
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Neuroevolution machine learning potentials: Combining high accuracy andNeuroevolution machine learning potentials: Combining high accuracy and
low cost in atomistic simulations and application to heat transportlow cost in atomistic simulations and application to heat transport

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1103/physrevb.104.104309

PUBLISHER

American Physical Society (APS)

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Physical Review B and the definitive published version
is available at https://doi.org/10.1103/physrevb.104.104309

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Fan, Zheyong, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Keke Song, Haikuan Dong, Yue Chen, and Tapio
Ala-Nissila. 2021. “Neuroevolution Machine Learning Potentials: Combining High Accuracy and Low Cost in
Atomistic Simulations and Application to Heat Transport”. Loughborough University.
https://hdl.handle.net/2134/16883680.v1.

https://lboro.figshare.com/
https://doi.org/10.1103/physrevb.104.104309

PHYSICAL REVIEW B 104, 104309 (2021)

Neuroevolution machine learning potentials: Combining high accuracy
and low cost in atomistic simulations and application to heat transport

Zheyong Fan ,1,2,* Zezhu Zeng ,3 Cunzhi Zhang ,4 Yanzhou Wang,5,2 Keke Song,5

Haikuan Dong ,1,2,6 Yue Chen,3 and Tapio Ala-Nissila2,7

1College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China
2MSP group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland

3Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
4Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA

5Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physics,
University of Science and Technology Beijing, Beijing 100083, China

6Beijing Advanced Innovation Center for Materials Genome Engineering, Corrosion and Protection Center,
University of Science and Technology Beijing, Beijing 100083, China

7Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University,
Loughborough, Leicestershire LE11 3TU, United Kingdom

(Received 17 July 2021; revised 18 August 2021; accepted 25 August 2021; published 20 September 2021)

We develop a neuroevolution-potential (NEP) framework for generating neural network-based machine-
learning potentials. They are trained using an evolutionary strategy for performing large-scale molecular
dynamics (MD) simulations. A descriptor of the atomic environment is constructed based on Chebyshev and
Legendre polynomials. The method is implemented in graphic processing units within the open-source GPUMD

package, which can attain a computational speed over 107 atom-step per second using one Nvidia Tesla V100.
Furthermore, per-atom heat current is available in NEP, which paves the way for efficient and accurate MD
simulations of heat transport in materials with strong phonon anharmonicity or spatial disorder, which usually
cannot be accurately treated either with traditional empirical potentials or with perturbative methods.

DOI: 10.1103/PhysRevB.104.104309

I. INTRODUCTION

Classical interatomic potentials play a crucial role in
atomistic simulations, in particular, in molecular dynamics
(MD) simulations, where various static and dynamical materi-
als properties can be efficiently computed. Machine-learning
(ML) potentials (or force fields) [1–5], i.e., interatomic
potentials constructed based on a ML model, have been
demonstrated to be able to achieve an accuracy comparable
to their quantum-mechanical training data while reducing the
computation time to a small fraction of the corresponding
quantum-mechanical calculations.

Various ML models have been used to construct ML poten-
tials, including, e.g., artificial neural networks [6], Gaussian
regression [7], and linear regression [8]. For any ML model,
there are many fitting parameters that need to be determined
by training the model against quantum-mechanical data. The
large number of fitting parameters is the very foundation
for the superior interpolation capability of ML potentials as
compared to conventional empirical potentials that only have
a few to a few tens of fitting parameters. However, find-
ing an optimized set of parameters is a nontrivial task. The
conventional training method in neural network potentials is
based on gradient descent, which could be trapped into a local

*brucenju@gmail.com

minimum of the loss function of a ML model, leading to a
suboptimal solution.

An alternative training method for ML models is based on
evolutionary algorithms, such as genetic algorithms, genetic
programming, evolutionary programming, and evolutionary
strategy. This global-searching approach combined with neu-
ral networks is known as neuroevolution and it has long been
applied to evolve neural networks [9]. It has been greatly
improved by state-of-the-art evolutionary algorithms such as
the natural evolution strategies [10]. A variant called separable
natural evolution strategies [11] has a computational complex-
ity linear in the number of fitting parameters and is well suited
to evolve large-scale neural networks.

In this paper, we develop a framework called neuroevolu-
tion potentials (NEPs) for generating neural network-based
ML potentials trained using the separable natural evolu-
tion strategy [11]. Although evolutionary algorithms are less
likely to be trapped into a local minimum, these population-
based methods require evaluating the loss function multiple
times within one step (also called one generation) and
are usually more computationally demanding than gradient-
descent-based algorithms. To speed up the calculations, we
realize an efficient graphics processing unit (GPU) imple-
mentation of the calculations within the open-source GPUMD

package [12–14]. The GPU implementation both speeds up
the training process and makes MD simulations significantly
faster than the current implementations of ML potentials. We

2469-9950/2021/104(10)/104309(15) 104309-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2253-8210
https://orcid.org/0000-0001-5126-4928
https://orcid.org/0000-0002-4562-535X
https://orcid.org/0000-0001-9870-0467
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.104309&domain=pdf&date_stamp=2021-09-20
https://doi.org/10.1103/PhysRevB.104.104309

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

demonstrate the efficiency and accuracy of NEP by comparing
GPUMD with some popular implementations of ML potentials,
including the QUIP package [15] that implements the Gaussian
approximation potential (GAP) [7], the MLIP package [16] that
implements the moment tensor potential (MTP) [17], and the
DeePMD-kit package [18] that implements the deep potential
(DP) [19,20]. In particular, here we focus on demonstrating
the applicability of NEP in heat transport simulations.

The remainder of this paper is organized as follows. In
Secs. II A and II B, we review the formulations of the per-
atom force, virial, and heat current for general many-body
potentials [21,22]. In Sec. II C, we present the descriptor used
in NEP, which is a mapping from a set of relative coordinates
to a set of functions with required symmetries. In Sec. II D,
the neural network connecting the descriptor and the site
energy of an atom is discussed. Section II E presents detailed
algorithms for training NEP using a natural evolution strategy.
Section II F discusses the general strategies in our GPU im-
plementation. In Sec. III, we validate and benchmark NEP by
comparing its performance with some other implementations
of ML potentials. In Sec. IV, we demonstrate the applicability
of NEP in heat transport simulations with selected case stud-
ies. Section V summarizes and concludes.

II. THEORY

Machine-learning potentials are usually many-body po-
tentials. To make an efficient GPU implementation of a
many-body potential, one must first derive explicit ex-
pressions of various per-atom quantities [13]. We start by
reviewing some formulations as derived in Refs. [21,22].

A. General many-body potential and partial forces

For a general many-body potential, the total potential en-
ergy U of a system can be written as

U =
∑

i

Ui, (1)

where the site energy Ui of atom i is

Ui = Ui({ri j}). (2)

In this paper, we define ri j as the relative position from atom i
to atom j, that is,

ri j ≡ r j − ri. (3)

The Cartesian components for this vector will be denoted
as xi j , yi j , and zi j . Therefore, {ri j} denotes the collection of
relative positions from the central atom i to all the other atoms
j. Usually, a finite cutoff distance rc is adopted such that only
the atoms j with a distance ri j to i that is smaller than rc are
considered in the collection.

Starting from the potential energy above, a general force
expression which respects the weak form of Newton’s third
law has been derived as [21]

F i =
∑
j �=i

F i j, (4)

F i j = −F ji = ∂Ui

∂ri j
− ∂Uj

∂r ji
. (5)

Here, F i j can be understood as the force acting on atom i
from atom j, possibly influenced by other atoms. The par-
tial derivative ∂/∂ri j should be understood as a vector with
the components ∂/∂xi j , ∂/∂yi j , and ∂/∂zi j . We note that al-
though F i j respects the weak form of Newton’s third law,
F i j = −F ji, it does not respect the strong form of Newton’s
third law, F i j ∝ ri j , but all the formulations in Ref. [21] only
require the weak form.

Since ∂Uj/∂r ji can be obtained from ∂Ui/∂ri j by an ex-
change of indices, i ↔ j, in practical implementation, we
only need to calculate and store all the ∂Ui/∂ri j . Due to the
importance of {∂Ui/∂ri j}, we call them partial forces. We will
derive explicit expressions of these partial forces in Sec. II D.

B. Virial stress, heat current, and thermal conductivity

Starting from the force expression, one can derive the
per-atom virial tensor, which plays a crucial role in MD simu-
lations. An expression has been derived in Ref. [21], but in
Ref. [22], it has been reformulated into a more convenient
form:

Wi =
∑
j �=i

ri j ⊗ ∂Uj

∂r ji
. (6)

Here, ⊗ represents the tensor product between two vectors.
Using this per-atom virial expression, the per-atom heat cur-
rent derived in Ref. [21] can be conveniently expressed as

Ji = Wi · vi, (7)

where vi is the velocity of atom i. The per-atom virial in
Eq. (6) is generally not a symmetric tensor and one must, in
heat transport applications, use the full 3×3 tensor instead
of six components of it only. The total virial in a system,∑

i Wi, on the other hand, is a symmetric tensor with six
independent components only. The validity of our heat current
expression has been extensively documented [23–25], while
that implemented in the widely used LAMMPS package [26]
has been shown [21,23,27,28] to be erroneous for general
many-body potentials.

