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On Enabling Mobile Crowd Sensing for Data
Collection in Smart Agriculture- A Vision

Yuanhao Sun, Weimin Ding?, Lei Shu?, Edmond Nurellari, Kailiang Li, Yu Zhang, Zhangbing Zhou, and
Guangjie Han

Abstract—Smart agriculture enables the efficiency and intel-
ligence of production in physical farm management. Though
promising, due to the limitation of the existing data collection
methods, it still encounters few challenges that are required
to be considered. Mobile Crowd Sensing (MCS) embeds three
beneficial characteristics: a) cost-effectiveness, b) scalability, and
c) mobility and robustness. With the Internet of Things (IoT) be-
coming a reality, the smart phones are widely becoming available
even in remote areas. Hence, both the MCSs characteristics and
the plug and play widely available infrastructure provides huge
opportunities for the MCS-enabled smart agriculture.opening up
several new opportunities at the application level. In this paper,
we extensively evaluate the Agriculture Mobile Crowd Sensing
(AMCS) and provide insights for agricultural data collection
schemes. In addition, we provide a comparative study with the
existing agriculture data collection solutions and conclude that
AMCS has significant benefits in terms of flexibility, collecting
implicit data, and low cost requirements. However, we note that
AMCSs may still posses limitations in regard to data integrity and
quality to be considered as a future work. To this end, we perform
a detailed analysis of the challenges and opportunities that
concerns the MCS-enabled agriculture by putting forward six
potential applications of AMCS-enabled agriculture. Finally, we
propose future research and focus on agricultural characteristics,
e.g., seasonality and regionality.

Index Terms—Mobile crowd sensing, smart agriculture, data
collection, Internet of Things

I. INTRODUCTION

Big Data technology combines the mathematical models
in the smart agriculture domain to seamlessly analyse a large
amount of data in agricultural production and provide valuable
insights to the farmer without the need of the dedicated
specialist. It is one of the most promising approach to solve
the long-standing challenges [1], e.g., unmarketable agricul-
tural products due to lack of information exchange between
farmers and consumers. Currently, two main approaches have
been widely applied in agricultural data acquisition: a) Site
survey with dedicated professionals [2]; b) Sensing technology
based on Space-Air-Ground Integrated Network (SAGIN) [3].
Nevertheless, both the aforementioned approaches are not
feasible and scalable in the current and future agriculture
paradigm. Just to mentioned few of them, e.g., the site survey
approach is not suitable for Big Data technology because it
is time-consuming, labour-intensive, and only samples small-
scale local data/information. On the other hand, the SAGIN
approach has several limitations, e.g., very high deployment
and operational cost. In addition, it does not allow further
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improvements in terms of the flexibility and scalability of
deployed devices, which is clearly a bottleneck and highly de-
sirable in the context of Agriculture. Thus, this work provides
a platform that evaluates and proposes new data collection
approaches to overcome the aforementioned limitations.

Mobile Crowd Sensing (MCS) is a technique where a
large number of individuals having mobile devices, e.g.,
smart phones and wearable equipment, capable of sensing and
sharing information of interest, aiming to complete large-scale
and complex sensing tasks with three beneficial characteristics:
1) cost-effectiveness, 2) scalability and 3) mobility [4] - [7].
Recently, there has been a growing interest on research based
on the existing developed systems that proposes different
approaches to improve the availability of MCS technology for
different application scenarios. The existing typical applica-
tions of MCS can be divided into seven parts, as shown in
Table I.

• Environmental Monitoring. Sensing environmental in-
formation is fundamental for sustainable urban develop-
ment and can improve citizens’ quality of life. Aiming
to monitor air quality, in [8], authors proposed a frame-
work, namely CrowdRecruiter, to minimize incentive
payments by selecting a small number of participants
while still satisfying probabilistic coverage constraint.
GRC-Sensing [10] and Urban Safety [11] were utilized
to monitor noise pollution and information of damaged
urban infrastructure, respectively. In [24], the authors first
built the SenSquare system to embrace data availability
and device heterogeneity. Then, they constantly improved
the system’s function, e.g., classifying heterogeneous data
[25] and designing an easy visual programming plugin
[26].

• Living Service. This category can help citizens get a
better life experience. In [9], CrowdQTE was presented
to utilize the sensor-enhanced mobile devices and crowd
human intelligence to monitor and provide real-time
queue time information for various queuing scenarios.
Authors designed Mobibee to realize indoor localization
by inspiring citizens to contribute their data [19] and
proposed a truth discovery algorithm to detect falsified
data [20]. Besides, there are also other services, e.g., recy-
cling waste with WasteApp [22] and measuring wireless
performance with MCNet [23].

• Disaster Prediction. Large magnitude earthquakes can
continue to kill and injure a large of people, inflicting
lasting societal and economic disasters. The prediction
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TABLE I
TYPICAL APPLICATIONS OF MCS

Developed system Functional description Used sensors Identity of participant Research direction Application area

CrowdRecruiter [8] Monitoring air quality GPS, air quality sensor Citizens Participant selection Smart environment

CrowdQTE [9] Predicting queue time GPS, microphone Citizens Function realization Smart service

GRC-Sensing [10] Monitoring noise pollution GPS, accelerometer,
microphone Citizens Function realization Smart environment

Urban Safety [11] Monitoring urban infras-
tructure

GPS, accelerometer,
video camera Citizens Function realization Smart service

CREAM [12] Predicting traffic conditions GPS, video, camera Citizens Function realization Smart transportation

TrackYourTinnitus [13] [14] Collecting tinnitus informa-
tion

GPS, accelerometer,
microphone Patients Function realization;

data mining Smart health

MyShake [15] [16] Earthquake early-warning GPS, accelerometer Citizens Function realization Smart service

TrackMaison [17] [18] Improving network service
quality

GPS, accelerometer,
microphone, camera Netizens Data analysis and

visualization Smart social

MobiBee [19] [20] Indoor localization GPS, camera, bluetooth Citizens Incentive mechanism;
data authenticity Smart service

SafeStreet [21] Road anomaly detection GPS, accelerometer,
camera Citizens Function realization Smart transportation

WasteApp [22] Recycling waste GPS, camera Citizens Function realization Smart service

MCNet [23] Measuring wireless perfor-
mance

GPS, signal receiver,
communication module Citizens Function realization;

incentive mechanism Smart service

SenSquare [24] [25] [26] Monitoring environment GPS, microphone,
Wi-Fi, timer Citizens Data processing Smart environment

CrowdOS [27] Application integration
GPS, gravity sensor, am-
bient light sensor, gyro-
scope, proximity sensor

Citizens Task allocation;
data processing

Smart environment
and service

CovidSens [28] Monitoring the COVID-19
propagation

GPS, microphone,
camera All Function realization

privacy protection Smart health

of natural disaster is the key to save people’s life. In
[15] [16], authors reported a new type of seismic system,
MyShake, creatively applying accelerometer sensor of
smart phones to realize earthquake early-warning in urban
environments.

