ac402757p_si_001.pdf (88.75 kB)

Oxygen Isotope Composition of Trinitite Postdetonation Materials

Download (88.75 kB)
journal contribution
posted on 2013-12-17, 00:00 authored by Elizabeth C. Koeman, Antonio Simonetti, Wei Chen, Peter C. Burns
Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here δ18O­(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), “feldspathic-rich” glass, “average” melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. δ18O values for bulk trinitite samples exhibit a large range (11.2–15.5‰) and do not correlate with activity levels for activation product 152Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the 18O/16O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion.