Supplementary Materials to Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI

Jin Jin, Lin Zhang, Ethan Leng, Gregory J. Metzger, and Joseph S. Koopmeiners

Appendix A: Detailed simulation settings

A.1 Simulation settings for binary PCa classification

As described in Section 4.1 of the main manuscript, the simulated data sets were generated according to model (1):

$$\boldsymbol{w}_{i} \sim \mathcal{MVN}(\boldsymbol{0}, \boldsymbol{C}(\boldsymbol{S}_{i}, \boldsymbol{S}_{i} | \boldsymbol{\theta})), \ c_{ij}^{*} \sim N(q_{r_{ij},0} + w_{ij}, 1),$$

$$c_{ij} = I(c_{ij}^{*} > 0), \ \boldsymbol{e}_{i_{k}}^{k} \sim \mathcal{MVN}(\boldsymbol{0}, \boldsymbol{\Lambda}),$$

$$\boldsymbol{y}_{ij} \stackrel{ind}{\sim} \mathcal{MVN}(\boldsymbol{\mu}_{c_{ij},r_{ij}} + \sum_{k=1}^{K} \boldsymbol{e}_{i_{ij}}^{k} + \boldsymbol{\delta}_{i}, \boldsymbol{\Gamma}_{c_{ij},r_{ij}}).$$
(1)

The model parameters, including the means, $\{\mu_{c,r}, c = 0, 1, r = 0, 1\}$, within-patient covariance, $\{\Gamma_{c_{ij},r_{ij}}, c, r \in \{0,1\}\}$, of the mpMRI parameters, and probit of the cancer prevalence in the PZ and CG, $q_{r_{ii},0}$, were set based on the estimates from the real data. $\mu_{c,r}, c, r \in \{0,1\}$, was set equal to the estimates from the motivating data set. $\Gamma_{c,r}$, $c, r \in \{0, 1\}$, was set equal to 1/1.5 times the estimates from the motivating data set. We varied the values for $q_{r,0}$, r = 0, 1, and Λ to simulate regional heterogeneity of different magnitudes. For moderate regional heterogeneity, we set the cancer prevalence in the PZ and CG to 0.4 and 0.2, respectively, and Λ equal to a $d \times d$ diagonal matrix (d = 4) with diagonal entries 5, 0.18, 0.18, and 0.18. For strong regional heterogeneity, we set the cancer prevalence in the PZ and CG to 0.55 and 0.15, respectively, and Λ equal to a $d \times d$ diagonal matrix with diagonal entries 10, 0.36, 0.36, and 0.36. We also varied $\boldsymbol{\theta} = \{\sigma^2, \phi, \nu\}$ to simulate different spatial correlation structures: for moderate spatial correlation, we set σ^2 (spatial variance) equal to 4, ϕ (range parameter, larger ϕ indicates larger-scale correlation) equal to 0.2, and ν (smoothness parameter, smaller ν indicates larger differentiability) equal to 0.8; for strong spatial correlation, we set $\sigma^2 = 10, \phi = 0.5$, and $\nu = 1.5$.

A.2 Simulation settings for classification of ordinal PCa significance

Regarding the simulation studies for classification of the ordinal clinical significance of PCa, the shapes of the simulated prostate images were still selected with replacement from the images in the motivating data set. Voxel-wise cancer status and mpMRI parameters were simulated according to model (2). We set the between-class boundaries a_1 and a_2 equal to the median and 70-th percentile, respectively, of the simulated G_{ij}^* 's, so as to assign a high prevalence (50%) to the noncancer voxels, a low prevalence (20%) to the clinically significant cancer voxels, and the lowest prevalence (10%) to the clinically insignificant cancer voxels. The generating process for w_i , G_{ij}^* 's, $q_{r,0}$'s, $e_{i_k}^k$'s, δ_i 's and y_{ij} 's was similar to the one in Section 4.1 of the main manuscript, except that y_{ij} was assumed to vary by G_{ij} instead of c_{ij} .

