Supplementary Materials

New and Bioactive Polyketides from Hawaiian Marine-derived Fungus Trichoderma sp. FM652

KH Ahammad Uz Zaman, ${ }^{\text {a }}$ Xiaohua Wu, ${ }^{\text {a }}$ Ariel M. Sarotti ${ }^{\text {b }}$, Shugeng Cao,, , ${ }^{\text {, }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
${ }^{\text {b }}$ Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina

Contact

Corresponding Authors: * Tel: (808) 981-8010; Fax: (808) 933-2974; E-mail address: scao@hawaii.edu

Abstract

Two new sorbicillinoid derivatives ($\mathbf{1}$ and $\mathbf{2}$), together with ten other related compounds (3-12) were isolated from a Hawaiian marine fungal strain Trichoderma sp. FM652. The structures of compounds $\mathbf{1}$ and $\mathbf{2}$, including the absolute configuration, were elucidated by extensive analysis of NMR spectroscopy, HRESIMS and electronic circular dichroism (ECD) data. Compounds 6-12 exhibited significant anti-proliferative activity against ovarian cancer cell line A2780, with the IC_{50} values ranging from 0.5 to $8.07 \mu \mathrm{M}$. Moreover, compounds 1, 7 and $\mathbf{8}$ showed significant inhibition against NF-кB with IC_{50} values of $13.83,24.4$ and $14.63 \mu \mathrm{M}$, respectively. Compounds 6, 9 and $\mathbf{1 2}$ also demonstrated moderate inhibitory activity against S. aureus and methicillin resistant S. aureus with the MIC values in the range of $10-40 \mu \mathrm{~g} / \mathrm{mL}$.

Keywords

Sorbicillinoid, Trichoderma, NMR, ECD, antiproliferative, NF-кB, antibacterial

Table of Contents

Code	Content	Page
1.	Experimental	1
1.1	General experimental procedures	1
1.2	Strain isolation and fermentation	1
1.3	Extraction and compound isolation	1
1.4	Computational section	2
1.5.	Antiproliferative assays	3
1.6.	NF-kB assay	3
1.7.	SRB assay	4
1.8.	Antibacterial assay	4
Table S1	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 1 and 2	6
Figure S1	HRESIMS of compound 1	7
Figure S2	${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 in DMSO- $\mathrm{d}_{6}(400 \mathrm{MHz})$	7
Figure S3	HSQC spectrum of compound 1 in DMSO-d ${ }_{6}(400 \mathrm{MHz})$	8
Figure S4	Key COSY (Bold) and HMBC (Single headed) correlations of 1	8
Figure S5	COSY spectrum of compound 1 in DMSO-d $\mathrm{d}_{6}(400 \mathrm{MHz})$	9
Figure S6	HMBC spectrum of compound 1 in DMSO-d ${ }_{6}(400 \mathrm{MHz})$	9
Figure S7	ROESY spectrum of compound 1 in DMSO-d ${ }^{\text {(}}$ (400 MHz)	10
Figure S8	1D NOE spectrum of compound 1 in DMSO-d ${ }^{\text {d }}$ (400 MHz)	10
Figure S9	Structures of compounds 1a-d	11
Figure S10	DP4+ values computed for 1a-d	11
Table S2	NMR data calculated for 1a-d	12
Figure S11	Experimental and calculated ECD spectra of 1	13
Figure S 12	IR spectrum of compound 1	13
Figure S13	HRESIMS of compound 2	14
Figure S14	${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 in DMSO- $\mathrm{d}_{6}(400 \mathrm{MHz})$	14
Figure S15	DEPTQ spectrum of compound 2 in DMSO-d ${ }_{6}(100 \mathrm{MHz})$	15
Figure S16	HSQC spectrum of compound 2 in DMSO-d ${ }^{(1000 M H z}$)	15
Figure S17	Key COSY (Bold) and HMBC (Single headed) correlations of 2	16
Figure S18	COSY spectrum of compound 2 in DMSO-d $\mathrm{d}_{6}(400 \mathrm{MHz})$	16
Figure S19	HMBC spectrum of compound 2 in DMSO-d ${ }_{6}(400 \mathrm{MHz})$	17
Figure S20	Experimental and calculated ECD spectra of 2	17
Figure S21	IR spectrum of compound 2	18
Table S3	Activities of compounds $\mathbf{1} \mathbf{- 1 2}$ against human ovarian cancer cell line A2780 and TNF- α-induced NF-кB	19
Table S4	Antibacterial activities of compounds $\mathbf{6 , 9 , 1 0}$ and $\mathbf{1 2}$ against S. aureus (ATCC® 12600^{TM}), methicillin resistant S. aureus (ATCC®43300™ $)$, B. subtilis (ATCC®6633™	20

1. Experimental

1.1 General experimental procedures

Optical rotations, CD, and FT-IR spectra were measured with a Rudolph Research analytical autoPol automatic polarimeter, JASCO J-815 CD, and Thermo Scientific Nicolet iS10 IR spectrometer, respectively. 1D and 2D NMR spectra were recorded on a Bruker AM-400 spectrometer. The 3.31 and 49.1 ppm resonances for $\mathrm{CD}_{3} \mathrm{OD}$ and 2.50 and 39.5 ppm resonances for DMSO- d_{6} were used as the internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. An Agilent 6530 Accurate-Mass Q-TOF LC-MS spectrometer was used to record high resolution mass spectra. Preparative HPLC was carried out on an Ultimate 3000 chromatographic system with a Phenomenex preparative column (PhenylHexyl, $5 \mu, 100 \times 21.2 \mathrm{~mm}$) and semipreparative HPLC on an Ultimate 3000 chromatographic system with a Phenomenex semipreparative column ($\mathrm{C}_{8}, 5 \mu, 250 \times 10$ mm), a Dionex Ultimate 3000 DAD detector, and a Dionex Ultimate 3000 automated fraction collector; all solvents were HPLC grade. Diaion HP-20 was used to run opencolumn chromatography.

1.2 Strain isolation and fermentation

The strain Trichoderma sp. FM652 was isolated from a sea sediment sample collected from offshore sea bed, near Hanauma bay, Hawaii. The rDNA ITS1-4 region sequence of fungus has been submitted to GenBank (Accession number OK626586) and was deposited in an $80^{\circ} \mathrm{C}$ freezer at Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, HI, USA. After activating on potato dextrose agar (PDA) plates at $28^{\circ} \mathrm{C}$ for 5 days, it was cut into small pieces and inoculated into 20 L autoclaved sterilized liquid PDB medium for fermentation at $24^{\circ} \mathrm{C}$ for 28 days.

1.3 Extraction and compound isolation

The mycelia of FM652 were filtered and extracted with acetone under ultrasonic ($1 \mathrm{~L} \times 3$ times), followed by removal of acetone under reduced pressure to afford an aqueous solution. After combining the aqueous mycelia extraction and supernatant solution, it was subjected to HP-20 column eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (10, 30, 50, 90 and 100%) to afford five fractions (Fr. 1-5). Fr. 4 (2.4 g) was separated by prep-HPLC (Phenyl-Hexyl, $5 \mu, 100 \times$
$21.2 \mathrm{~mm} ; 8 \mathrm{~mL} / \mathrm{min}$) eluted with $50-100 \% \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ in 20 min to yield 12 sub-fractions (SFr. 1-20). SFr 4-9 was purified by semi-preparative HPLC (40% isocratic of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid for $30 \mathrm{~min} ; 3 \mathrm{~mL} / \mathrm{min})$ to afford compound $\mathbf{1}\left(2.1 \mathrm{mg}, t_{\mathrm{R}} 26.5 \mathrm{~min}\right)$. Compound $2\left(1.36 \mathrm{mg}, t_{\mathrm{R}} 12.5 \mathrm{~min}\right)$ was separated from $\mathrm{SFr} 4-14$ by using the same HPLC (65% isocratic of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid for 18 min).

2,3-Dihydro 2-hydroxy vertinolide (1): brown powder; $[\alpha]_{D}^{25}$-21.3 (c 0.2, MeOH); UV (MeOH) $\lambda \max (\log \varepsilon) 242(3.56), 315(3.15) \mathrm{nm}$; IR (MeOH) $v_{\max } 3306,2942,2834,1650$, 1451, 1403, 1109, $1014 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz$) \delta: 3.83(\mathrm{~s} ; 1 \mathrm{H} ; \mathrm{H}-3), 1.86(\mathrm{~m} ;$ $2 \mathrm{H} ; \mathrm{H}-5), 2.62 / 2.72$ (m; 2H;H-6), 6.09 (d; $J=15 ; 1 \mathrm{H} ; \mathrm{H}-8), 7.21(\mathrm{~d} ; J=9,15 ; 1 \mathrm{H} ; \mathrm{H}-9)$, 6.29(OL; 1H; H-10), 6.32(OL; 1H; H-11), $1.84(\mathrm{~d} ; J=6 ; 1 \mathrm{H} ; \mathrm{H}-12), 1.25(\mathrm{~s} ; 3 \mathrm{H} ; \mathrm{H}-13)$, $1.40(\mathrm{~s} ; 3 \mathrm{H} ; \mathrm{H}-14)$ and ${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz) $\delta: 177.4(\mathrm{C}-1), 76.3(\mathrm{C}-2), 80.5(\mathrm{C}-3)$, 86.3(C-4), 29.4(C-5), 34.7(C-6), 199.9(C-7), 127.9(C-8), 143.0(C-9),130.6(C-10), 140.6(C11), 19.0(C-12), 20.3(C-13), 25.1(C-14); HRESIMS m/z $269.13682[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{5}{ }^{+}, 269.13890$).
(-)-Trichodermatone (2): dark yellow powder; $[\alpha]_{D}^{25}-18.7$ (c 0.002, MeOH); UV $(\mathrm{MeOH}) ~ \lambda \max (\log \varepsilon) 291$ (3.07), 451 (3.56) nm; IR (MeOH) $v_{\max } 3327,2945,2834,1652$, 1453, 1404, 1114, $1016 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta: 7.65$ ($\left.\mathrm{s} ; 1 \mathrm{H} ; \mathrm{H}-5\right), 6.76(\mathrm{~d} ; J$ $=15 ; 1 \mathrm{H} ; \mathrm{H}-8), 7.42(\mathrm{~d} ; J=11,15 ; 1 \mathrm{H} ; \mathrm{H}-9), 6.45(\mathrm{dd} ; J=11,15 ; 1 \mathrm{H} ; \mathrm{H}-10), 6.31(\mathrm{~m} ; 1 \mathrm{H} ; \mathrm{H}-$ 11), $1.93(\mathrm{~d} ; J=7 ; 1 \mathrm{H} ; \mathrm{H}-12), 1.95(\mathrm{~s} ; 3 \mathrm{H} ; \mathrm{H}-13), 1.49(\mathrm{~s} ; 3 \mathrm{H} ; \mathrm{H}-14)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $100 \mathrm{MHz}) \delta: 204.1(\mathrm{C}-1), \quad 81.1(\mathrm{C}-2), 199.3(\mathrm{C}-3), 124.4(\mathrm{C}-4), 136.7(\mathrm{C}-5), 105.2(\mathrm{C}-6)$, 172.5(C-7), 117.4(C-8), 143.6(C-9),130.9(C-10), 140.9(C-11), 17.6(C-12), 14.4(C-13), 27.9(C-14); HRESIMS $m / z 249.11248[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}$, 249.11268).

1.4 Computational section

All the quantum mechanical calculations were performed using Gaussian 09. Systematic conformational searches were done for each compound in the gas phase using the MMFF force field, implemented in Spartan 08, using an energy cutoff of $5 \mathrm{kcal} / \mathrm{mol}$. The choice for the $5 \mathrm{kcal} / \mathrm{mol}$ of cutoff was set as a balance between reducing the overall CPU calculation time and minimizing the possibility of losing further contributing conformers. All conformers were kept for full geometry optimization at the B3LYP/6-31G* level in gas
phase. Frequency calculations were done at the same level to determine the nature of the stationary points found. The magnetic shielding constants (σ) were computed using the gauge including atomic orbitals (GIAO) method, the method of choice to solve the gauge origin problem, at PCM/mPW1PW91/6-31+G** level of theory, the recommended for DP4+ calculations. The unscaled chemical shifts ($\square_{\mathfrak{u}}$) were computed using TMS as reference standard according to $\square_{\mathrm{u}}=\square_{0}-\square_{\mathrm{x}}$, where \square_{x} is the Boltzmann averaged shielding tensor (over all significantly populated conformations) and \square_{0} is the shielding tensor of TMS computed at the same level of theory employed for \square_{x}. The Boltzmann averaging was done according to eq 1 :

$$
\sigma^{\mathrm{x}}=\frac{\sum_{i} \sigma_{i}^{x} \mathrm{e}^{\left(-\mathrm{E}_{i} / R T\right)}}{\sum_{i} \mathrm{e}^{\left(-\mathrm{E}_{i} / R \mathrm{RT}\right)}}
$$

where $\square_{i}{ }^{x}$ is the shielding constant for nucleus x in conformer i, R is the molar gas constant ($8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$), T is the temperature (298 K), and E_{i} is the energy of conformer i (relative to the lowest energy conformer), obtained at the SMD/M06-2X/6$31 G^{*}$ level of theory. The scaled chemical shifts $\left(\square_{s}\right)$ were computed as $\square_{s}=\left(\square_{u}-b\right) / m$, where m and b are the slope and intercept, respectively, resulting from a linear regression calculation on a plot of \square_{u} against $\square_{\text {exp. }}$. The DP4+ values were computed using the Excel spread sheet provided in https://sarotti-nmr.weebly.com.

The ECD calculations were carried out using the B3LYP/6-31G* optimized geometries. The excitation energies (nm) and rotatory strength (R) in dipole velocity (Rvel) of the first forty singlet excitations were calculated using TDDFT implemented in Gaussian 09 at the PBE0/def2-SVP level from all significantly populated conformers, which were averaged using Boltzmann weighting. The Boltzmann amplitudes obtained by refining the Gibbs free energies of all compounds at the SMD/M06-2X/6-31G* level. The calculated rotatory strength were simulated into the ECD curve as the sum of Gaussians with 0.3 eV width at half-heights (σ), which were UV-corrected and scaled.

1.5. Antiproliferative assays

Viability of A2780 human ovarian cancer cells was determined using the CyQuant assay according to the manufacturer's instructions (Life Technologies, CA, USA). Briefly, cells were cultured in 96-well plates at 1000 cells per well for 24 h and subsequently treated with
compounds ($20 \mu \mathrm{~g} / \mathrm{mL}$) for 72 h and analyzed. Relative viability of the treated cells was normalized to the DMSO-treated control cells. Cisplatin was used as a positive control, which had an IC_{50} value of $0.36 \mu \mathrm{M}$. All experiments were performed in triplicate.