The total heat current J is the sum of the per-atom heat
currents J = ∑

i Ji. In the homogeneous nonequilibrium MD
(HNEMD) method [29], the lattice thermal conductivity ten-
sor κμν can be computed from the following expression:

〈Jμ(t)〉ne

TV
=

∑
ν

κμνF ν
e , (8)

where Fe is the driving force parameter and 〈Jμ(t)〉ne is
nonequilibrium ensemble average of the heat current. The
driving force parameter will induce the following external
force on atom i [22,29]:

Fext
i = Fe · Wi (9)

for solid systems. The spectral lattice thermal conductivity
κμν (ω) as a function of the angular frequency ω can be com-
puted from the following relation [22,29]:

2

TV

∫ ∞

−∞
Kμ(t)eiωt dt =

∑
ν

κμν (ω)F ν
e , (10)

104309-2

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

where

K(t) =
∑

i

〈Wi(0) · vi(t)〉ne (11)

is the virial-velocity correlation function.
In summary, as long as the partial forces ∂Ui/∂ri j are

derived and implemented, one can conveniently calculate the
per-atom virial and heat currents, which can be used to real-
ize the constant stress ensembles and detailed heat transport
simulations.

C. From coordinates to a descriptor vector

In a ML potential, the site potential Ui is not directly
modeled as a function of the relative coordinates {ri j}, but
as a function of a high-dimensional descriptor vector, whose
components are invariant with respect to spatial translation,
three-dimensional rotation and inversion, and permutation of
atoms with the same species [30]. Many descriptors have
been proposed, including, e.g., Behler’s symmetry functions
[31], the smooth overlap of atomic positions (SOAP) [30],
the bispectrum [7], the Coulomb matrix [32], the moment
tensor [17], the atomic cluster expansions [33], the embedded
atom descriptor [34], the Gaussian moments [35], and the
atomic permutationally invariant polynomials [36]. There are
libraries implementing various descriptors [37–39].

1. Single-component systems

The descriptor we use in NEP is motivated by both Behler’s
symmetry functions [31] and an optimized version of SOAP
[40]. For a central atom i in a single-component system, we
define a set of radial descriptor components (n � 0),

qi
n =

∑
j �=i

gn(ri j), (12)

and a set of angular descriptor components (n � 0 and l � 1),

qi
nl =

∑
j �=i

∑
k �=i

gn(ri j)gn(rik)Pl (cos θi jk), (13)

where Pl (cos θi jk) is the Legendre polynomial of order l , θi jk

being the angle formed by the i j and ik bonds. The functions
gn(ri j) are radial functions and we choose to express them
as the first-kind Chebyshev polynomials of the variable x ≡
2(ri j/rc − 1)2 − 1:

gn(ri j) = Tn(x) + 1

2
fc(ri j). (14)

The variable x is defined to have values from −1 to 1. Re-
currence relations for evaluating the Chebyshev polynomials
and their derivatives used here are presented in Appendix A.
Empirically, we found it beneficial to make gn(ri j) positive
definite, as in Eq. (14). A similar expression has been used in
the atomic cluster expansions approach [33].

The function fc(ri j) is a cutoff function defined as

fc(ri j) = 1

2

(
1 + cos

(
π

ri j

rc

))
(15)

for r � rc, and fc(ri j) = 0 for r > rc, following the definition
in the Behler-Parrinello neural network potential [6,31]. The
first four lowest-order radial functions are shown in Fig. 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

n=0
n=1
n=2
n=3

FIG. 1. The radial function gn(r) as a function of the reduced
distance r/rc for 0 � n � 3.

Note that radial functions are used both in the radial and
angular components of the descriptor. The radial expansion
in the radial components is up to a given order nR

max, i.e.,
n = 0, 1, . . . , nR

max. For the angular components, the radial
expansion is up to nA

max, i.e., n = 0, 1, . . . , nA
max, and the an-

gular expansion is up to lmax, i.e., l = 1, . . . , lmax. The full
descriptor vector has a dimension of

Ndes = (
nR

max + 1
) + (

nA
max + 1

)
lmax. (16)

Note that the cutoff radii for the radial and angular com-
ponents are not necessarily the same, but can take different
values denoted as rR

c and rA
c , respectively. The radial com-

ponents can be used to represent relatively long-ranged
interactions (such as Coulomb and van der Waals interactions)
and the angular components mainly account for intermediate-
ranged interactions.

If we change the factor gn(ri j)gn(rik) in Eq. (13) to
gn(ri j)gn′ (rik)(2l + 1)/4π and apply the addition theorem of
spherical harmonics, we obtain a descriptor qi

nn′l similar to the
SOAP descriptor in Ref. [40]:

qi
nn′l =

l∑
m=−l

ci
nlm

(
ci

n′lm
)∗

, (17)

ci
nlm =

∑
j �=i

gn(ri j)Y
∗

lm(θi j, φi j), (18)

where θi j and φi j are the polar and azimuthal angles of the
relative position ri j in spherical coordinates. The major re-
maining difference between the angular components of our
descriptor and the SOAP one in Ref. [40] is that the radial
function in the latter also depends on l , and a different radial
expansion scheme was adopted. The connections between
different atom environment descriptors have been revealed
recently [33,41].

2. Multicomponent systems

We have omitted the atom species in the discussion above.
For a multicomponent system, a feasible method for con-
structing permutation-symmetric descriptors is to multiply the
terms in Eq. (12) by a weighting factor such as Zj and multiply

104309-3

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

the terms in Eq. (13) by a weighting factor such as ZjZk [42],
where Zj is the atomic number of atom j, although other
weighting factors [43] can also be used. This method has been
adopted in the PyXtal_FF package [39] for all the descriptors
implemented therein. Based on our definition of gn(ri j) in
Eq. (14), this leads to a modification of the cutoff function:
fc(ri j) → fc(ri j)Zj .

Here, we use the following modified definition:

fc(ri j) → fc(ri j)
√

ZiZ j, (19)

that is, we first change the factor Zj to
√

Zj , to make the
relative weights less important in systems with very different
atomic numbers, and then add the information of the central
atom

√
Zi to distinguish two configurations with the same

environments but different central atom species, which are
indistinguishable in the previous approaches [42,43].

D. From descriptor to site energy

We have stated above that in a ML potential, the site energy
is taken as a function of the set of descriptor components {qi

nl},
Ui = Ui

({
qi

nl

})
, (20)

which is a many-variable scalar function. Different ML mod-
els have been used to construct this many-variable function,
including neural network [6], Gaussian regression [7], and
linear regression [8]. In NEP, we choose the feed-forward
neural network (also called multilayer perceptron) as the ML
model.

1. The neural network model

As in previous works [6,31], the descriptor vector is taken
as the input layer of the neural network and the site energy
is taken as the output layer. Between them, there can be one
or more hidden layers of neurons (nodes). For simplicity, we
assume a single hidden layer in the following presentation;
generalization to more hidden layers is straightforward.

The descriptor vector as the input layer is coupled to the
(first) hidden layer. To facilitate the presentation, we combine
the two labels n and l into a single one, ν = (nl), and write the
descriptor vector for atom i as qi

ν (1 � ν � Ndes). The state of
the hidden layer can also be represented as a vector, xμ (1 �
μ � Nneu), where Nneu is the number of neurons in the hidden
layer. The hidden layer state vector is obtained from the input
vector by a combination of linear and nonlinear transforms,

xμ = tanh

(
Ndes∑
ν=1

w(1)
μν qi

ν − b(1)
μ

)
, (21)

where w(1)
μν is the connection weight between the neurons xμ

and qi
ν , and b(1)

μ is the bias for the neuron xμ. We choose the
hyperbolic tangent function as the nonlinear transform, also
called the activation function in the hidden layer, in agreement
with previous works [19,31]. The output layer state, which is
the site energy, is calculated as a linear combination of the
state vector of the hidden layer,

Ui =
Nneu∑
ν=1

w(2)
μ xμ − b(2), (22)

where w(2)
μ is the connection weight between the neurons Ui

and xμ, and b(2) is the bias for the neuron Ui.

2. An explicit expression for the partial force

We can now present an explicit expression for the partial
force defined in Sec. II A as

∂Ui

∂ri j
=

∑
n

∑
l

∂Ui

∂qi
nl

∂qi
nl

∂ri j
. (23)

The factor ∂Ui/∂qi
nl can be calculated based on Eqs. (21)

and (22). The factor ∂qi
nl/∂ri j can be calculated based on our

descriptor expressions. For the radial components, we have

∂qi
n

∂ri j
= ∂gn(ri j)

∂ri j

ri j

ri j
. (24)

For the angular components, we have

∂qi
nl

∂ri j
= 2

∑
k �=i

∂gn(ri j)

∂ri j
gn(rik)

ri j

ri j
Pl (cos θi jk)

+ 2
∑
k �=i

gn(ri j)gn(rik)
∂Pl (cos θi jk)

∂ cos θi jk

× 1

ri j

(
rik

rik
− ri j

ri j
cos θi jk

)
. (25)

E. Training the machine-learning potential

1. Defining a loss function

The purpose of training is to determine a set of weights and
biases in the neural network that minimizes a loss function.
The loss function quantifies the errors between the calculated
quantities (energy, force, and virial) from the ML potential
and those in the training set, which are usually prepared using
quantum mechanical calculations. We denote a set of param-
eters in the neural network as a vector z, whose dimension is
the total number of parameters Npar. For a neural network with
a single hidden layer,

Npar = (Ndes + 2)Nneu + 1. (26)

This number is usually a few thousand for the examples stud-
ied in this paper. We can formally express the loss function as
a function of the neural network parameters,

L = L(z), (27)

and express the training process as a real-valued optimization
problem,

z∗ = min L(z), (28)

where z∗ is an optimal set of parameters. Note that we have
used boldface to represent abstract vectors and italic boldface
to represent Cartesian vectors.

The loss function consists of a weighted sum of a few parts.
In our formulation, energy, force, and virial can be conve-
niently calculated, and we thus define loss functions for all
of them written as Le(z), Lf (z), and Lv(z), respectively. In ad-
dition, we consider loss functions that serve as regularization
terms, which are denoted as L1(z) and L2(z), corresponding to
L1 and L2 regularizations, respectively. The total loss function

104309-4

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

is then defined as a weighted sum of all these individual loss
functions:

L(z) = λeLe(z) + λfLf (z) + λvLv(z) + λ1L1(z) + λ2L2(z).