$$\boldsymbol{w}_{i} \sim \mathcal{MVN}(\boldsymbol{0}, \boldsymbol{C}(\boldsymbol{S}_{i}, \boldsymbol{S}_{i} | \boldsymbol{\theta})), \quad G_{ij}^{*} \sim \mathcal{N}(q_{r_{ij},0} + w_{ij}, 1),$$

$$G_{ij} = I(a_{z-1} \leqslant G_{ij}^{*} < a_{z}), \quad \boldsymbol{e}_{i_{k}}^{k} \sim \mathcal{MVN}(\boldsymbol{0}, \boldsymbol{\Lambda}),$$

$$\boldsymbol{y}_{ij} \stackrel{ind}{\sim} \mathcal{MVN}(\boldsymbol{\mu}_{G_{ij},r_{ij}} + \sum_{k=1}^{K} \boldsymbol{e}_{i_{ij}^{k}}^{k} + \boldsymbol{\delta}_{i}, \boldsymbol{\Gamma}_{G_{ij},r_{ij}}).$$
(2)

A.2 Data distribution across different categories of PCa

Figure S1. Voxel-wise distribution of the various mpMRI parameters across Gleason grade groups observed from our motivating dataset.

Figure S2. Voxel-wise distribution of the various mpMRI parameters separately for cancer and non-cancer voxels in our motivating dataset.

Figure S3. Voxel-wise distribution of the various mpMRI parameters of the voxels under different levels of clinical significance of PCa in our motivating dataset. The sample prevalences of clinically insignificant PCa voxels and clinically significant PCa voxels are 0.167.

A.3 Examples of synthetic mpMRI and PCa maps

Figure S4. Example maps of voxel-wise PCa status (column 1) and mpMRI parameters (columns 2-5) for two simulated prostate slices under moderate regional heterogeneity and moderate spatial correlation (see Appendix A.1 for details). In the PCa outcome maps, grey and pink indicate non-cancer and cancer, respectively.

Appendix B: Additional simulation results of binary PCa classification

Base Learner	Mothod	Clas	sification Res	sults
Dase Learner	Method	AUC	S80	S90
	Baseline	.777 (.027)	.599(.051)	.438 (.054)
GLM	SL0	.833 (.004)	.705 (.008)	.553 (.009)
	SL	.848 (.009)	.743 (.066)	.586 (.022)
	Baseline	.780 $(.026)$.603 $(.050)$.442 (.053)
QDA	SL0	.840 $(.004)$.717(.008)	.567 (.009)
	SL	.854 (.009)	.754 (.018)	.598(.021)
	Baseline	.788 (.016)	.616 (.031)	.457 (.033)
RF	SL0	.822 (.004)	.688(.007)	.536(.007)
	SL	.855~(.007)	.757 $(.013)$.601 $(.017)$
	SL0	.841 (.004)	.719 (.007)	.570 (.008)
GLM + QDA + RF	SL	.862 (.006)	.772 (.012)	.618 (.015)
	Baseline	.778 (.034)	.600 (.063)	.439 (.065)
GLM	SL0	.832 $(.006)$.704 (.011)	.551 $(.013)$
	SL	.927 (.008)	.893~(.016)	.790 $(.026)$
	Baseline	.778 (.034)	.600 (.063)	.439 (.064)
QDA	SL0	.839 $(.006)$.715(.010)	.566 $(.012)$
	SL	.930 $(.008)$.899 (.016)	.799 $(.025)$
	Baseline	.788 (.018)	.616 (.035)	.456 (.037)
RF	SL0	.822 $(.005)$.688(.009)	.536 $(.010)$
	SL	.932 (.007)	.903 (.013)	.805 $(.023)$
	SL0	.840 (.005)	.718 (.009)	.569 (.011)
GLM + QDA + RF	SL	.942 (.005)	.921 (.010)	.833 (.017)
	Base Learner GLM QDA RF GLM + QDA + RF QDA RF GLM + QDA + RF	Base LearnerMethodGLMBaseline SLO SLQDABaseline SLO SLRFSLO SLGLM + QDA + RFSLO SLQDABaseline SLO SLQDASLO SLGLM + QDA + RFBaseline SLO SLQDABaseline SLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLQDASLO SLSLO SLSLO SLGLM + QDA + RFSLO SLGLM + QDA + RFSLO SL	$\begin{array}{c} \mbox{Base Learner} & \mbox{Method} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} \mbox{Base Learner} & \mbox{Method} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$

Table S1. Simulation results of binary PCa classification under moderate regional heterogeneity.

