posted on 2018-01-22, 00:00authored byAlice
A. Grosch, Stephanie C. C. van der Lubbe, Célia Fonseca Guerra
The nature of resonance-assisted
hydrogen bonds (RAHB) is still
subject of an ongoing debate. We therefore analyzed the σ and
π charge redistributions associated with the formation of intramolecular
hydrogen bonds in malonaldehyde (MA) and its saturated analogue 3-hydroxypropanal
(3-OH) and addressed the question whether there is a resonance assistance
phenomenon in the sense of a synergistic interplay between the σ
and π electron systems. Our quantum chemical calculations at
the BP86/TZ2P level of theory show that the π charge flow is
indeed in line with the Lewis structure as proposed by the RAHB model.
This typical rearrangement of charge is only present in the unsaturated
system, and not in its saturated analogue. Resonance in the π
electron system assists the intramolecular hydrogen bond by reducing
the hydrogen bond distance, and by providing an additional stabilizing
component to the net bonding energy. The σ orbital interaction
plays an important role in the enhanced hydrogen bond strength in
MA as well. However, there is no resonance assistance in the sense
of an interplay between σ charge transfer and π polarization;
σ and π contribute independently from each other.