(29)

The energy loss function is defined as the following root
mean square error (RMSE):

Le(z) =
(

1

Nstr

Nstr∑
n=1

(
U NEP(n, z) − U tar (n)

)2

)1/2

, (30)

where Nstr is the total number of structures in the training data
set, U tar (n) is the target per-atom energy of the nth structure,
and U NEP(n, z) is the corresponding energy calculated using
the NEP potential with the parameters z. Similarly, the force
loss function is defined as the following RMSE:

Lf (z) =
(

1

3N

3N∑
i=1

(
FNEP

i (z) − F tar
i

)2

)1/2

, (31)

where N is the total number of atoms in the training data set
and F tar

i and FNEP
i (z) are the target force of the ith atom and

that calculated from the NEP potential with the parameters z,
respectively. Lastly, the virial loss function is defined as the
following RMSE:

Lv(z) =
(

1

6Nstr

Nstr∑
n=1

∑
μν

(
W NEP

μν (n, z) − W tar
μν (n)

)2

)1/2

, (32)

where W tar
μν (n) and W NEP

μν (n, z) are the target μν per-atom
virial tensor component of the nth structure and that calculated
from the NEP potential, respectively.

For the regularization loss functions, we construct them
based on the L1 and L2 norms of the parameter vector:

L1(z) = 1

Npar

Npar∑
n=1

|zn|, (33)

L2(z) =
(

1

Npar

Npar∑
n=1

z2
n

)1/2

. (34)

That is, we apply both L1 and L2 regularizations to our neural
network. The regularization can help to prevent over-fitting
by encouraging the weight parameters to develop smaller ab-
solute values than the case without regularization.

The values of the weight parameters in Eq. (29) clearly
depend on the units of the relevant quantities. When using
eV/atom for energy and virial and eV/Å for force, we find
that λe = λf = λv = 1 is a very good choice. The weight
parameters for the regularization terms, λ1 and λ2, need to be
tuned to keep a good balance between encouraging overfitting
(if λ1 and λ2 are too small) and underfitting (if λ1 and λ2 are
too large).

2. Separable natural evolution strategy as the training algorithm

While the gradient descent-based back-propagation
method is the standard one for training the neural network
parameters, here we use the separable natural evolution
strategy algorithm [11] to train our neural network parameters.

This is a principled approach to real-valued evolutionary
optimization by following the natural gradient of the loss
function to update a search distribution for a population of
solutions. It can be considered as a derivative-free black-box
optimizer, which is very suitable to minimize the complex
loss function in Eq. (29).

The workflow of our training algorithm is as follows:
(1) Initialization. Create an initial search distribution in

the solution space (of dimension Npar) with the mean vector
m and standard deviation vector s. The components of m can
be random numbers evenly chosen between −1/2 to 1/2, and
the components of s can be chosen as constants such as 0.1.

(2) Loop over Ngen generations:
(1) Create a population of solutions zk (1 � k � Npop)

based on the current m and s (� denotes elementwise
multiplication),

zk ← m + s � rk, (35)

where Npop is the population size and rk is a set of
Gaussian-distributed random numbers with mean 0 and
variance 1. Note that the random number vectors rk are dif-
ferent for different individual solutions in the population.

(2) Evaluate the loss functions L(zk) for all the individ-
ual solutions zk in the population, and sort them according
to the loss functions, from small to large.

(3) Update the natural gradients:

∇mJ ←
Npop∑
k=1

ukrk, (36)

∇sJ ←
Npop∑
k=1

uk (rk � rk − 1), (37)

where uk is a set of rank-based utility values used to evolve
the population toward the direction of better individual
solutions. For explicit values of uk , see Ref. [44].

(4) Update the mean and standard deviation of the
search distribution (the exponential function below is ap-
plied to its argument in an elementwise way):

m ← m + ηm(s � ∇mJ) (38)

s ← s � exp

(
ηs

2
∇sJ

)
, (39)

where ηm and ηs can be understood as the learning rates for
m and s, respectively. We use the suggested values [11] of
ηm = 1 and ηs = (3 + ln Npar)/5

√
Npar.

F. Computer implementation

We have implemented all the relevant calculations (except
for the generation of the training data) into the open-source
GPUMD package [12–14] using compute unified device ar-
chitecture (CUDA). After compiling GPUMD, one can obtain
three executables, including nep, gpumd, and phonon. The
nep executable can be used to train a NEP potential, the
gpumd executable can be used to run MD simulations, and
the phonon executable can be used to calculate some phonon
properties based on harmonic lattice dynamics. All the calcu-
lations can be done with the GPUMD package without external

104309-5

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

dependence. Moreover, both Windows and Linux operating
systems are supported, and the prerequisites for using the
GPUMD package include only a CUDA-enabled GPU, a suit-
able CUDA toolkit, and a suitable C++ compiler.

The NEP potential is no more complicated than the em-
pirical Tersoff bond-order potential [45], the major difference
between them being the different numbers of fitting parame-
ters. Therefore, our GPU implementation of the NEP potential
closely follows the implementation of the Tersoff potential
[13]. Most importantly, all the per-atom quantities have closed
forms in our formulations and we can make a one-to-one
correspondence between one atom and one CUDA thread.
This is an efficient parallelisation scheme for medium-to-large
systems, as it can attain a large degree of parallelism as
well as a high arithmetic intensity, both of which are vital
for achieving high efficiency in GPU computing. For small
systems, this is not an efficient scheme due to the reduced
degree of parallelism. Because the systems (structures) in the
training data set are usually quite small (of the order of 100
atoms), we combine all the individual structures into a single
one in the implementation of the NEP potential, following the
same strategy as used in the GPUGA package [46] for empirical
potential fitting.

III. PERFORMANCE EVALUATION

In this section, we present a few case studies to evaluate
the performance of NEP implemented in GPUMD, as compared
to the QUIP [15] package that implements the GAP-SOAP
potential [7,30], the MLIP package [16] that implements the
MTP potential [17], and the DeePMD-kit package [18] that
implements the DP potential [19,20]. Because a good machine
learning potential should be able to account for nearly all
the phases of a given material, as demonstrated for elemen-
tary silicon [47], phosphorus [48], and carbon [49,50], we
will consider fitting a general-purpose potential for silicon.
In addition, we will consider fitting a specific potential for
two-dimensional (2D) silicene and a specific potential for bulk
PbTe.

A. Training data sets

We performed quantum mechanical density functional the-
ory (DFT) calculations to prepare the training data, using
VASP [51] for bulk PbTe and QUANTUM ESPRESSO [52] for 2D
silicene. For the general-purpose potential of silicon, we used
the training data from Ref. [47]. All the inputs and outputs
of the nep executable within the GPUMD package are openly
available in ZENODO [53].

1. Training data set for general-purpose silicon

The training data set for general-purpose silicon from
Ref. [47] consists of 2475 structures, including an isolated
atom providing a reference energy, various three-dimensional
(3D) solid structures, sp2- and sp-bonded structures, liquid
structures, amorphous structures, diamond structures with sur-
faces, diamond structures with vacancies, and some other
defective structures. Every structure has an energy, but not
all the structures have virial data. For details on the DFT
calculations, the reader is referred to Ref. [47].

2. Training data set for 2D silicene

The training set for 2D silicene consists of 914 rectangular
cells, each with 60 atoms, obtained via the active learn-
ing scheme as implemented in the MLIP package [16]. We
considered states with temperatures ranging from 100 K to
900 K and biaxial in-plane strains ranging from −1% to 1%.
For each state, the active learning iteration was terminated
when no configurations were selected using the criterion of
γselect = 2 [16] after six independent 10 ps MD simulations
with a pretrained MTP potential. Static DFT calculations were
performed to obtain accurate energy, force, and virial data. For
this purpose, we used the PBE functional [54], an optimized
norm-conserving Vanderbilt pseudopotential [55], a kinetic
energy cutoff of 40 Ry for wave functions, a 3×3×1 k-point
mesh, and a threshold of 10−10 Ry for the electronic self-
consistent loop.

3. Training data set for bulk PbTe

The training set for bulk PbTe consists of 325 triclinic cells,
each with 250 atoms. We obtained 305 cells using DFT-MD
simulations with temperatures ranging from 300 K to 900 K.
We also added 20 cells with small random atom displacements
generated by using the HIPHIVE package [56], to sample the
low-temperature phase space of PbTe. Static DFT calculations
were performed to obtain accurate energy and force data, us-
ing the PBE functional [54], an energy cutoff of 400 eV for the
projector augmented wave [57,58], a 1×1×1 k-point mesh,
and a threshold of 10−7 eV for the electronic self-consistent
loop. Virial data were not used for PbTe. This training set has
been used to train a GAP-SOAP potential for PbTe [59].

B. Hyperparameters

All the machine-learning potentials have a number of hy-
perparameters. We list all the tunable hyperparameters used
for the NEP potential in Table I. For the MTP and GAP-SOAP

TABLE I. The tunable hyperparameters used in the NEP po-
tential for the three materials. Here, rR

c (rA
c) is the cutoff radius

for the radial (angular) components of the descriptor, nR
max (nA

max) is
the Chebyshev polynomial expansion order for the radial (angular)
components, lmax is the Legendre polynomial expansion order for the
angular components, Nneu is the number of neurons in the hidden
layer of the neural network, λ1 (λ2) is the L1 (L2) regularization
parameter, Npop is the population size in the natural evolution strategy
algorithm, and Ngen is the maximum number of generations to be
evolved.