• Health Care. Health care plays an important role in
people’s daily life. In [13] [14], authors, based on
data analysis and visualization, implemented the Track-
YourTinnitus system to reveal new medical aspects on
tinnitus and its treatment. What’s more, motivated by the
COVID-19 pandemic, CovidSens [28] is used to monitor
the COVID-19 propagation via GPS, microphone, and
camera.

• Urban Management. Urban management, e.g., traffic
management and road maintenance, has a tedious, delay-
prone process in the smart city domain. In [12], authors
utilized the CREAM system to provide a timely response
for traffic management. SafeStreet was presented to detect
road anomaly for the safe drive of drivers [21].

• Social Networking. Websites and social software, e.g.,
Facebook and Twitter, comprise huge amounts of data to
improve the service quality of the social network. In [17]
[18], TrackMaison keeps track of social network service
usage of smartphone users through data usage, location,
usage frequency and session duration for identifying
users’ social behaviour.

• Other. The appearance of many crowdsensing applica-
tions or platforms poses huge challenges for maximizing
the utility of sensing resources. For example, to solve
the lack of a unified architecture and the incompatibility
of algorithms in existing research, authors presented an
operating system, CrowdOS [27].

As a result of our extensive evaluation, we find that MCS
technology has been widely applied in various scenarios, e.g.,
smart environment, smart service, smart transportation, smart
health, and smart social, leading to several research directions
including function realization, participant selection, task allo-
cation, incentive strategies, data mining and visualization, and
privacy protection. In these researches, citizens are the major
participant of sensing task for MCS. Meanwhile, all these
scenarios belong to the smart city domain. However, it is worth
noting that MCS technology is still not extensively applied in
the smart agriculture domain and farmers are slao not involved
in MCS campaigns. Currently, with the rapid development of
the economy, even in underdeveloped countries, the proportion
of owning smartphones is almost or at least one in every
farmer’s family [30]. Moreover, farmers who equip with smart
devices will obtain better agricultural data due to participating
in the whole agricultural production process. Motivated by the
above reasons, Motivated by the above reasons, we hope to
utilize MCS to cover the existing agricultural data collection
system shortage, i.e., SAGIN.
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In our previous study [31], we just proposed the concept
of AMCS and analyzed three benefits, i.e., cheaper cost,
superior scalability, and balance data granularity and excellent
flexibility, of using MCS technology to obtain agricultural data
through comparing with SAGIN. However, our previous work
needs to improve further due to the lack of considering the
challenges caused by integrating MCS with agriculture and
the limitations of AMCS. Thus, in this paper, we will fully
explore the application of AMCS towards smart agriculture.
Compared to traditional MCS applications that mainly focused
on urban areas, AMCS is expected to improve the existing
agricultural data collection system and facilitate innovative
agriculture development.

A. Contributions & Organization

The main contributions of our work are:
(i) Based on the deployed MCS system, we review the

typical MCS’s applications designed for different urban sce-
narios. Comparing with existing agricultural data collection
method, we further analyze the advantages and disadvantages
of applying AMCS in the farming scenario.

(i) We analyze the crucial factors of combining MCS with
agriculture, including the number of potential users, developed
agriculture-related APPs, farmer’s experience, and cooperation
between agribusiness and farmers;

(iii) We propose six application scenarios and list future
research issues of AMCS.

The rest of the paper is structured as follows. Section
II reviews the research status of data collection in smart
agriculture and further analyzes the advantages and disadvan-
tages through comparing AMCS with existing methods for
collecting agricultural data. Section III examines the crucial
factors of combining AMCS with agriculture. We further
elaborate on the potential applications and future research
issues of AMCS in section IV and section V, respectively.
Finally, conclusions are drawn in Section VI.

II. DATA COLLECTION IN SMART AGRICULTURE

According to the different factors of production, agricultural
industries, i.e., farming, stockbreeding, forestry, aquaculture,
and sideline, serve different products with a similar production
process. Therefore, in this section, farming is taken as an
example to investigate data varieties and the existing data
collection system.

A. Data varieties in farming

The whole process of agricultural production can be re-
garded as a complete production chain and generate a large
amount of data with many types, e.g., humidity [32], spectral
data [33], and soil moisture content [34]. Fig. 2 shows that the
production chain is divided into three phases: Pre-Production
Phase, In-Production Phase, and Post-Production Phase. Fur-
thermore, every stage comprises several production links, e.g.,
production preparation and farmland management.

1) In Pre-Production Phase, limited preparation time forces
farmers to make planting plans quickly, e.g., crop type and

area, which enormously rely on the information feedback of
market sale last year. More importantly, the schedule at this
phase will affect the final harvest of the crop.

2) In In-Production Phase, according to the change of
weather, e.g., rainfall, temperature, and humidity, farmers need
to dynamically manage crops planted through Agricultural
Technology, e.g., irrigation and spraying pesticides, to increase
crop yields as much as possible.

3) In Post-Production Phase, harvested crops typically need
to go through several steps, e.g., transportation, storage, and
sale, until they are entirely consumed or disposed of due to
exceeding the shelf life.