Appendix C: Additional results on the ordinal PCa outcome

C.1 Simulation studies

Table S2 reports simulation results of models Baseline, $SL0 + W_1$, $SL + W_1$, $SL0 + W_2$ and $SL + W_2$ assuming more moderate between-voxel correlation than that in Tables 3 using GLM as the base learner. Table S3 reports the simulation results assuming weaker regional heterogeneity than that in Tables 3 using GLM as the base learner. Tables S4 and S5 report simulation results assuming moderate and strong regional heterogeneity, respectively, using QDA as the base learner. Tables S6 and S7 report simulation results assuming that RF is the base learner. Tables S8 and S9 report simulation results when combining the multi-resolution GLM, QDA and RF-based learners.

Mathad	True PCa	Classi	ified Cat	egory	FDD		Overall
Method	Category	1	2	3	FPK	FDR	Error Rate
	1	59491	0	9485	0.14	0.39	
Baseline	2	16928	0	10662	1.00	NA	0.42
	3	20578	0	20808	0.50	0.49	
	1	60466	0	8511	0.12	0.34	
$\mathrm{SL0}+W_1$	2	14879	0	12711	1.00	NA	0.38
	3	15913	0	25473	0.38	0.45	
	1	61569	0	7408	0.11	0.32	
${ m SL}+W_1$	2	16601	0	10989	1.00	NA	0.34
	3	11735	0	29651	0.28	0.38	
	1	47771	13411	7794	0.31	0.25	
$SL0 + W_2$	2	7544	7940	12106	0.71	0.73	0.42
	3	7994	8589	24803	0.40	0.45	
	1	48110	15479	5388	0.30	0.21	
$\mathrm{SL}+W_2$	2	8677	9910	9004	0.64	0.72	0.39
	3	3990	10586	26810	0.35	0.35	

Table S2. Simulation results for classification of the ordinal clinical significance of PCa assuming moderate between-voxel correlation ($\sigma^2 = 4$, $\phi = 0.2$, $\nu = 0.8$) and strong regional heterogeneity using GLM as the base learner.

Spatial	Mathad	True PCa	Class	Classified Category		FDD		Overall
Correlation	Method	Category	1	2	3	ΓIΠ	FDR	Error Rate
		1	60524	0	9120	0.13	0.36	
	Baseline	2	16293	0	11564	1.00	NA	0.40
		3	18495	0	23292	0.44	0.47	
		1	61149	0	8495	0.12	0.33	
	${ m SL0}+W_1$	2	15064	0	12793	1.00	NA	0.37
		3	15673	0	26114	0.38	0.45	
Moderate		1	62275	0	7370	0.11	0.31	
$\sigma^2 = 4$	$\mathrm{SL}+W_1$	2	16593	0	11265	1.00	NA	0.33
$\phi = 0.2$		3	10920	0	30867	0.26	0.38	
$\nu = 0.8$								
		1	48481	13529	7635	0.30	0.24	
	${ m SL0}+W_2$	2	7616	8199	12042	0.71	0.73	0.41
		3	7914	8589	25284	0.39	0.44	
		1	49119	15442	5083	0.29	0.20	
	$\mathrm{SL}+W_2$	2	8465	10511	8882	0.62	0.71	0.37
		3	3528	10717	27542	0.34	0.34	
		1	60165	0	9323	0.13	0.37	
	Baseline	2	16341	0	11454	1.00	NA	0.40
		3	18520	0	23174	0.44	0.47	
		1	60923	0	8561	0.12	0.34	
	${ m SL0}+W_1$	2	15149	0	12646	1.00	NA	0.38
		3	15760	0	25933	0.38	0.45	
Strong		1	63432	3336	2720	0.09	0.20	
$\sigma^2 = 10$	$\mathrm{SL}+W_1$	2	12317	5206	10272	0.81	0.57	0.25
$\phi = 0.5$		3	3160	3572	34962	0.16	0.27	
$\nu = 1.5$								
		1	48395	13376	7718	0.30	0.24	
	$\mathrm{SL0}+W_2$	2	7695	8090	12010	0.71	0.73	0.41
		3	7901	8472	25321	0.39	0.44	
		1	54941	12961	1587	0.21	0.11	
	$\mathrm{SL}+W_2$	2	6216	14062	7516	0.49	0.61	0.27
		3	916	8999	31778	0.24	0.22	

Table S3. Simulation results for classification of the ordinal clinical significance of PCa assuming moderate regional heterogeneity using GLM as the base learner.