1.6. $N F-\kappa B$ assay

We employed HEK 293 from Panomics for monitoring changes occurring along the NF-кB pathway. Stable constructed cells were seeded into 96 -well plates at 20×10^{3} cells per well. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM) (Invitrogen Co.), supplemented with 10% fetal bovine serum (FBS), 100 units $/ \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and 2 mML -glutamine. After 48 h of incubation, the medium was replaced and the cells were treated with various concentrations of test substances. TNF- α (human, recombinant, E. coli, Calbiochem) was used as an activator at a concentration of $2 \mathrm{ng} / \mathrm{mL}$ $(0.14 \mathrm{nM})$. The plate was incubated for 6 h . Spent medium was discarded, and the cells were washed once with PBS. Cells were lysed using $50 \mu \mathrm{~L}$ (for 96 -well plate) of reporter lysis buffer from Promega, by incubating for 5 min on a shaker, and stored at $-80^{\circ} \mathrm{C}$. The luciferase assay was performed using the Luc assay system from Promega. The gene product, luciferase enzyme, reacts with luciferase substrate, emitting light, which was detected using a luminometer (LUMIstar Galaxy BMG). Data for NF-кB inhibition are expressed as IC_{50} values (i.e., concentration required to inhibit TNF- α-induced NF-кB activity by 50%). As positive controls, two known NF-кB inhibitors were used, TPCK ($\mathrm{N} \alpha-$ tosyl-L-phenylalanine chloromethyl ketone) and BAY-11-7082 (which selectively and irreversibly inhibits NF- κ B activation), yielding IC_{50} values of 5.3 ± 0.9 and $11 \pm 1.8 \mu \mathrm{M}$, respectively. All experiments were performed in triplicate.

1.7. SRB assay

In order to assess the potential of mediating a cytotoxic response, the cells were treated under the same experimental conditions with each test compound at a concentration of 50 $\mu \mathrm{M}$, and cell survival was determined by the sulforhodamine B (SRB) assays. After incubation of HEK 293 cells with test compounds, cells were fixed with 10% trichloroacetic acid solution for 30 min and stained with 0.4% SRB in 1% acetic acid solution for 30 min . Protein-bound SRB was dissolved in 10 mM Tris buffer (pH 10.0), and
the absorbance was measured at 515 nm . The effect of compounds on cell survival was demonstrated as percentage survival in comparison with vehicle (DMSO)-treated control cells.

1.8. Antibacterial assay

Antibacterial assay was conducted by using the previously described method (Zaman et al. 2021) with slight modifications. Bacteria were grown on agar plates [Tryptic Soy Agar (TSA) or Brain Heart infusion Agar (BIHA)] for 1 day at $37^{\circ} \mathrm{C}$ and then added to a liquid medium (TSB for S. aureus and methicillin resistant S. aureus and BIH for Bacillus subtilis). After incubation at $37^{\circ} \mathrm{C}$ for 20 h , the cultures were diluted with TSB or BIH media to obtain an OD_{600} value of approx. 0.1. One hundred microliter of fresh media with samples at the desired concentration of $160 \mu \mathrm{~g} / \mathrm{mL}$ (dissolved in DMSO) was put in the first well and then a two-fold dilution continued to the lowest concentration. The bacteriumcontaining media $(100 \mu \mathrm{~L})$ were then added to each well of 96 -well plates. DMSO (5\%) was used as negative controls in these sets of experiments and chloramphenicol, which is active against S. aureus, methicillin resistant S. aureus and Bacillus subtilis at MIC values of $6.25 \mu \mathrm{~g} / \mathrm{ml}, 6.25 \mu \mathrm{~g} / \mathrm{ml}$ and $12.5 \mu \mathrm{~g} / \mathrm{ml}$, respectively, was employed as the a positive control.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 1 and 2

no.	$1^{\text {a }}$		$2^{\text {b }}$	
	$\boldsymbol{\delta}_{\mathrm{H}} \boldsymbol{J}(\mathrm{Hz})^{1}$	$\delta \mathrm{c}^{2}$	$\boldsymbol{\delta}_{\mathrm{H}} \boldsymbol{J}(\mathrm{Hz})^{1}$	$\delta \mathrm{c}^{2}$
1		177.4		204.1
2		76.3		81.1
3	3.83, s	80.5		199.3
4		86.3		124.4
5	1.86, m	29.4	7.65, s	136.7
6	2.62, m	34.7		105.2
	2.72, m			
7		199.9		172.5
8	6.09, d (15)	127.9	6.76, d (15)	117.4
9	7.21, dd (9,15)	143.0	7.42, dd (11,15)	143.6
10	6.29, OL*	130.6	6.45, dd (11,15)	130.9
11	6.32, OL*	140.6	6.31, m	140.9
12	1.84, d (6)	19.0	1.93, d (7)	17.6
13	1.25, s	20.3	1.95, s	14.4
14	1.40, s	25.1	1.49, s	27.9

${ }^{\mathrm{a}}$ Solvent \rightarrow DMSO, ${ }^{\mathrm{b}}$ Solvent $\rightarrow \mathrm{CD}_{3} \mathrm{OD}$
${ }^{1}$ Spectra recorded at $400 \mathrm{MHz} ;{ }^{2}$ Spectra recorded at 100 MHz ;
Data based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, HSQC, and HMBC experiments;
*OL \rightarrow overlapped.

Figure S1: HRESIMS of compound 1

Figure S2: ${ }^{1}$ H NMR spectrum of compound 1 in DMSO-d6 (400MHz)

Figure S3: HSQC spectrum of compound 1 in DMSO-d (400MHz) $^{(40)}$

Figure S4. Key COSY (Bold) and HMBC (Single headed) correlations of 1

- COSY

$\because \mathrm{HMBC}$

Figure S5: COSY spectrum of compound 1 in DMSO-d6 (400MHz)

Figure S6: HMBC spectrum of compound 1 in DMSO-d 6 (400MHz)

Figure S7: ROESY spectrum of compound 1 in DMSO-d $\mathbf{~}$ (400 MHz)

Figure S8: 1D NOE spectrum of compound 1 in DMSO-d6 (400MHz)

Figure S9: Structures of compounds 1a-d

Figure S10: DP4+ values computed for 1a-d

	1a	1b	1c	1d
sDP4+ (H data)	ज1] 20.20\%	- 65.46%	-1] 9.47\%	4. 4.87\%
sDP4+ (C data)	ज1] 0.03\%	-194.19\%	- 0.09%	50. 5.69%
sDP4+ (all data)	-1]l 0.01\%	-99.53\%	0.010	-1] 0.45\%
uDP4+ (H data)	-1] 39.43\%	-10.4.48\%	0.0.08\%	- 55.11\%
uDP4+ (C data)	- 0.00%	-199.75\%	-	-1l 0.16\%
uDP4+ (all data)	- 0.02%	98.07\%	- 0.02%	10.1.89\%
DP4+ (H data)	, fll 58.24\%	21.45\%	-1] 0.68\%	- 19.63%
DP4+ (C data)	-10.0.00\%	- 99.99\%	- 0.00%	-1ll 0.01\%
DP4+ (all data)	- 0.000	- 99.99\%	- 0.00%	-1ll 0.01\%

