprotonic transitionsuperprotonic conductivitysitu xrather remarkablyphosphate groupsphase diagramphase behaviornew approachgarnered interestexcess protonsexceptional conductivitychemically associatedcation sitebased devices1 –<