Spatial	Method	True PCa	Class	ified Cat	egory	FPR	EDD	Overall
Correlation		Category	1	2	3		FDR	Error Rate
		1	59145	1870	8630	0.15	0.35	
	Baseline	2	14948	3272	9637	0.88	0.52	0.39
		3	17053	1691	23043	0.45	0.44	
		1	61215	0	8429	0.12	0.33	
	$SL0 + W_1$	2	16169	0	11688	1.00	NA	0.36
		3	14361	0	27425	0.34	0.42	
Moderate		1	62875	0	6770	0.10	0.30	
$\sigma^2 = 4$	$\mathrm{SL}+W_1$	2	16572	0	11285	1.00	NA	0.32
$\phi = 0.2$	· 1	3	9894	0	31893	0.24	0.36	
$\nu = 0.8$								
		1	49249	13657	6738	0.29	0.24	
	$\mathrm{SL0}+W_2$	2	8474	10047	9337	0.64	0.69	0.39
		3	7075	9091	25620	0.39	0.39	
		1	10.001	15050	1901	0.00	0.10	
	AT . II	1	49691	15652	4301	0.29	0.19	0.00
	$SL + W_2$	2	8331	11013	8513	0.60	0.70	0.36
		3	3180	10332	28274	0.32	0.31	
		1	58734	1898	8856	0.15	0.35	
	Baseline	2	14991	3259	9545	0.88	0.53	0.39
		3	17068	1762	22862	0.45	0.45	
		1	60064	0	0505	0.19	0.22	
	SIO + W	1	16197	0	0020 11669	0.12	0.55 N A	0.27
	$SL0 + W_1$	2	10127	0	27270	1.00	NA 0.42	0.37
		ა	14424	0	21210	0.55	0.43	
Strong		1	63617	3810	2062	0.08	0.19	
$\sigma^2 = 10$	$\mathrm{SL} + W_1$	2	11909	6480	9406	0.77	0.55	0.24
$\phi = 0.5$		3	2590	4047	35056	0.16	0.25	
$\nu = 1.5$								
		1	49161	13433	6895	0.29	0.24	
	$\mathrm{SL0}+W_2$	2	8453	9915	9427	0.64	0.69	0.39
		3	7104	8867	25723	0.38	0.39	
		1	EE700	10400	1950	0.90	0.11	
		1	00198 6166	17432	1259	0.20	0.11	0.96
	$SL + W_2$	2	805 0100	1400U 9541	1009 20250	0.48	0.59	0.26
		ა	002	0041	əzəə0	0.22	0.20	

Table S4. Simulation results for classification of the ordinal clinical significance of PCa assuming moderate regional heterogeneity using QDA as the base learner.

Spatial	Mathad	True PCa	Class	ified Cat	egory	FDD		Overall
Correlation	Method	Category	1	2	3	ΓΓΛ	FDR	Error Rate
		1	58424	1265	9287	0.15	0.38	
	Baseline	2	15978	1952	9660	0.93	0.55	0.41
		3	19307	1115	20964	0.49	0.48	
		-		-				
		1	60502	0	8075	0.12	0.34	
	${ m SL0}+W_1$	2	15865	0	11725	1.00	NA	0.37
		3	14704	0	26682	0.36	0.43	
Moderate		2	16347	0	11243	1.00	NA	
$\sigma^2 = 4$		3	10320	0	31066	0.25	0.37	
$\phi = 0.2$								
$\nu = 0.8$		1	48577	13453	6947	0.30	0.24	
	$\mathrm{SL0}+W_2$	2	8433	9595	9562	0.65	0.70	0.40
		3	7236	9099	25051	0.39	0.40	
		1	48046	16241	4690	0.30	0.20	
	$\mathrm{SL}+W_2$	2	8343	10462	8785	0.62	0.72	0.37
		3	3449	10129	27808	0.33	0.33	
		1	58969	1544	9525	0.16	0.37	
	Baseline	2	16008	2342	9665	0.92	0.56	0.41
		3	19251	1374	21398	0.49	0.47	
		1	61263	0	8775	0.13	0.34	
	$\mathrm{SL0}+W_1$	2	16173	0	11842	1.00	NA	0.37
		3	15106	0	26917	0.36	0.43	
Strong		1	64151	3480	2407	0.08	0.20	
$\sigma^2 = 10$	$\mathrm{SL}+W_1$	2	12569	5579	9868	0.80	0.57	0.25
$\phi = 0.5$		3	3150	3789	35085	0.16	0.26	
$\nu = 1.5$								
		1	49228	13479	7331	0.30	0.25	
	$\mathrm{SL0}+W_2$	2	8584	9621	9809	0.66	0.70	0.40
		3	7515	8947	25561	0.39	0.40	
				105.55				
		1	55376	13242	1420	0.21	0.12	a a -
	$SL + W_2$	2	6405	14309	7301	0.49	0.61	0.27
		3	953	8972	32097	0.24	0.21	