Table S2: NMR data calculated for 1a-d

	Boltzmann averaged isotropic shielding values				Scaled chemical shifts			
	1 a	1b	1c	1d	1a	1b	1c	1d
C1	23.7889	20.6948	22.4956	24.2647	174.6	175.4	174.4	173.3
C2	121.1896	116.0669	117.8501	122.1840	74.3	78.4	77.4	73.2
C3	119.1845	114.5515	113.4366	116.0933	76.3	79.9	81.9	79.4
C4	107.6427	107.1418	110.3009	110.3339	88.2	87.5	85.0	85.3
C5	160.4109	165.0703	161.6255	166.0748	33.8	28.5	32.8	28.3
C6	156.0973	155.8928	156.8311	157.7129	38.3	37.9	37.7	36.8
C7	-1.4244	-4.1647	-2.8783	-3.3249	200.6	200.7	200.2	201.6
C8	74.0797	74.0988	74.3532	74.4614	122.8	121.1	121.6	122.0
C9	52.1167	50.7280	50.1903	50.0103	145.4	144.9	146.2	147.0
C10	68.7027	69.0271	68.7374	68.7494	128.3	126.3	127.3	127.8
C11	48.9115	47.1945	47.8236	47.5465	148.7	148.5	148.6	149.5
C12	174.3011	174.2810	174.1244	174.1923	19.5	19.2	20.1	20.0
C13	173.5078	175.3946	176.2801	173.2498	20.3	18.0	17.9	20.9
C14	174.2169	168.7780	174.3264	168.5106	19.6	24.8	19.9	25.8
H3	27.3791	27.7226	27.4165	27.8494	3.93	3.58	3.89	3.54
H5	29.4946	29.3680	29.3942	29.5968	1.96	2.03	2.07	1.93
H6a	28.8735	28.7033	28.6767	28.6586	2.54	2.66	2.73	2.79
H6b	28.9852	28.7160	29.0647	29.0192	2.44	2.65	2.37	2.46
H8	25.1741	25.1799	25.1668	25.2102	5.98	5.98	5.96	5.97
H9	23.8128	23.8043	23.7927	23.7929	7.25	7.27	7.23	7.27
H10	24.9100	24.8975	24.9130	24.8976	6.23	6.24	6.20	6.26
H11	24.6705	24.6322	24.6055	24.6185	6.45	6.49	6.48	6.51
H12	29.5344	29.5174	29.5198	29.5105	1.93	1.89	1.95	2.01

Figure 11: Experimental and calculated ECD spectra of 1

Figure S12: IR spectrum of compound 1

Figure S13: HRESIMS of compound 2

Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ (400 MHz)

Figure S 15 : ${ }^{13} \mathrm{C}$ spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ (100 MHz)

Figure S16: HSQC spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}(400 \mathrm{MHz})$

Figure S17: Key COSY (Bold) and HMBC (Single headed) correlations of 2.

- COSY

$\therefore \mathrm{HMBC}$

Figure S18: COSY spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ (400 MHz)

Figure S19: HMBC spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ (400 MHz)

Figure 20. Experimental and calculated ECD spectra of 2

Figure S21: IR spectrum of compound 2

Table S3. Activities of compounds 1-12 against human ovarian cancer cell line A2780 and TNF- α-induced NF-кB

Compounds		$\mathbf{I C}_{\mathbf{5} 0}[\mu \mathrm{M}]$
	A2780	TNF- $\boldsymbol{\alpha}$-induced NF-кB
$\mathbf{1}$	13.60	13.83
$\mathbf{2}$	16.50	-
$\mathbf{3}$	36.20	-
$\mathbf{4}$	47.40	-
$\mathbf{5}$	11.03	-
$\mathbf{6}$	4.60	-
$\mathbf{7}$	0.50	24.40
$\mathbf{8}$	3.90	14.63
$\mathbf{9}$	4.53	-
$\mathbf{1 0}$	5.80	-
$\mathbf{1 1}$	8.07	-
$\mathbf{1 2}$	3.76	-

Table S4. Antibacterial activities of compounds $\mathbf{6 , 9 , 1 0}$ and 12 against S. aureus (ATCC® 12600^{TM}), methicillin resistant S. aureus (ATCC®43300 ${ }^{\mathrm{TM}}$), B. subtilis (ATCC®6633 ${ }^{\mathrm{TM}}$)

Compounds	MIC $[\mu \mathrm{g} / \mathrm{mL}]$		
	S. aureus	Methicillin	Bacillus subtilis
		resistant S. aureus	
$\mathbf{6}$	40	40	-
$\mathbf{9}$	20	20	-
$\mathbf{1 0}$	-	-	80
$\mathbf{1 2}$	10	10	20
Chloramphenicol	6.25	6.25	12.5