Parameter General Si Silicene PbTe

rR
c 5 Å 5.5 Å 8 Å

rA
c 5 Å 5.5 Å 4 Å

nR
max 15 12 12

nA
max 15 12 6

lmax 4 4 4
Nneu 50 40 40
λ1 0.05 0.05 0.05
λ2 0.05 0.05 0.05
Npop 50 50 50
Ngen 2×105 2×105 2×105

104309-6

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

potentials, we present the relevant input commands/scripts in
Appendix B. For the DP potential, the relevant hyperparame-
ters we used are described in Appendix C.

For general silicon and 2D silicene, which mainly have
covalent bonding, we do not find it beneficial to use different
rR

c and rA
c . Accordingly, nR

max and nA
max are chosen to be the

same. However, for PbTe, which is an ionic crystal having
relatively long-ranged (Coulomb) interactions, we find it ben-
eficial to use larger rR

c and nR
max for the radial components of

the descriptor, and use smaller rA
c and nA

max for the angular
components, which can reduce the computational cost with a
given target accuracy.

For all the materials, we only use a single hidden layer with
40 or 50 neurons in the neural network, which is sufficient
based on our tests. We note that the deep neural network
potential [18,19] usually requires using a deep neural net-
work with several hidden layers, each with a large number
of neurons. This is because a relatively simple (but very
general) atom environment descriptor was used in the deep
neural network potential [18,19] and it requires using a deep
neural network to establish a connection between the simple
descriptor and the energy of an atom.

For the regularization parameters, we find that λ1 = λ2 =
0.05 is a good default choice. The remaining two parameters,
Npop and Ngen, are only relevant for the training process. The
computation time in the training process is proportional to the
product of them.

The dimension of the descriptor Ndes for each training set
can be calculated according to Eq. (16). It is 80, 65, and
41 for general silicon, 2D silicence, and bulk PbTe, respec-
tively. Therefore, the structures of the neural networks for
these training sets can be denoted as 80-50-1, 65-40-1, and
41-40-1, respectively. The numbers of fitting parameters Npar

in these neural networks are, respectively, 4101, 2681, and
1721, according to Eq. (26).

Figure 2 shows the evolution of the various loss functions
with respect to the generation, for the case of general silicon.
With increasing generation, the RMSEs of energy, force, and
virial are reduced and converged, although with some oscilla-
tions in the beginning. In contrast, the loss functions for the L1

and L2 regularization, hence the magnitudes of the weight and
bias parameters in the neural network, first increase and then
decrease, indicating the effectiveness of the regularization.
Without the regularization (that is, setting λ1 and λ2 to zero
or very small values), the weight and bias parameters in the
neural network would increase wildly, which can easily lead
to overfitting. Explicit examples of overfitting and underfitting
are demonstrated in Appendix D.

We note that the training process is very stable: inde-
pendent runs with different sets of random numbers lead to
comparable results with very small variation. This strongly
suggests that the natural evolution strategy we used can find
very good minima of the loss function with sets of globally
optimized neural network parameters.

C. Evaluation of the accuracy

Figure 3 compares the predicted energy, force, and virial
values by NEP and those from quantum mechanical DFT
calculations for the general silicon training set [47]. The

102 103 104 105

Generation

10-3

10-2

10-1

100

Lo
ss

 fu
nc

tio
ns

Total
L1
L2
Energy
Force
Virial

FIG. 2. Evolution of the loss functions during the training pro-
cess. Total, L1, L2, energy, force, and virial correspond to Eq. (29),
Eq. (33), Eq. (34), Eq. (30), Eq. (31), and Eq. (32), respectively.
The training set for general silicon systems [47] is used here and
the hyperparameters are presented in Table I.

agreement between NEP and DFT is reasonably good.
Based on these data, we calculate the RMSEs, as given in
Figs. 3(a)–3(c). Reference [47] did not provide these RMSE
values. Instead, the cumulative probability of the force

FIG. 3. (a) Energy, (b) force, and (c) virial as calculated from
the NEP potential compared with the training data from quantum
mechanical DFT calculations. The solid lines in (a)–(c) represent the
identity function used to guide the eyes. (d) Cumulative probability
as a function of the force component error from NEP (solid line),
GAP-SOAP (dashed line), and DP (dotted line). The cumulative
probability of the absolute DFT force components (dot-dashed line)
is shown as a reference.

104309-7

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

TABLE II. Accuracy comparison between NEP, GAP-SOAP,
MTP, and DP. Energy and virial RMSEs are in units of meV/atom,
and force RMSE is in units of meV/Å.

Material RMSE GAP MTP DP NEP

Silicene Energy 1.6 1.3 1.8 1.5
Force 65 50 65 56
Virial 14 10 8.1 8.8

PbTe Energy 0.50 0.63 0.63 0.56
Force 50 52 53 50

component errors between GAP-SOAP and DFT calculations
was provided. We therefore compare this quantity from NEP
and GAP-SOAP in Fig. 3(d). It can been seen that NEP is
slightly less accurate than GAP-SOAP here. Figure 3(d) also
shows that DP (force RMSE is 165 meV/Å) is less accurate
than NEP (force RMSE is 107 meV/Å) in this case.

We similarly calculated the RMSEs for 2D silicene and
bulk PbTe and the values are listed in Table II. It can bee seen
that all the potentials have comparable accuracy. A given ML
potential is not always more accurate than another one, as the
accuracy of a potential is determined by many tunable hyper-
parameters. The hyperpameters affect not only the accuracy
but also the computational efficiency, an important issue that
we will discuss next.

D. Evaluation of the computational efficiency

1. Computational speed

In Fig. 4, we compare the computational speeds of the four
ML potentials in MD simulations. The computational speed

 2000

18000

 5000

100000
 48000

870000
520000

 4500000

13000000 11000000

Silicon Silicene PbTe

104

106

108

S
pe

ed
 (

at
om

-s
te

p
pe

r
se

co
nd

)

GAP (72 Intel Xeon-Gold 6240 CPU cores)
MTP (72 Intel Xeon-Gold 6240 CPU cores)
DP (One Nvidia Tesla V100 GPU)
NEP (One Nvidia Tesla V100 GPU)

FIG. 4. Computational speed of the NEP potential (running with
an Nvidia Tesla V100 GPU), compared to those of the DP potential
(running with the same V100 GPU) and the GAP-SOAP and MTP
potentials (both running with 72 Intel Xeon-Gold 6240 CPU cores).
The model compression technique [60] is applied to the DP poten-
tials here to speed up the calculations.

is measured as the product of the number of atoms and the
number of MD steps divided by the computation time, which
is in units of atom-step per second. To measure the speed, we
used a simulation cell with 8×103 (for bulk silicon and PbTe)
or 6×103 (for 2D silicene) atoms and run an MD simulation
for 100 steps in the NVT ensemble, outputting basic thermo-
dynamic quantities every ten steps. The QUIP [15], MLIP [16],
and DeePMD-kit [18] packages were built as libraries to be
called by the LAMMPS package [26].

Both the GAP-SOAP and MTP potentials are implemented
in CPU only, and we used 72 Intel Xeon-Gold 6240 CPU
cores (two nodes, each with 36 cores) parallelized by the
message passing interface (MPI). Note that the GAP-SOAP
potential achieves very high accuracy for general silicon,
but has very low computational speed. Reference [47] used
nmax = 10 and lmax = 12 in the SOAP descriptor, together
with 9×103 basis functions in the Gaussian process regres-
sion. Using smaller values of these parameters will increase
the computational speed but reduce the accuracy. With com-
parable accuracy, MTP is about one order of magnitude faster
than GAP-SOAP, as has been reported before [17].

Our NEP potential is implemented in GPU only, and we
used an Nvidia Tesla V100 GPU card in the performance
test. Note that the above CPU and GPU resources are of
comparable price. The computational speed of GPUMD can be
above 107 atom-steps per second, which is only about one
order of magnitude lower than the computational speed of
efficient empirical potentials such as the Tersoff potential as
implemented in GPUMD. To achieve the same computational
speed of GPUMD with one V100 GPU, one needs to run QUIP

with at least a few tens of thousand CPU cores, or run MLIP

with at least a few thousand CPU cores, even assuming an
ideal MPI scaling.

The DEEPMD-KIT package [18] has both CPU and GPU
versions and we used the latter with the same V100 GPU. We
used the recent model compression technique [60] introduced
to the DP potential to speed up the calculations. From Fig. 4,
we see that NEP as implemented in GPUMD is more than
one order of magnitude faster than DP as implemented in
DEEPMD-KIT, using the same computational resource.

2. Memory consumption

Apart from the high computational speed, our implemen-
tation of NEP in GPUMD is also memory efficient. The major
memory consumption in the NEP potential is as follows: three
neighbor lists (each with a different cutoff radius; we use
multiple levels of neighbor list to save computations) which
require about 12NM bytes, the partial forces {∂Ui/∂ri j} for
all atom pairs within a cutoff radius which require about
24NM bytes, and some intermediate results related to the
descriptor which require about 2000N bytes. Here, N is
the number of atoms and M is an estimated upper bound of
the number of neighbors that an atom can ever have in a given
application. Assuming a typical value of M = 100, the total
amount of memory listed above is less than six gigabytes for a
1 000 000-atom system. Therefore, using a single V100 GPU
with 32 gigabytes of device memory, one can simulate sys-
tems with up to a few million atoms using the NEP potential
in GPUMD.

104309-8

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

IV. HEAT TRANSPORT APPLICATIONS

MD simulations with ML potentials have been applied
to study heat transport properties of a number of materials,
including, e.g., GeTe and MnGe compounds [61–64], dia-
mond and amorphous silicon [65–67], multilayer graphene
[68], monolayer silicene [69], CoSb3 [70], monolayer MoS2

and MoSe2 and their alloys [71], C3N [72], α-Ag2Se [73,74],
β-Ga2O3 [75], Tl3VSe4 [59], PbTe [59], and SnSe [76]. There
are also works that exclusively used the Boaltzmann transport
equation (BTE) approach to calculate thermal conductivity
based on force constants determined from ML potentials
[77–82]. In this section, we use 2D silicene and bulk PbTe as
the examples to demonstrate the applicability of NEP in heat
transport calculations.