B. Existing data collection method

1) Space-Air-Ground Integrated Network (SAGIN)
The rapidly developed sensing technologies, e.g., remote

sensing and wireless sensing, have significantly enriched agri-
cultural information acquisition methods towards a good data
collection system – SAGIN. It is used to gain the growth
information of crops and improve the accuracy of farmland
management, e.g., irrigation, fertilization, and seeding. SAGIN
mainly consists of three parts:
• In the space, Remote Sensing Satellites (RSSs) are used to

gather agricultural environment information by taking images,
in which 3S technology, i.e., Remote Sensing (RS), Geography
Information Systems (GIS), and Global Positioning System
(GPS), is adopted to acquire data.
• In the air, Unmanned Aerial Vehicles (UAVs), including

other vehicles, e.g., agricultural aircraft [35], are applied to
gather information of target areas by carrying specific sensors,
e.g., hyperspectral camera [36].
• On the ground, Wireless Sensor Networks (WSNs), which

consist of deployed wireless sensors with various protocols
[37], e.g., Zigbee, Bluetooth, and Lora, can collect data, e.g.,
temperature and humidity, in the region of interests.

2) Crowdsourcing
Crowdsourcing(CS) enforces community-oriented applica-

tion purposes and leveraging extensive user participation for
data collection [38]. In developing countries, due to limited
resources, current surveillance efforts are unable to provide
sufficient data for monitoring disease and pest attacks over a
vast geographic area efficiently and effectively. Thus, in [39],
authors used CS to offer real-time surveillance data on viral
disease and pest incidence and severity. The research aims to
eventually use this data to build an automated diagnostic tool
for cassava diseases and provide a real-time situation map of
the state of illness in the whole country.

C. Comparison

In this section, we make an overall comparison with existing
data collection methods through the following seven factors,
as shown in Table II.

1) Comparing AMCS with existing data collection methods

• Data granularity. Resolution of sensing equipment is
a crucial measurement index to data granularity. WSNs,



4

Post-ProductionIn-Production

Storage

Market

Consumption

Agricultural environment
• Weather

• Water resource

• Soil

• Geology

• …

Production data
• Fertilization 

• Irrigation

• Weeding

• …

• Breeding

• Production plan

• Gene

• …

• Quality

• Taste

• Price

• …

• Price

• Retail sales

• Marketing information

• …

• Classification

• …

• Cold chain
• Drop shipment
• …

• Cold storage

• Transmit information 

• …

Production

Preparing

Cost

Germchit

Machinery

Technology

Farmland

Management 
Processing

Transportation

Pre-Production

Periodic

Fig. 1. Data types in agricultural production

TABLE II
COMPARISON OF AMCS WITH SAGIN IN SMART AGRICULTURE.

Item Space Air Ground CS AMCS

Gathering equipment RSSs UAVs WSNs Including but not limited
to smart phones Smart phones

Data granularity Coarse-grain Coarse-grain Fine-grain Fine-grain Fine-grain

Flexibility (mobility
and expansibility)

Moveable but not be
expanded

Moveable and can be
expanded

Immovable but can be
expanded

Mobility based on event
and can be expanded

Mobility based on loca-
tion and can be expanded

Data integrity Full coverage Full coverage Full coverage Incomplete
coverage

Incomplete
coverage

Data quality High High High Unevenness Unevenness

Implicit data collection Unable Unable Unable Available Available

Cost in deploy, use,
and maintenance

High cost in all three
aspects

High cost in all three
aspects, lower than RSSs

Low cost in use, high
cost in other aspects,

Low cost in all three
aspects

Low cost in all three
aspects

CSs, and AMCSs can obtain fine-grain data via sens-
ing information in a close range. Comparatively, the
resolution of RSSs and UAVs is lower than the above
three methods due to acquire data with remote sensing
technology in a relatively distant location.

• Flexibility. This category includes mobility and expansi-
bility. RSSs can round with the earth, but they are difficult
to extend extra function because they are deployed with
a specific purpose, e.g., meteorological satellite. UAVs
can be expanded via loading different sensing equipment
and quickly fly to appointed areas. Although WSNs can
be expanded with the built-in interface, e.g., USB, they
cannot move by themselves. CSs and AMCSs have great
flexibility through expanding extra functions with the
interface of smart devices, e.g., type-C and reaching
appointed areas with the mobility of users.

• Data integrity. In this category, RSSs, UAVs, and WSNs
can obtain comprehensive information with remote sens-
ing technology, multiple measurement, and network, re-
spectively. But in a CS or AMCS campaign, not all the

tasks can be completed, which will lead to the lack of
data in partial areas.

• Data quality. RSSs, UAVs, and WSNs usually adopt
professional equipment to collect data, ensuring the qual-
ity of collected data. However, affected the subjective
behaviour of users, e.g., habits, collecting data with CSs
and AMCSs is hard to ensure the data quality.

• Implicit data collection. Both CSs and AMCSs can get
unstructured data, e.g., text description of plant plan-
ning, in the pre-production phase and the post-production
phase, connecting physical and digital worlds and effec-
tuating data sharing in the overall agricultural industry
chain.

• Cost. Comparing with RSSs, UAVs, and WSNs, AMCSs
complete sensing tasks with equipped smart devices.
Hence, it will not take the cost of deployment and mainte-
nance. It is worth noting that crowdsourcers may need to
provide extra equipment for users in a CS campaign [39],
which will require extra cost compared with AMCSs.

2) Summary
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Comparing with RSSs, UAVs, and WSNs, AMCSs signif-
icantly improved flexibility, collected implicit data, and cost.
However, the limitations of AMCSs in data integrity and
quality still should be noticed. Thus, AMCS can become
an integral approach of acquiring agricultural data for
further improving the efficiency of data collection in
different agricultural application scenarios rather than
wholly replacing the SAGIN system. Besides, comparing
with CSs, AMCSs have two advantages: 1) more flexible
due to select participants based on location and 2) more
convenient participation mode due to use their mobile phones
of users to join in sensing tasks. For example, in [39], the
crowdsourcer, who is the institution that requests the data,
recruited farmers offline artificially for specific crowdsourcing
tasks and provided smartphones for the participates. However,
AMCS can choose appropriate participants based on real-time
location and actual landform for performing multiple tasks.
Meanwhile, using farmers’ smartphones for data collection can
further reduce the cost of tasks.