We calculate the lattice thermal conductivity using the
HNEMD method and the related spectral decomposition
method [29] as implemented in GPUMD and reviewed in
Sec. II B. The simulation cells for 2D silicene and bulk PbTe
contain 6000 and 8000 atoms, respectively, which are large
enough to eliminate finite-size effects. For silicene, we per-
formed ten independent runs, each with a 50 ps equilibration
stage in the NPT ensemble (with a target in-plane pressure of
zero) and a 1000 ps production stage with an external driving
force of 0.5 μm−1. For PbTe, we performed three indepen-
dent runs, each with a 100 ps equilibration stage in the NVT
ensemble and a 2000 ps production stage with an external
driving force of 1.0 μm−1. The integration time step is 0.5 fs
for silicene and 1.0 fs for PbTe. We consider a temperature of
300 K for silicene and a temperature range from 300 to 700 K
for PbTe.

A. Thermal transport in 2D silicene

Figure 5(a) shows the spectral lattice thermal conductivity
of silicene for the in-plane and out-of-plane phonons (also
called flexural phonons), according to the spatial decompo-
sition [24] for 2D materials. The out-of-plane phonons only
have nonzero lattice thermal conductivity for the acoustic
branches, while the in-plane phonons have nonzero lat-
tice thermal conductivity for both the acoustic and optical
branches. In total, the lattice thermal conductivity is mainly
contributed by the acoustic phonons.

Summing up the various components in Fig. 5(a), we
obtain a total lattice thermal conductivity of 33.7 ± 0.6
W/mK. Our value is consistent with that calculated [69] us-
ing the GAP-SOAP potential (32.4 ± 2.9 W/mK), as shown
in Fig. 5(b). Our lattice thermal conductivity value is also
well within the range from previous BTE-DFT calculations
[84–87]. In contrast, the lattice thermal conductivity values
from MD simulations [83] using two versions (called SW1
and SW2) of the Stillinger-Weber potential [88] optimized for
silicene [89] are well below this range. The underestimation
of the lattice thermal conductivity by the Stillinger-Weber
potential can be partially understood by examining the phonon
dispersions, as shown in Fig. 6. Both versions of the Stillinger-
Weber potential significantly underestimate the frequencies
and hence the group velocities of the phonons around the �

point as compared to the DFT results. On the other hand, the
phonon dispersions from the NEP potential agree well with
the DFT results.

0 5 10 15
0

2

4

6

8

10

Acoustic Optical

ω/2π (THz)

κ
(ω

)
(W

/m
/K

/T
H

z)

(a)
Total
In−plane
Out−of−plane

NEP Zhang−GAP Dong−SW1 Dong−SW2
0

10

20

30

40

BTE Interval

κ
(W

/m
K

)

(b)

FIG. 5. (a) Spectral lattice thermal conductivity of 2D silicene
at 300 K calculated using the NEP potential. Solid lines are the
average over ten independent runs and dashed lines represent the
error bounds. The vertical dashed line separates the acoustic and
optical phonon frequencies. (b) Lattice thermal conductivity of 2D
silicene at 300 K calculated using MD simulations with the NEP
potential, MD simulations with a GAP-SOAP potential [69], and MD
simulations with two versions of the Stillinger-Weber potential [83].
The area between the two horizontal lines represents the range of
values predicted by BTE-DFT calculations.

0

5

10

15

ν
(T

H
z)

(a) NEP

Γ M K Γ

0

5

10

15

ν
(T

H
z)

(b) SW1 and SW2

Γ M K Γ

FIG. 6. Phonon dispersions of silicene. (a) Comparison between
NEP (dashed line) and DFT (solid line) calculations. (b) Comparison
between SW1 (dashed line), SW2 (dot-dashed line), and DFT (solid
line) calculations. The SW1 and SW2 results are from Ref. [69].

104309-9

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

300 400 500 600 700
0

1

2

3

4

5

6
NEP-HNEMD
Zeng-GAP-BTE (3ph+4ph)
Xia-DFT-BTE (3ph)
Xia-DFT-BTE (3ph+4ph)
Fedorov-Experiments
El-Sharkawy-Experiments

FIG. 7. Lattice thermal conductivity of bulk PbTe as a function
of temperature, from HNEMD simulations with the NEP potential,
from BTE calculations with the GAP-SOAP potential considering
both three-phonon and four-phonon scatterings [59], from BTE-
DFT calculations considering three-phonon scattering only or both
three-phonon and four-phonon scatterings [90] and from experiments
[91,92].

B. Thermal transport in bulk PbTe

We similarly calculated the thermal conductivity of PbTe
from 300 to 700 K, and the results are shown in Fig. 7.
The predictions by NEP agree well with the experimental
data [91,92]. BTE calculations with force constants from
DFT [90] or the GAP-SOAP potential [59] considering both
three-phonon and four-phonon scatterings also produce com-
parable results. However, if only three-phonon scattering is
considered in the BTE calculations [90], the obtained lattice
thermal conductivity values are about two times as large. This
indicates the importance of four-phonon scattering in PbTe. In
some other materials such as Tl3VSe4, it has been suggested
that the perturbation theory as adopted in the BTE approach
can severely underestimate the phonon scatterings even when
four-phonon scattering is included [59]. Because phonon an-
harmonicity is fully taken into account in MD simulations,
we expect that our efficient NEP potential will serve as a
promising tool for investigating heat transport properties in
materials with strong phonon anharmonicity.

C. Thermal transport in amorphous silicon

Our NEP potential can also be applied to study heat trans-
port in materials with strong spatial disorder. We show this by
considering amorphous silicon (a-Si), using the general sili-
con NEP potential fitted above. To generate a-Si structures, we
follow the MD simulation protocol as described in Ref. [47].
Because our NEP potential is much more efficient than the
GAP-SOAP potential, we use a simulation cell with 64 000
atoms instead of 64 atoms as used in Ref. [47].

The structural properties during the process of generating
a-Si are shown in Fig. 8. The radial distribution function g(r)
and the angular distribution function p(θ) at liquid (2000 K)

FIG. 8. (a) Radial and (b) angular distribution functions of liquid
silicon (2000 K). (c) Radial and (d) angular distribution functions of
a-Si (500 K). DFT and GAP results in (a)–(c) are from Ref. [47].
GAP results in (d) are from Ref. [93]. The vertical solid line in
(d) represents the bond angle (about 109.5◦) in the diamond structure.

and amorphous (500 K) states from NEP agree well with the
DFT and GAP results. This ensures that the a-Si samples we
constructed have reasonable structural properties.

Figure 9 shows the calculated phonon density of states
(PDOS) from velocity-autocorrelation function and spectral
lattice thermal conductivity from virial-velocity correlation
function of a-Si at 300 K and zero pressure averaged over
five a-Si samples. Although the high-frequency phonons have
a large contribution to the PDOS, the thermal conductivity
is still mainly contributed by low-frequency phonons, sim-
ilar to the case of crystalline 2D silicene above. The total
lattice thermal conductivity of our a-Si samples is calculated
to be 1.5 ± 0.1 W/mK from the classical MD simulations.
Although there is so far no universally applicable quantum
correction method for classical MD simulations of phonon
thermal transport in perfect crystals, a feasible one [94–96]
for disordered materials is to multiply a factor to the classical
spectral thermal conductivity κμν (ω) to obtain the following
quantum-corrected spectral thermal conductivity:

κq
μν (ω) = κμν (ω)

x2ex

(ex − 1)2
. (40)

Here, x = h̄ω/kBT , where h̄ and kB are the reduced
Planck’s constant and the Boltzmann constant, respectively.
The quantum-corrected spectral thermal conductivity is also
shown in Fig. 9. We see that at 300 K, the quantum effects are
very minor, which only reduce the total thermal conductivity
to 1.4 ± 0.1 W/mK. However, we note that the quantum
effects can be very strong at low temperatures. Our results
here agree well with previous studies using the GAP-SOAP
potential [66] and the DP potential [67]. A more systematical
study considering different temperatures, strains (stresses),
cell sizes, and quenching rates is beyond the scope of this
paper.

104309-10

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

0 5 10 15
0

0.05

0.1

0.15
(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5
(b)

classical
quantum

FIG. 9. (a) PDOS and (b) spectral thermal conductivity of a-Si at
300 K and zero pressure. In (b), the solid line represents the results
from classical MD simulations and the dashed line represents the
quantum-corrected results. See text for details.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented NEP, a framework for
generating neural network-based ML potentials using the
separable natural evolutionary strategy algorithm and an
atom-environment descriptor based on Chebyshev and Leg-
endre polynomials. Our NEP potential can achieve accuracy
comparable to that of the other ML potentials, such as GAP-
SOAP, MTP, and DP, and our GPU implementation attains a
high computational efficiency in terms of both computation
time and memory usage. The computation time of the NEP
potential is of the order of 0.1 microseconds per atom per MD
step using a single Nvidia V100 GPU, and one can use this
amount of resources to simulate systems up to a few million
atoms.

Combining with the HNEMD and the related spectral
decomposition methods, our work makes it possible to ef-
ficiently and accurately simulate heat transport in various
materials based on quantum-mechanical training data only.
We expect that the NEP approach will be particularly useful
for modeling heat transport properties of materials with strong
phonon anharmonicity or spatial disorder, which usually can-
not be accurately treated either with traditional empirical
potentials or with the perturbative BTE method.