III. THE CRUCIAL FACTOR OF COMBINING AMCS WITH
AGRICULTURE

Although there are advantages mentioned above comparing
AMCS with the existing collection systems, it is still necessary
to analyse how to apply AMCS in agriculture. In this section,
the critical factor of combining AMCS with agriculture will
be diagnosed with the following fourfold factors, as shown in
Fig. 3.

A. Lots of potential users

According to the latest data published by The World Bank
in 2019 [40], especially in developing countries, the ratio
of employment in agriculture is generally over 25% of total
jobs, e.g., the highest value was in Burundi: 92.04%. Even in

the USA, one of the most developed agricultural countries
globally, more than 3 million employees are working in
agriculture with the smartphone. Therefore, those employees
are potential users for AMCS to collect agricultural data.

B. Developed agriculture-related APPs

Recently, developed agriculture-related APPs based on an-
droid or IOS operating system have been widely used in
agricultural production [41], which makes it possible to use
the smartphone for collecting varieties of data. For instance,
in [42], authors designed an application to analyze brightness
with cameras of smartphones, and in [43], mobile phones were
used as soil colour sensors. Easy operation and practicability
will improve the utilization rate of these APPs, which can
generate massive data. Thus, developed APPs are also an
indispensable condition for the application of AMCS.

C. Farmer’s experience

Compared to practitioners of other industries, farmers have
more professional knowledge of agriculture, providing more
accurate agriculture data. In data collection, farmers’ unique
experience accumulated from agricultural production may also
transfer to meaningful data. For instance, when a novel type
of plant disease’s photos needs to be collected, farmers, based
on their experience, can add the descriptions of the disease to
refer to data collectors. Therefore, AMCS can deeply integrate
into agriculture with the help of farmers’ experience.

D. Cooperation between agribusiness and farmers

Agribusinesses that are the primary collectors of agricultural
data generally build cooperation with farmers to promote their
new products and technologies and increase farmer’s income,
which is the key to converting farmers to AMCS’s users. Based
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on the existing cooperation, farmers will be more enthusiastic
about sharing valuable data. Meanwhile, agribusiness will get
reliable feedback on their products and technologies. Thus,
cooperation between agribusiness and farmers is powerful
support for the application of AMCS.

IV. POTENTIAL APPLICATIONS OF AMCS

Based on the current states in agricultural production, we
propose six potential applications of AMCS, as shown in Fig.
4.

A. Measure cultivated area

It is significant for the agricultural policy-making sector to
predict the area size increasing or decreasing via measuring
cultivated area annually. Governments generally use 3S tech-
nology to measure the cultivated regions of the whole country
roughly. The technology has higher accuracy toward large-
scale farmland but low accuracy for small-scale farmland, e.g.,
family farm, due to intolerant error and high cost of usage.
In this case, farmers with smartphones walking around the
edge of the cultivated land can measure the cultivated area
size. Of course, the final results need to calibrate subsequently.
Combining crops’ variety and ultimate yield, the planting area
and crop production in the required areas can more accurately
obtain.

B. Collect meteorological disaster information

Agricultural meteorological disasters [44], e.g., floods,
frosts, snowstorms, and hail, can reduce the production of
crops, leading to severe economic loss to farmers. During
the outbreak period of disasters, acquiring detailed emergency
information can help the government respond to disaster
development situations and provide a reference for the follow-
up compensation of agricultural insurance. Based on these

considerations, as eyewitnesses of catastrophe, farmers can
obtain more detailed information of the outbreak area, which
can improve the quality of the data collected by RSSs.

C. Collect pest and disease images

The crop’s pests and diseases are one of the crucial factors
causing crop production reduction. To get more information
about them, researchers have to spend a lot of time and
money going to the field to take pest and disease images.
Farmers who have experience in identifying pests and diseases
can undertake such a task. Hence, researchers can save more
time to focus on the analysis of collected data. Besides,
many existing android-based APPs of the smartphone, e.g.,
[45], have been already applied to recognize crop’s pests and
diseases, which can be combined with MCS technology to
collect required images. In this way, apart from extending the
data set of the pests and diseases’ prints, researchers can study
the migration regularity of migratory pests through recorded
photos.

D. Plan for production

Unmarketable agricultural products cause the waste of farm-
ing resources and inevitably lead to financial losses among
farmers. Especially in Pre-Production phase, farmers put into
the production of the hot-selling products recklessly, resulting
in surplus production. Furthermore, in Post-Production Phase,
farmers, merchants, and consumers merely possess partial
circulation data, e.g., storage data, marketing data, and con-
sumption data, causing unmatched information the supply and
demand. Therefore, sharing data among participants during
agricultural production is the key to solving this problem of
unmarketable agrarian products.
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E. Cooperative sensing with IAM

Compared to traditional machinery in agriculture, Intelligent
Agricultural Machinery (IAM) can increase the operational
efficiency of production by installing a variety of wireless
sensors, e.g., flow sensors for precision sowing and precision
fertilization. Based on these wireless sensors, a lot of meaning-
ful data, e.g., fertilization amount and seeding amount, can be
collected, assisting farmers in judging the operational quality
of IAM. Specifically, farmers can utilize the computing power
of smartphones to visualize the received data collected by
wireless sensors. Simultaneously, the collected data will be
a historical record and upload to the server for storage. Thus,
this application displays the cooperative sensing of IAM and
AMCS.

F. Identify the quality of fruits

With the development of sensing technology, the sensing
ability of smartphones become more powerful. For example,
Changhong H2 [46] is the first smartphone embedded with a
small-scale molecular spectroscopy sensor, which can obtain
fruits’ growth paramentes, e.g., sweetness and moisture, by
collecting their spectral data. Thus, researchers can study more
the quality identification of fruits by analyzing these parame-
ters, which can also help farmers know the growth situation
of fruits as early as possible so that they can are capable of
dynamically adjust management schemes for maximizing their
profits.

V. OPEN RESEARCH ISSUES BASED ON AGRICULTURAL
CHARACTERISTICS

Practical applications combined with agricultural and rural
characteristics can generate particular research problems in
AMCS. In this section, we first summarize the agrarian char-
acteristics. Then, based on these characteristics, we highlight
several research issues, as shown in Fig. 5.

A. Agricultural Characteristics

The characteristics of agriculture determine the difference
between AMCS and other MCS paradigms, including:

• Seasonality and regionality. Seasonality reflects that the
production environment is changeable, e.g., rainfall in summer
and snowfall in winter. Regionality means the differences in
production patterns, e.g., mainly planting wheat in the north
of China and rice in the south of China.

• Diverse species and multi-type data. Diverse species
means a wide range of data types that generate different
application scenarios. Multiple types of data represent het-
erogeneity, which brings challenges to data transmission and
visualization as well as data fusion.

• Base station deployed unevenly. Due to the low pop-
ulation density, the base stations deployed in rural areas are
sparse and uneven, resulting in insufficient network coverage
and unstable connectivity and affecting data transmission.
Consequently, the less number of base stations will further
cause worse accuracy of GPS positioning.

• Farmers live in villages. Farmers usually live in villages
surrounded by farmland, leading to unreachable areas when
farmers are not within a busy-farming period since they will
not frequently go to their farmlands to work. Therefore, the
temporal-spatial distribution of participants in the area of the
sensing task is extremely uneven, which cannot guarantee to
complete all sensing tasks for obtaining sufficient data.

B. General Research Issues

• Task allocation mechanism based on multiple con-
straints. Task quality is one of the important factors for
designing task assignments in the MCS [47], e.g., 1) the
balance of coverage and cost [48] and 2) task duration [49].
However, in the agricultural scenario, the task assignment
of AMCS will meet new constraints, e.g., monitoring the
migration trajectory of migratory pests should have sufficient
coverage and fine-grained data. Meanwhile, task allocation
in AMCS is limited by time due to the seasonality of pest
migration. Moreover, multi-types migratory pests mean multi-
objective tasks assigned in the same period to improve the
work efficiency of AMCS.
• Data transmission strategy based on actual need.

Considering the impact of species diversity and unevenly
deployed 4G base stations, using smartphones to transmit data
in rural areas will be affected by the following fourfold factors:

1) The different situation of signal strength, including
average signal, weak signal, and no signal, may occur during
data transmission, consequently affecting the efficiency of data
uploading;

2) According to the urgency of the task, data transmission
comprises real-time transmission and delay-tolerant transmis-
sion [50];

3) Selecting transmission mode, e.g., 4G, 5G or WiFi, also
needs to be considered based on the actual situation;

4) Heterogeneous data, e.g., text data, sound data, and image
data, can also affect data transmission.

Combinations of these above factors are all possible in
practical applications and deserve further research effort.
• Incentive mechanism based on the task’s difficulty.

The plight of the task includes two aspects: 1) Areas that
are farther away from participants and more difficult to reach,
e.g., no path to arrive, are equivalent to tasks that are more
difficult to complete, requiring task publisher to pay more
reward for motivating farmers to participate; 2) Sensing tasks
that require more data, i.e., more data types and more data
amount, are also considered difficult to complete. Therefore,
considering the above twofold factors, dynamic rewards based
on the task’s difficulty will be beneficial to motivate more
farmers to participate in more difficult sensing tasks based on
the actual locations of participants.
• Data quality evaluation based on information’s pri-

ority. Due to the lack of benchmarks, existing researches
mainly adopt specific indicators to measure the quality of data
in MCS, e.g., the study [51] took context as the indicator,
which did not consider the quality of location information, i.e.,
GPS data. In the agriculture domain, data with an inaccurate
location is invalid data, which needs to be calibrated or
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Fig. 4. Six potential applications of AMCS
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Fig. 5. Open research issues.

cleansed. However, in farmland, manual calibration is also
incorrect due to the lack of reference objects. According to
existing technologies, integrating GPS and 4G base stations
is the current best positioning scheme. Nevertheless, it can
be easily affected by insufficient satellite coverage, uneven
deployment of 4G base stations, and uncontrollable jamming
signals. Therefore, when participants collect data, the quality
of GPS data need to be evaluated because GPS signals are
very likely to shift.

• Privacy protection based on personalized demand.
Privacy protection varies from MCS [52] [53] with citizens
as participants to AMCS with farmers as participants. In
rural areas, farmers frequently access their fields to examine

the production status of crops as one of the motivations for
them to participate in these sensing tasks. In this case, the
data collected via farmers is very likely to leak their privacy
information, e.g., their income according to the harvest, which
will prevent them from participating in these sensing tasks.
However, these data may be necessary for certain special
sensing tasks. Thus, the privacy protection strategy needs to
further optimize in AMCS.
• Data calibration based on MCS computing. Com-

pared with professional equipment, e.g., spectrometer, using
smartphones to collect data directly generates more errors,
resulting in the collected data being unusable. According to
our investigation, the causes of data errors mainly come from
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the following three aspects: 1) caused by the non-standard
operation of the user; 2) caused by the sensor accuracy
of a smartphone; 3) caused by sensor accuracy difference
among different types of smartphones. To ensure the same
accuracy as that of traditional equipment, smartphones with
powerful computing capacity [41] need to integrate calibration
algorithms for improving the quality of collected data.

VI. CONCLUSION AND INSIGHT

As a promising paradigm, smart agriculture integrates ad-
vanced intelligent technologies, e.g., Big Data and the Internet
of Things, into agricultural production, leading to many areas
of research and applications, e.g., Agricultural Big Data. How-
ever, it still has has significant limitations for data collection
in terms of cost, scalability, data granularity, and flexibility.
In this paper, to solve these problems, we propose to apply
MCS in the smart agriculture domain. Through comprehensive
analysis, we find AMCS is feasible to collect agricultural data
and has significant benefits. The insights of this paper are
threefold:

• For farmers, smartphones are not merely the traditional
equipment for communication. Nowadays, they can become
an essential tool for managing agricultural production and
increasing income.

• We update and expand the concept of AMCS for im-
proving its applicability. Meanwhile, by considering the large
number of potential users, developed agriculture-related APPs,
farmers experience, and cooperation between agribusiness, we
have justified the feasibility of AMCS.