ACKNOWLEDGMENTS

Z.F. acknowledges the supports from the National Natural
Science Foundation of China (NSFC) (No. 11974059). Z.Z.
and Y.C. are grateful for the research computing facilities of-

fered by ITS, HKU. Y.W., H.D., and T.A.-N. acknowledge the
support from the Academy of Finland Centre of Excellence
program QTF (Project No. 312298) and the computational
resources provided by Aalto Science-IT project and Finland’s
IT Center for Science (CSC).

APPENDIX A: THE CHEBYSHEV POLYNOMIALS
USED IN NEP

The Chebyshev polynomials of the first kind are defined in
terms of the initial values T0(x) = 1 and T1(x) = x, and the
recurrence relation (n � 2):

Tn(x) = 2xTn−1(x) − Tn−2(x). (A1)

The derivative dTn(x)/dx is related to the Chebyshev polyno-
mials of the second kind Un−1(x) for n > 0:

dTn(x)

dx
= nUn−1(x). (A2)

The Chebyshev polynomials of the second kind are defined in
terms of the initial values U0(x) = 1 and U1(x) = 2x, and the
recurrence relation (n � 2):

Un(x) = 2xUn−1(x) − Un−2(x). (A3)

APPENDIX B: INPUTS FOR TRAINING
THE MTP AND GAP POTENTIALS

In this Appendix, we give the input commands/scripts used
for training the MTP and GAP potentials.

1. Inputs for training the MTP potential of 2D silicene

MTP
version = 1.1.0
potential_name = MTP1m
species_count = 1
potential_tag =
radial_basis_type = RBChebyshev
min_dist = 1
max_dist = 5.5
radial_basis_size = 8
radial_funcs_count = 5
alpha_moments_count = 1352
alpha_index_basic_count = 295

2. Inputs for training the MTP potential of bulk PbTe

MTP
version = 1.1.0
potential_name = MTP1m
species_count = 2
potential_tag =
radial_basis_type = RBChebyshev
min_dist = 2.6
max_dist = 6.0
radial_basis_size = 8
alpha_moments_count = 718
alpha_index_basic_count = 201

104309-11

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

3. Inputs for training the GAP potential of 2D silicene

gap_fit atoms_filename=train.xyz
gap={distance_2b cutoff=5.5 n_sparse=50
covariance_type=ard_se delta=2.0
theta_uniform=1.0 sparse_method=uniform :
angle_3b cutoff=3.0 n_sparse=120
covariance_type=ard_se delta=1.0
theta_uniform=1.0 sparse_method=uniform :
soap l_max=6 n_max=12 atom_sigma=0.5 zeta=4
cutoff=5.5 cutoff_transition_width=0.5
n_sparse=600 delta=0.5
covariance_type=dot_product
sparse_method=cur_points}
default_sigma={0.001 0.001 0.001 0}
sparse_jitter=1.0e-10
hessian_parameter_name=dummy
virial_parameter_name=virial
energy_parameter_name=energy
force_parameter_name=force

4. Inputs for training the GAP potential of bulk PbTe

gap_fit atoms_filename=train.xyz
default_sigma={0.001 0.04 0.04 0}
gap={distance_2b cutoff=6
covariance_type=ard_se delta=0.5
theta_uniform=1.0 sparse_method=uniform
add_species=T n_sparse=20:
soap l_max=6 n_max=12 cutoff=6
cutoff_transition_width=1.0 delta=1.0
atom_sigma=0.5 zeta=4
sparse_method=cur_points add_species=T
n_sparse=600 covariance_type=dot_product}
energy_parameter_name=energy
force_parameter_name=forces

APPENDIX C: HYPERPARAMETERS USED
IN THE DP POTENTIALS

For the DP potential, we trained the smooth edition [20]
for general silicon, 2D silicene, and bulk PbTe, using the
DEEPMD-KIT package [18]. The cutoff distance is 5 Å for
general silicon, 5.5 Å for silicene, and 6 Å for PbTe. The
number of training steps is 4×106 for general silicon and 106

for both silicene and PbTe. Below are the common hyperpa-
rameters used for all the materials. The smoothing parameter
is 2 Å. The size of the embedding net is (25,50,100) and
the size of the fitting net is (240,240,240). The learning rate
in the stochastic gradient descent algorithm decreases expo-
nentially from 10−3 to 10−8. The weighting parameters for
energy, force, and virial (if it exists) have a starting value of
0.02, 1000, and 1, respectively, which are linearly changed
to 1 during the training process. The maximum number of
neighbors is estimated to be 100. A default batch size of 1
is used.

APPENDIX D: EFFECTS OF REGULARIZATION

We use the case of 2D silicene to demonstrate the effects
of the regularization. We first train a NEP potential with 714

FIG. 10. (a) The absolute values of the 2681 neural network
parameters in the NEP potential for 2D silicene trained with differ-
ent levels of regularization. (b) The corresponding predicted forces
versus the DFT reference values.

structures (the training set) and then make predictions for an-
other 200 structures (the testing set). The testing set contains
structures with pressures and temperatures that are not cov-
ered by the training set. Therefore, evaluating the trained NEP
potential against the testing set involves both interpolation
and extrapolation, which serves a good purpose of detecting
possible overfitting and underfitting.

Figure 10(a) shows the absolute neural network parame-
ters in the NEP potentials with three levels of regularization:
λ1 = λ2 = 0 (no regularization), λ1 = λ2 = 0.05 (proper reg-
ularization), and λ1 = λ2 = 0.5 (strong regularization). We
see that the average magnitude of the parameters decreases
with increasing level of regularization. Quantitatively, the
mean absolute values of the parameters are 12, 0.36, and
0.12, respectively, for the three regularization levels above.
Figure 10(b) clearly shows that the potential trained without
regularization is overfitted, which has very large errors in the
predicted forces. On the other hand, the potential trained with
too strong a regularization is underfitted and also has signif-
icant errors in the predicted forces. By contrast, the potential
trained with proper regularization has the highest accuracy
in the testing set, showing the capability of interpolating and
even extrapolating (to some extent).

104309-12

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

[1] J. Behler, Perspective: Machine learning potentials for atomistic
simulations, J. Chem. Phys. 145, 170901 (2016).

[2] V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning
interatomic potentials as emerging tools for materials science,
Adv. Mater. 31, 1902765 (2019).

[3] T. Mueller, A. Hernandez, and C. Wang, Machine learning
for interatomic potential models, J. Chem. Phys. 152, 050902
(2020).

[4] Y. Mishin, Machine-learning interatomic potentials for materi-
als science, Acta Mater. 214, 116980 (2021).

[5] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I.
Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R. Müller, Ma-
chine learning force fields, Chem. Rev. 121, 10142 (2021).

[6] J. Behler and M. Parrinello, Generalized Neural-Network Rep-
resentation of High-Dimensional Potential-Energy Surfaces,
Phys. Rev. Lett. 98, 146401 (2007).

[7] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian
Approximation Potentials: The Accuracy of Quantum Mechan-
ics, Without the Electrons, Phys. Rev. Lett. 104, 136403 (2010).

[8] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J.
Tucker, Spectral neighbor analysis method for automated gen-
eration of quantum-accurate interatomic potentials, J. Comput.
Phys. 285, 316 (2015).

[9] Xin Yao, Evolving artificial neural networks, Proc. IEEE 87,
1423 (1999).

[10] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J.
Schmidhuber, Natural evolution strategies, J. Mach. Learn. Res.
15, 949 (2014).

[11] T. Schaul, T. Glasmachers, and J. Schmidhuber, High di-
mensions and heavy tails for natural evolution strategies, in
Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO ’11 (ACM Press, New York,
2011), pp. 845–852.

[12] Z. Fan, T. Siro, and A. Harju, Accelerated molecular dynam-
ics force evaluation on graphics processing units for thermal
conductivity calculations, Comput. Phys. Commun. 184, 1414
(2013).

[13] Z. Fan, W. Chen, V. Vierimaa, and A. Harju, Efficient molecular
dynamics simulations with many-body potentials on graphics
processing units, Comput. Phys. Commun. 218, 10 (2017).

[14] Z. Fan and A. Gabourie, brucefan1983/GPUMD: GPUMD-
v2.5.1, doi: 10.5281/zenodo.4037256.

[15] https://github.com/libAtoms/QUIP.
[16] I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V.

Shapeev, The MLIP package: Moment tensor potentials with
MPI and active learning, Mach. Learn.: Sci. Technol. 2, 025002
(2021).

[17] A. V. Shapeev, Moment tensor potentials: A class of systemat-
ically improvable interatomic potentials, Multis. Model. Simul.
14, 1153 (2016).

[18] H. Wang, L. Zhang, J. Han, and W. E, DeePMD-kit: A deep
learning package for many-body potential energy representation
and molecular dynamics, Comput. Phys. Commun. 228, 178
(2018).

[19] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics, Phys. Rev. Lett. 120, 143001 (2018).

[20] L. Zhang, J. Han, H. Wang, W. A. Saidi, R. Car, and W. E,
End-to-end symmetry preserving inter-atomic potential energy
model for finite and extended systems, arXiv:1805.09003.

[21] Z. Fan, Luiz Felipe C. Pereira, H.-Q. Wang, J.-C. Zheng, D.
Donadio, and A. Harju, Force and heat current formulas for
many-body potentials in molecular dynamics simulations with
applications to thermal conductivity calculations, Phys. Rev. B
92, 094301 (2015).

[22] A. J. Gabourie, Z. Fan, T. Ala-Nissila, and E. Pop, Spectral
decomposition of thermal conductivity: Comparing velocity
decomposition methods in homogeneous molecular dynamics
simulations, Phys. Rev. B 103, 205421 (2021).