• Consequently, we explore the potential applications and
the research issues of AMCS for further studies.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 62072248 and in
part by China Scholarship Council (CSC).

REFERENCES

[1] S. Wolfert, L. Ge, C. Verdouw, and M. J. Bogaardt, “Big data in smart
farming: a review,” Agricultural Systems, Vol. 153, pp. 69-80, Feb. 2017.

[2] J. Hammond, S. Fraval, J. Van Etten, J. G. Suchini, L. Mercado,
T. Pagella, and V. D. albuena, “The rural household multi-indicator
survey for rapid characterisation of households to inform climate smart
agriculture interventions: description and applications in east africa and
central america.” Agricultural Systems, Vol. 151, pp. 225-233, 2017.

[3] J. Liu, Y. Shi, Z. D. Fadlullah, and N. Kato, “Space-Air-Ground inte-
grated network: a survey,” IEEE Communications Surveys & Tutorials,
Vol. 20, No. 4, pp. 2714-2741, May. 2018.

[4] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Communications Magazine, Vol. 52, No. 8, pp. 29-35, Aug. 2014.

[5] R K. Ganti, F. Ye, and H. Lei, “Mobile crowd sensing: current state and
future challenges,” IEEE Communications Magazine, Vol. 49, No. 11,
pp. 32-39, Nov. 2011.

[6] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: challenges and opportunities.” IEEE
Communications Magazine, Vol.54 No. 7, pp. 161-167, 2016.

[7] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez,
“Robust mobile crowd sensing: when deep learning meets edge com-
puting.” IEEE Network, Vol. 32, No. 4, pp. 54-60, 2018.

[8] D. Zhang, H. Xiong, and L. Wang, “CrowdRecruiter: selecting partic-
ipants for piggyback crowdsensing under probabilistic coverage con-
straint,” Proc. 2014 Acm International Joint Conference on Pervasive
and Ubiquitous Computing, pp. 703-714.

[9] J. Wang, Y. Wang, and D. Zhang, “Real-time and generic queue
time estimation based on mobile crowdsensing,” Frontiers of Computer
Science, Vol. 11, No. 1, pp. 49-60, 2017.

[10] W. Zamora, E. Vera, and C. Calafate, “GRC-Sensing: an architecture to
measure acoustic pollution based on crowdsensing,” Sensors, Vol. 18,
No. 8, 2018.

[11] X Zhao, N Wanga, and R Han, “Urban infrastructure safety system
based on mobile crowdsensing,” International Journal of Disaster Risk
Reduction, Vol. 27, pp. 427-438, 2018.

[12] X. Wang, Z. Ning, and X. Hu, “A city-wide real-time traffic management
system: enabling crowdsensing in social internet of vehicles,” IEEE
Communications Magazine, Vol. 56, No. 9, pp. 19-25, Sept. 2018,

[13] R. Pryss, M. Reichert, and B. Langguth, “Mobile crowd sensing ser-
vices for tinnitus assessment, therapy, and research,” Proc. 2015 IEEE
International Conference on Mobile Services, pp. 352-359.

[14] R. Pryss, W. Schlee, and B. Hoppenstedt, “Applying machine learning to
daily-life data from the TrackYourTinnitus mobile health crowdsensing
platform to predict the mobile operating system used with high accuracy:
longitudinal observational study,” Journal of Medical Internet Research,
Vol. 22, No. 6, 2020.

[15] Q. Kong, R M. Allen, and L. Schreier, “MyShake: a smartphone seismic
network for earthquake early warning and beyond,” Science Advances,
Vol. 2, No. 2, Feb. 2016.

[16] Q. Kong, A. Inbal, and R. M. Allen, “Machine learning aspects of the
MyShake global smartphone seismic network” Seismological Research
Letters, Vol. 90, No. 2A, PP. 546-552, 2019.

[17] F. Anjomshoa, M. Catalfamo, and D. Hecker, “Mobile behaviometric
framework for sociability assessment and identification of smartphone
users,” Proc. 2016 IEEE Symposium on Computers and Communication,
pp. 1084-1089.

[18] Z. Rauen, F. Anjomshoa, B. Kantarci, “Empowering human-computer
interaction in securing smartphone sensing,” Proc. 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), pp. 1-6.

[19] Q. Xu, R. Zheng, “Mobibee: A mobile treasure hunt game for location-
dependent fingerprint collection,” Proc. 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct, pp.1472-
1477.

[20] Q. Xu, R. Zheng, and E. Tahoun, “Detecting location fraud in indoor
mobile crowdsensing,” Proc. 2017 the First ACM Workshop on Mobile
Crowdsensing Systems and Applications, pp. 44-49.

[21] V. Singh, D. Chander, and U. Chhaparia, “SafeStreet: an automated
road anomaly detection and early-warning system using mobile crowd-
sensing,” Proc. 2018 10th International Conference on Communication
Systems & Networks (COMSNETS), pp. 549-552.

[22] D. Bonino, M. T. D. Alizo, and C. Pastrone, “WasteApp: smarter waste
recycling for smart citizens,” Proc. 2016 International Multidisciplinary
Conference on Computer and Energy Science (SpliTech), pp. 1-6.

[23] S. Rosen, S. Lee, and J. Lee, “MCNet: crowdsourcing wireless per-
formance measurements through the eyes of mobile devices,” IEEE
Communications Magazine, Vol. 52, No. 10, pp. 86-91, 2014.

[24] F. Montori, L. Bedogni, and A. Di Chiappari, “SenSquare: a mobile
crowdsensing architecture for smart cities,” Proc. 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT), pp. 536-541.

[25] F. Montori, L. Bedogni, and L.Bononi, “A collaborative internet of
things architecture for smart cities and environmental monitoring,” IEEE
Internet of Things Journal, Vol.5, No. 2, pp. 592-605, 2017.

[26] F. Montori, L. Bedogni, and G. Iselli, “Delivering iot smart services
through collective awareness, mobile crowdsensing and open data,”
Prof. 2020 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 1-6.