[23] M. Gill-Comeau and L. J. Lewis, Heat conductivity in graphene
and related materials: A time-domain modal analysis, Phys.
Rev. B 92, 195404 (2015).

[24] Z. Fan, Luiz Felipe C. Pereira, P. Hirvonen, M. M. Ervasti,
K. R. Elder, D. Donadio, T. Ala-Nissila, and A. Harju, Ther-
mal conductivity decomposition in two-dimensional materials:
Application to graphene, Phys. Rev. B 95, 144309 (2017).

[25] K. Xu, Z. Fan, J. Zhang, N. Wei, and T. Ala-Nissila, Thermal
transport properties of single-layer black phosphorus from ex-
tensive molecular dynamics simulations, Modell. Simul. Mater.
Sci. Eng. 26, 085001 (2018).

[26] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

[27] D. Surblys, H. Matsubara, G. Kikugawa, and T. Ohara, Ap-
plication of atomic stress to compute heat flux via molecular
dynamics for systems with many-body interactions, Phys. Rev.
E 99, 051301(R) (2019).

[28] P. Boone, H. Babaei, and C. E. Wilmer, Heat flux for many-
body interactions: Corrections to LAMMPS, J. Chem. Theory
Comput. 15, 5579 (2019).

[29] Z. Fan, H. Dong, A. Harju, and T. Ala-Nissila, Homogeneous
nonequilibrium molecular dynamics method for heat trans-
port and spectral decomposition with many-body potentials,
Phys. Rev. B 99, 064308 (2019).

[30] A. P. Bartók, R. Kondor, and G. Csányi, On representing chem-
ical environments, Phys. Rev. B 87, 184115 (2013).

[31] J. Behler, Atom-centered symmetry functions for constructing
high-dimensional neural network potentials, J. Chem. Phys.
134, 074106 (2011).

[32] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von
Lilienfeld, Fast and Accurate Modeling of Molecular Atom-
ization Energies with Machine Learning, Phys. Rev. Lett. 108,
058301 (2012).

[33] R. Drautz, Atomic cluster expansion for accurate and transfer-
able interatomic potentials, Phys. Rev. B 99, 014104 (2019).

[34] Y. Zhang, C. Hu, and B. Jiang, Embedded atom neural net-
work potentials: Efficient and accurate machine learning with
a physically inspired representation, J. Phys. Chem. Lett. 10,
4962 (2019).

[35] V. Zaverkin and J. Kästner, Gaussian moments as physically in-
spired molecular descriptors for accurate and scalable machine
learning potentials, J. Chem. Theory Comput. 16, 5410 (2020).

[36] C. van der Oord, G. Dusson, G. Csányi, and C. Ortner, Regu-
larised atomic body-ordered permutation-invariant polynomials
for the construction of interatomic potentials, Mach. Learn.:
Sci. Technol. 1, 015004 (2020).

[37] A. Khorshidi and A. A. Peterson, Amp: A modular approach
to machine learning in atomistic simulations, Comput. Phys.
Commun. 207, 310 (2016).

[38] L. Himanen, M. O. J. Jäger, E. V. Morooka, F. Federici Canova,
Y. S. Ranawat, D. Z. Gao, P. Rinke, and A. S. Foster, Dscribe:

104309-13

https://doi.org/10.1063/1.4966192
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1063/1.5126336
https://doi.org/10.1016/j.actamat.2021.116980
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1109/5.784219
https://jmlr.org/papers/v15/wierstra14a.html
https://doi.org/10.1016/j.cpc.2013.01.008
https://doi.org/10.1016/j.cpc.2017.05.003
https://doi.org/10.5281/zenodo.4037256
https://github.com/libAtoms/QUIP
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1137/15M1054183
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1103/PhysRevLett.120.143001
http://arxiv.org/abs/arXiv:1805.09003
https://doi.org/10.1103/PhysRevB.92.094301
https://doi.org/10.1103/PhysRevB.103.205421
https://doi.org/10.1103/PhysRevB.92.195404
https://doi.org/10.1103/PhysRevB.95.144309
https://doi.org/10.1088/1361-651X/aae180
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevE.99.051301
https://doi.org/10.1021/acs.jctc.9b00252
https://doi.org/10.1103/PhysRevB.99.064308
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevB.99.014104
https://doi.org/10.1021/acs.jpclett.9b02037
https://doi.org/10.1021/acs.jctc.0c00347
https://doi.org/10.1088/2632-2153/ab527c
https://doi.org/10.1016/j.cpc.2016.05.010

ZHEYONG FAN et al. PHYSICAL REVIEW B 104, 104309 (2021)

Library of descriptors for machine learning in materials science,
Comput. Phys. Commun. 247, 106949 (2020).

[39] H. Yanxon, D. Zagaceta, B. Tang, D. S. Matteson, and Q.
Zhu, PyXtal_FF: A Python library for automated force field
generation, Mach. Learn.: Sci. Technol. 2, 027001 (2021).

[40] M. A. Caro, Optimizing many-body atomic descriptors for en-
hanced computational performance of machine learning based
interatomic potentials, Phys. Rev. B 100, 024112 (2019).

[41] M. J. Willatt, F. Musil, and M. Ceriotti, Atom-density repre-
sentations for machine learning, J. Chem. Phys. 150, 154110
(2019).

[42] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi,
and P. Marquetand, wACSF–Weighted atom-centered symme-
try functions as descriptors in machine learning potentials,
J. Chem. Phys. 148, 241709 (2018).

[43] N. Artrith, A. Urban, and G. Ceder, Efficient and accurate
machine-learning interpolation of atomic energies in composi-
tions with many species, Phys. Rev. B 96, 014112 (2017).

[44] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J.
Schmidhuber, Exponential natural evolution strategies, in Pro-
ceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’10 (ACM Press, New
York, 2010), pp. 393–400.

[45] J. Tersoff, Modeling solid-state chemistry: Interatomic po-
tentials for multicomponent systems, Phys. Rev. B 39, 5566
(1989).

[46] Z. Fan, Y. Wang, X. Gu, P. Qian, Y. Su, and T. Ala-Nissila,
A minimal tersoff potential for diamond silicon with improved
descriptions of elastic and phonon transport properties, J. Phys.:
Condens. Matter 32, 135901 (2019).

[47] A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine
Learning a General-Purpose Interatomic Potential for Silicon,
Phys. Rev. X 8, 041048 (2018).

[48] V. L. Deringer, M. A. Caro, and G. Csányi, A general-purpose
machine-learning force field for bulk and nanostructured phos-
phorus, Nat. Commun. 11, 5461 (2020).

[49] P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi, and A.
Michaelides, An accurate and transferable machine learning
potential for carbon, J. Chem. Phys. 153, 034702 (2020).

[50] H. Muhli, X. Chen, A. P. Bartók, P. Hernández-León, G. Csányi,
T. Ala-Nissila, and M. A. Caro, Machine learning force fields
based on local parametrization of dispersion interactions: Ap-
plication to the phase diagram of C60, Phys. Rev. B 104, 054106
(2021).

[51] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[52] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, QUANTUM ESPRESSO: A modular and
open-source software project for quantum simulations of ma-
terials, J. Phys.: Condens. Matter 21, 395502 (2009).

[53] Z. Fan, Inputs and outputs of NEP in GPUMD (2021).
[54] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient

Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
[55] M. Schlipf and F. Gygi, Optimization algorithm for the genera-

tion of ONCV pseudopotentials, Comput. Phys. Commun. 196,
36 (2015).

[56] F. Eriksson, E. Fransson, and P. Erhart, The Hiphive package
for the extraction of high-order force constants by machine
learning, Adv. Theor. Simul. 2, 1800184 (2019).

[57] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[58] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[59] Z. Zeng, C. Zhang, Y. Xia, Z. Fan, C. Wolverton, and Y. Chen,
Nonperturbative phonon scatterings and the two-channel ther-
mal transport in Tl3VSe4, Phys. Rev. B 103, 224307 (2021).

[60] D. Lu, W. Jiang, Y. Chen, L. Zhang, W. Jia, H. Wang, and
M. Chen, DP Train, then DP Compress: Model compression in
deep potential molecular dynamics, arXiv:2107.02103.

[61] G. C. Sosso, D. Donadio, S. Caravati, J. Behler, and M.
Bernasconi, Thermal transport in phase-change materials from
atomistic simulations, Phys. Rev. B 86, 104301 (2012).

[62] D. Campi, D. Donadio, G. C. Sosso, J. Behler, and M.
Bernasconi, Electron-phonon interaction and thermal bound-
ary resistance at the crystal-amorphous interface of the phase
change compound GeTe, J. Appl. Phys. 117, 015304 (2015).

[63] E. Bosoni, D. Campi, D. Donadio, G. C. Sosso, J. Behler, and
M. Bernasconi, Atomistic simulations of thermal conductivity
in GeTe nanowires, J. Phys. D 53, 054001 (2019).

[64] C. Mangold, S. Chen, G. Barbalinardo, J. Behler, P. Pochet, K.
Termentzidis, Y. Han, L. Chaput, D. Lacroix, and D. Donadio,
Transferability of neural network potentials for varying sto-
ichiometry: Phonons and thermal conductivity of MnxGey

compounds, J. Appl. Phys. 127, 244901 (2020).
[65] Y. Huang, J. Kang, W. A. Goddard, and L.-W. Wang, Density

functional theory based neural network force fields from energy
decompositions, Phys. Rev. B 99, 064103 (2019).

[66] X. Qian, S. Peng, X. Li, Y. Wei, and R. Yang, Thermal conduc-
tivity modeling using machine learning potentials: application
to crystalline and amorphous silicon, Mater. Today Phys. 10,
100140 (2019).

[67] R. Li, E. Lee, and T. Luo, A unified deep neural network
potential capable of predicting thermal conductivity of silicon
in different phases, Mater. Today Phys. 12, 100181 (2020).