[27] Y. Liu, Z. Yu, and B. Guo, “CrowdOS: a ubiquitous operating system
for crowdsourcing and mobile crowd sensing,” IEEE Transactions on
Mobile Computing, 2020. (Early Access)

[28] M. T. Rashid, D. Wang, “CovidSens: a vision on reliable social sensing
for COVID-19,” Artificial Intelligence Review, Vol. 54, No. 1, pp. 1-25,
2021.

[29] G. Yang, S. He, Z. Shi, and J. Chen, “Promoting cooperation by the
social incentive mechanism in mobile crowdsensing,” IEEE Communi-
cations Magazine, Vol. 55, No. 3, pp. 86-92, 2017.

[30] O. A. Ogbeide and I. Ele, “Smallholder farmers and mobile phone
technology in Sub-Sahara Agriculture,” Mayfair Journal of Information
and Technology Management in Agriculture, Vol. 1, No. 1, pp. 1-19,
2015.

[31] Y. Sun, W. Ding, L. Shu, K. Huang, K. Li, Y. Zhang, and Z. Huo,
“Poster: when mobile crowd sensing meets smart agriculture,” Proc.
2019 Acm Turing Celebration Conference-China, No. 49.



10

[32] S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IoT based monitoring
system in smart agriculture,” Proc. 2017 International Conference
on Recent Advances in Electronics and Communication Technology
(ICRAECT), pp. 81-84, March. 2017.

[33] L. Ravikanth, D. S. Jayas, N. D. White, P. G. Fields, and D. W.
Sun, “Extraction of spectral information from hyperspectral data and
application of hyperspectral imaging for food and agricultural products,”
Food and Bioprocess Technology, Vol. 10, No. 1, pp. 1-33, 2017.

[34] D. D. Alexakis, F. D. K. Mexis, A. E. K. Vozinaki, I. N. Daliakopoulos,
and I. K.Tsanis, “Soil moisture content estimation based on sentinel-
1 and auxiliary earth observation products: a hydrological approach,”
Sensors, Vol. 17, No. 6, pp. 1455, 2017.

[35] E. R. Hunt Jr and C. S. Daughtry, “What good are unmanned aircraft
systems for agricultural remote sensing and precision agriculture?”
International Journal of Remote Sensing, Vol. 39, No. 15, pp. 5345-
5376, 2018.

[36] R. Nsi, E. Honkavaara, M. Blomqvist, P. Lyytikinen-Saarenmaa, T.
Hakala, N. Viljanen, and M. Holopainen, “Remote sensing of bark
beetle damage in urban forests at individual tree level using a novel
hyperspectral camera from UAV and aircraft,” Urban Forestry and
Urban Greening, Vol. 30, pp. 72-83, 2018.

[37] D. Shinghal and N. Srivastava,“Wireless sensor networks in agriculture:
for potato farming,” Neelam, Wireless Sensor Networks in Agriculture:
For Potato Farming, Sept, 2017.

[38] A. Ghezzi, D. Gabelloni, A. Martini, and A. Natalicchio, “Crowdsourc-
ing: a review and suggestions for future research,” International Journal
of Management Reviews, Vol. 20, No. 2, pp. 343-363, 2018.

[39] D. Mutembesa, C. Omongo, and E. Mwebaze, “Crowdsourcing real-
time viral disease and pest information: A case of nation-wide cassava
disease surveillance in a developing country,” Proc. 2018 Sixth AAAI
Conference on Human Computation and Crowdsourcing, June. 2018.

[40] “Employment in agriculture country rankings”,
https://www.theglobaleconomy.com/rankings/, accessed: 2020-01-
23.

[41] S. Pongnumkul, P. Chaovalit, and N. Surasvadi, “Applications of
smartphone-based sensors in agriculture: a systematic review of re-
search,” Journal of Sensors, 2015.

[42] S. Sumriddetchkajorn, “How optics and photonics is simply applied
in agriculture?” Proc. 2013 International Conference on Photonics
Solutions, Vol. 8883, June. 2013.

[43] L. Gomez-Robledo, N. L opez-Ruiz, M. Melgosa, A. J. Palma, and L. F.
Capitan-Vallvey, “Using the mobile phone as munsell soil-colour sensor:
an experiment under controlled illumination conditions,” Computers and
Electronics in Agriculture, Vol. 99, pp. 200-208, 2013.

[44] X. Yu, X. Yu, and Y. Lu, “Evaluation of an agricultural meteorological
disaster based on multiple criterion decision making and evolutionary
algorithm,” International Journal of Environmental Research and Public
Health, Vol. 15, No. 4, pp. 612, 2018.

[45] Q. Yao, C. Zhang, Z Wang, B. Yang, and J. Tang, “Design and exper-
iment of agricultural diseases and pest image collection and diagnosis
system with distributed and mobile device,” Transactions of the Chinese
Society of Agricultural Engineering, Vol. 33, pp. 184-191, 2017.

[46] “Phone with ’infrared vision’ knows how fat you are (hands-on),”
https://www.cnet.com/reviews/changhong-h2-preview/, accessed: 2017-
01-06.

[47] W. Gong, B. Zhang, C. Li,“Task assignment in mobile crowdsensing:
Present and future directions,” IEEE Network, Vol. 32, No. 4, pp. 100-
107, 2018.

[48] H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, and L. Barnes,
“iCrowd: Near-optimal task allocation for piggyback crowdsensing,”
IEEE Transactions on Mobile Computing, Vol. 15, No. 8, pp. 2010-
2022, 2015.

[49] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online task
assignment for crowdsensing in predictable mobile social networks,”
IEEE Transactions on Mobile Computing, Vol. 16, No. 8, pp. 2306-
2320, 2016.

[50] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, “Activecrowd: A framework
for optimized multitask allocation in mobile crowdsensing systems”,
IEEE Transactions on Human-Machine Systems, Vol. 47, No. 3, pp.
392-403, 2016.

[51] S. Liu, Z. Zheng, F. Wu, S. Tang, and G. Chen, “Context-aware data
quality estimation in mobile crowdsensing,” Proc. 2017 Conference on
Computer Communications, pp. 1-9.

[52] D. He, S. Chan, and M. Guizani, “User privacy and data trustworthiness
in mobile crowd sensing,” IEEE Wireless Communications, Vol. 22, No.
1, pp. 28-34, 2015.

[53] M. Pouryazdan and B. Kantarci, “The smart citizen factor in trustworthy
smart city crowdsensing,” IT Professional, Vol. 18, No. 4, pp. 26-33,
2016.

[54] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Yen, R. Huang, and X. Zhou, “Mo-
bile crowd sensing and computing: The review of an emerging human-
powered sensing paradigm,” Proc. 2015 ACM Computing Surveys, pp.
7.

Yuanhao Sun (yhsun.nau@outlook.com) received
the B.S. degree in automation from Nanjing Agri-
cultural University, Nanjing, China, in 2016, and
the M.S. degree in agricultural engineering from
Nanjing Agricultural University, Nanjing, China, in
2018, respectively. e is currently working toward
the Ph.D. degree with the College of Engineering,
Nanjing Agricultural University, China. His research
interest include mobile crowd sensing and optimiza-
tion algorithm.

Weimin Ding (wmding@njau.edu.cn) received the
B.S. degree from Anhui Agricultural University,
Hefei, China in 1981, the M.S. degree from Nanjing
Agricultural University, Nanjing, China in 1984, and
the Ph.D. degrees from Nanjing Agricultural Uni-
versity, Nanjing, China in 1999. He is the director
of Key Laboratory of Intelligent Agricultural Equip-
ment of Jiangsu Province and is currently a Professor
at Nanjing Agricultural University, Nanjing, China.
His research interests include smart agriculture and
facility agriculture.

Lei Shu (lei.shu@njau.edu.cn) received the B.S.
degree in computer science from South Central
University for Nationalities, China, in 2002, the M.S.
degree in computer engineering from KyungHee
University, South Korea, in 2005, and the Ph.D.
degree from the Digital Enterprise Research Insti-
tute, National University of Ireland, Galway, Ireland,
in 2010. Until 2012, he was a Specially Assigned
Researcher with the Department of Multimedia En-
gineering, Graduate School of Information Science
and Technology, Osaka University, Japan. He is

currently a Distinguished Professor with Nanjing Agricultural University,
China, and a Lincoln Professor with the University of Lincoln, U.K. He is
also the Director of the NAU-Lincoln Joint Research Center of Intelligent
Engineering. His current research interests include wireless sensor networks
and Internet of Things.



11

Edmond Nurellari (enurellari@lincoln.ac.uk) was
awarded the Carter Prize for the best Ph. D. the-
sis, titled ”Distributed Detection and Estimation in
Wireless Sensor Networks: Resource Allocations,
Fusion Rules, and Network Security”, in the School
in the year 2017-18, University of Leeds, UK. Since
April 2017, Dr. Nurellari has been a faculty member
with the School of Engineering at the University of
Lincoln, United Kingdom, where he is currently a
Senior Lecturer/Programme Leader in Electrical En-
gineering/Robotics. His research interests includes

machine learning, robotics for communications, distributed signal processing,
signal processing on graphs, resource allocations and distributed decisions
in WSNs. He has served as an Invited Reviewer for the IEEE Trans.
on Signal and Info. Process. over Networks, IEEE Communication Letter,
Springers Wireless Networks Journal, Springers Digital Signal Processing
Journal and IEEE Flagship conferences. Over the past few years, Dr. Nurellari
has served as a Guest Associate Editor for the Aerial and Space Networks
Section of Frontiers in Space Technologies, Guest Editor of Special Issue
”Smart Agricultural Applications with Internet of Things” for Sensors Journal,
Editorial Board for Frontiers in Communications and Networks Journal,
Journal Topics Board for Journal of Sensor and Actuator Networks, TPC
Member for IEEE iSES, International Conference on Smart and Sustainable
Agriculture ((SSS’2021)), and a Reviewer for several UKRI grants including
EPSRC and Future Leaders Fellowship.

Kailiang Li (kailiang li@njau.edu.cn) received the
B.S. degrees from Guangdong University of Petro-
chemical Technology, Maoming, China in 2015.
He is currently a Research Assistant at College of
Engineering, Nanjing Agricultural University. His
research interests are Wireless Sensor Networks and
Internet of Things. He has published 11 papers in
related conferences, journals in the areas of sensor
networks and Internet of Things.

Yu Zhang (Y.Zhang@lboro.ac.uk) received Ph.D.
degree from the Department of Civil Engineering,
University of Nottingham, Nottingham, U.K. in
2011. She is currently a Senior Lecturer in Digital
Engineering, the Department of Aeronautical and
Automotive Engineering, Loughborough University,
U.K. Her research interests include Data Analysis
and Machine Learning.

Zhangbing Zhou (zbzhou@cugb.edu.cn) received
the B.S. degree from China University Of Geo-
sciences, Wuhan, China, in 1995, and M.S. degree
from Institute of Automation, Chinese Academy of
Sciences, China, in 2000, and the Ph.D. degree from
the Digital Enterprise Research Institute, National
University of Ireland, Galway, Ireland, in 2010. He is
a professor at China University of Geosciences (Bei-
jing), China, and an adjunct professor at TELECOM
SudParis, France. His research interests include loT
sensing networks and services computing.

Guangjie Han (hanguangjie@gmail.com)is cur-
rently a Professor with the Department of Internet of
Things Engineering, Hohai University, Changzhou,
China. He received his Ph.D. degree from North-
eastern University, Shenyang, China, in 2004. In
February 2008, he finished his work as a Postdoc-
toral Researcher with the Department of Computer
Science, Chonnam National University, Gwangju,
Korea. From October 2010 to October 2011, he was
a Visiting Research Scholar with Osaka University,
Suita, Japan. From January 2017 to February 2017,

he was a Visiting Professor with City University of Hong Kong, China.
His current research interests include Internet of Things, Industrial Internet,
Machine Learning and Artificial Intelligence, Mobile Computing, Security
and Privacy. Dr. Han is a Fellow of the UK Institution of Engineering and
Technology (FIET) and a Senior Member of IEEE.