[68] M. Wen and E. B. Tadmor, Hybrid neural network potential for
multilayer graphene, Phys. Rev. B 100, 195419 (2019).

[69] C. Zhang and Q. Sun, Gaussian approximation potential for
studying the thermal conductivity of silicene, J. Appl. Phys.
126, 105103 (2019).

[70] P. Korotaev, I. Novoselov, A. Yanilkin, and A. Shapeev, Access-
ing thermal conductivity of complex compounds by machine
learning interatomic potentials, Phys. Rev. B 100, 144308
(2019).

[71] X. Gu and C. Y. Zhao, Thermal conductivity of single-layer
MoS2(1−x)Se2x alloys from molecular dynamics simulations
with a machine-learning-based interatomic potential, Comput.
Mater. Sci. 165, 74 (2019).

[72] B. Mortazavi, E. V. Podryabinkin, I. S. Novikov, S. Roche, T.
Rabczuk, X. Zhuang, and A. V. Shapeev, Efficient machine-
learning based interatomic potentialsfor exploring thermal
conductivity in two-dimensional materials, J. Phys.: Mater. 3,
02LT02 (2020).

[73] K. Shimamura, Y. Takeshita, S. Fukushima, A. Koura, and
F. Shimojo, Computational and training requirements for in-
teratomic potential based on artificial neural network for

104309-14

https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1088/2632-2153/abc940
https://doi.org/10.1103/PhysRevB.100.024112
https://doi.org/10.1063/1.5090481
https://doi.org/10.1063/1.5019667
https://doi.org/10.1103/PhysRevB.96.014112
https://doi.org/10.1103/PhysRevB.39.5566
https://doi.org/10.1088/1361-648X/ab5c5f
https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1063/5.0005084
https://doi.org/10.1103/PhysRevB.104.054106
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1088/0953-8984/21/39/395502
https://zenodo.org/record/5109600#.YS8Aaffis2w
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.cpc.2015.05.011
https://doi.org/10.1002/adts.201800184
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.103.224307
http://arxiv.org/abs/arXiv:2107.02103
https://doi.org/10.1103/PhysRevB.86.104301
https://doi.org/10.1063/1.4904910
https://doi.org/10.1088/1361-6463/ab5478
https://doi.org/10.1063/5.0009550
https://doi.org/10.1103/PhysRevB.99.064103
https://doi.org/10.1016/j.mtphys.2019.100140
https://doi.org/10.1016/j.mtphys.2020.100181
https://doi.org/10.1103/PhysRevB.100.195419
https://doi.org/10.1063/1.5119281
https://doi.org/10.1103/PhysRevB.100.144308
https://doi.org/10.1016/j.commatsci.2019.04.025
https://doi.org/10.1088/2515-7639/ab7cbb

NEUROEVOLUTION MACHINE LEARNING POTENTIALS: … PHYSICAL REVIEW B 104, 104309 (2021)

estimating low thermal conductivity of silver chalcogenides,
J. Chem. Phys. 153, 234301 (2020).

[74] K. Shimamura, Y. Takeshita, S. Fukushima, A. Koura, and F.
Shimojo, Estimating thermal conductivity of α-Ag2Se using
ANN potential with Chebyshev descriptor, Chem. Phys. Lett.
778, 138748 (2021).

[75] R. Li, Z. Liu, A. Rohskopf, K. Gordiz, A. Henry, E. Lee,
and T. Luo, A deep neural network interatomic potential for
studying thermal conductivity of β-Ga2O3, Appl. Phys. Lett.
117, 152102 (2020).

[76] H. Liu, X. Qian, H. Bao, C. Y. Zhao, and X. Gu, High-
temperature phonon transport properties of SnSe from machine-
learning interatomic potential, J. Phys.: Condens. Matter 33,
405401 (2021).

[77] E. Minamitani, M. Ogura, and S. Watanabe, Simulating lattice
thermal conductivity in semiconducting materials using high-
dimensional neural network potential, Appl. Phys. Express 12,
095001 (2019).

[78] H. Babaei, R. Guo, A. Hashemi, and S. Lee, Machine-learning-
based interatomic potential for phonon transport in perfect
crystalline Si and crystalline Si with vacancies, Phys. Rev.
Mater. 3, 074603 (2019).

[79] A. Rodriguez, Y. Liu, and M. Hu, Spatial density neural network
force fields with first-principles level accuracy and application
to thermal transport, Phys. Rev. B 102, 035203 (2020).

[80] J. George, G. Hautier, A. P. Bartók, G. Csányi, and V. L.
Deringer, Combining phonon accuracy with high transferability
in Gaussian approximation potential models, J. Chem. Phys.
153, 044104 (2020).

[81] Y.-B. Liu, J.-Y. Yang, G.-M. Xin, L.-H. Liu, G. Csányi, and
B.-Y. Cao, Machine learning interatomic potential developed
for molecular simulations on thermal properties of β-Ga2O3,
J. Chem. Phys. 153, 144501 (2020).

[82] B. Mortazavi, E. V. Podryabinkin, I. S. Novikov, T. Rabczuk,
X. Zhuang, and A. V. Shapeev, Accelerating first-principles
estimation of thermal conductivity by machine-learning inter-
atomic potentials: A MTP/ShengBTE solution, Comput. Phys.
Commun. 258, 107583 (2021).

[83] H. Dong, Z. Fan, L. Shi, A. Harju, and T. Ala-Nissila, Equiv-
alence of the equilibrium and the nonequilibrium molecular
dynamics methods for thermal conductivity calculations: From
bulk to nanowire silicon, Phys. Rev. B 97, 094305 (2018).

[84] X. Gu and R. Yang, First-principles prediction of phononic
thermal conductivity of silicene: A comparison with graphene,
J. Appl. Phys. 117, 025102 (2015).

[85] Y. D. Kuang, L. Lindsay, S. Q. Shi, and G. P. Zheng, Tensile
strains give rise to strong size effects for thermal conductiv-
ities of silicene, germanene and stanene, Nanoscale 8, 3760
(2016).

[86] H. Xie, T. Ouyang, É. Germaneau, G. Qin, M. Hu, and H.
Bao, Large tunability of lattice thermal conductivity of mono-
layer silicene via mechanical strain, Phys. Rev. B 93, 075404
(2016).

[87] B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, and H.
Zhu, Phonon transport properties of two-dimensional group-IV
materials from ab initio calculations, Phys. Rev. B 94, 245420
(2016).

[88] F. H. Stillinger and T. A. Weber, Computer simulation of local
order in condensed phases of silicon, Phys. Rev. B 31, 5262
(1985).

[89] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su,
Thermal conductivity of silicene calculated using an optimized
Stillinger-Weber potential, Phys. Rev. B 89, 054310 (2014).

[90] Y. Xia, Revisiting lattice thermal transport in PbTe: The crucial
role of quartic anharmonicity, Appl. Phys. Lett. 113, 073901
(2018).

[91] V. I. Fedorov and V. I. Machuev, Thermal Conductivity of PbTe,
SnTe and GeTe in the solid and liquid phases, Sov. Phys. Solid
State USSR 11, 1116 (1969).

[92] A. A. El-Sharkawy, A. M. Abou El-Azm, M. I. Kenawy, A. S.
Hillal, and H. M. Abu-Basha, Thermophysical properties of
polycrystalline PbS, PbSe, and PbTe in the temperature range
300–700 K, Int. J. Thermophys. 4, 261 (1983).

[93] V. L. Deringer, N. Bernstein, A. P. Bartók, M. J. Cliffe, R. N.
Kerber, L. E. Marbella, C. P. Grey, S. R. Elliott, and G.
Csányi, Realistic atomistic structure of amorphous silicon from
machine-learning-driven molecular dynamics, J. Phys. Chem.
Lett. 9, 2879 (2018).

[94] W. Lv and A. Henry, Direct calculation of modal contributions
to thermal conductivity via Green-Kubo modal analysis, New J.
Phys. 18, 013028 (2016).

[95] K. Sääskilahti, J. Oksanen, J. Tulkki, A. J. H. McGaughey, and
S. Volz, Vibrational mean free paths and thermal conductivity of
amorphous silicon from non-equilibrium molecular dynamics
simulations, AIP Adv. 6, 121904 (2016).

[96] Z. Fan, P. Hirvonen, L. F. C. Pereira, M. M. Ervasti, K. R. Elder,
D. Donadio, A. Harju, and T. Ala-Nissila, Bimodal grain-size
scaling of thermal transport in polycrystalline graphene from
large-scale molecular dynamics simulations, Nano Lett. 17,
5919 (2017).

104309-15

https://doi.org/10.1063/5.0027058
https://doi.org/10.1016/j.cplett.2021.138748
https://doi.org/10.1063/5.0025051
https://doi.org/10.1088/1361-648x/ac13fd
https://doi.org/10.7567/1882-0786/ab36bc
https://doi.org/10.1103/PhysRevMaterials.3.074603
https://doi.org/10.1103/PhysRevB.102.035203
https://doi.org/10.1063/5.0013826
https://doi.org/10.1063/5.0027643
https://doi.org/10.1016/j.cpc.2020.107583
https://doi.org/10.1103/PhysRevB.97.094305
https://doi.org/10.1063/1.4905540
https://doi.org/10.1039/C5NR08231E
https://doi.org/10.1103/PhysRevB.93.075404
https://doi.org/10.1103/PhysRevB.94.245420
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1103/PhysRevB.89.054310
https://doi.org/10.1063/1.5040887
https://doi.org/10.1007/BF00502357
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1088/1367-2630/18/1/013028
https://doi.org/10.1063/1.4968617
https://doi.org/10.1021/acs.nanolett.7b01742