Table S5. Simulation results for classification of the ordinal clinical significance of PCa assuming strong regional heterogeneity using QDA as the base learner.

Spatial Correlation	Method	True PCa Category	Class 1	ified Cat	egory 3	FPR	FDR	Overall Error Rate
		1	56143	4822	8679	0.19	0.33	
	Baseline	2	13031	4622 6568	8258	0.13 0.76	0.55 0.58	0.39
	Dasenne	3	15148	4406	22234	0.10 0.47	0.30 0.43	0.00
		0	10140	1100	22204	0.11	0.40	
		1	60782	0	8862	0.13	0.34	
	$SL0 + W_1$	2	16504	0	11354	1.00	NA	0.37
	· 1	3	15303	0	26484	0.37	0.43	
Moderate		1	62777	0	6867	0.10	0.30	
$\sigma^2 = 4$	$\mathrm{SL}+W_1$	2	16573	0	11284	1.00	NA	0.32
$\phi = 0.2$		3	9982	0	31805	0.24	0.36	
$\nu = 0.8$		4	10000	100.40		0.00	0.00	
		1	48698	13242	7705	0.30	0.26	0.40
	$SL0 + W_2$	2	8884	9325	9649	0.67	0.70	0.40
		3	7962	8508	25317	0.39	0.41	
		1	49647	15591	4406	0.29	0.19	
	$SL + W_2$	2	8367	10916	4400 8574	0.20 0.61	$0.10 \\ 0.70$	0.36
	$SE + H_2$	- 3	3225	10036	28226	0.32	0.32	0.00
		1	FF7F4	4002	0091	0.90	0.24	
	D 1'	1	55754 19000	4903	8831	0.20	0.34	0.20
	Baseline	2	17110	0020	8170	0.70	0.59	0.39
		3	19118	4443	22131	0.47	0.43	
		1	60582	0	8907	0.13	0.34	
	${ m SL0}+W_1$	2	16499	0	11296	1.00	NA	0.37
		3	15317	0	26376	0.37	0.43	
Strong		1	63664	3787	2038	0.08	0.18	
$\sigma^2 = 10$	$\mathrm{SL}+W_1$	2	11869	6482	9444	0.77	0.55	0.24
$\phi = 0.5$		3	2550	4032	35111	0.16	0.25	
$\nu = 1.5$								
	GT 0 	1	48635	13094	7760	0.30	0.26	
	$SL0 + W_2$	2	8883	9230	9682	0.67	0.70	0.40
		3	7940	8335	25418	0.39	0.41	
		1	56024	19919	1941	0.10	0.11	
	SI + W	1	6108	14210 14511	1241 7085	0.19	0.11	0.26
	$SL + W_2$	∠ 2	708	2401 8409	20409	0.40	0.09	0.20
		9	190	0492	JZ405	0.22	0.20	

Table S6. Simulation results for classification of the ordinal clinical significance of PCa assuming moderate regional heterogeneity using RF as the base learner.

Spatial Correlation	Method	True PCa Category	Class 1	ified Cat	egory 3	FPR	FDR	Overall Error Rate
		1	55253	4842	8882	0.20	0.34	
	Baseline	1	12821	6795	7073	0.20 0.75	$0.54 \\ 0.58$	0.30
	Daschille	2	15366	1384	21635	0.15	0.50	0.00
		5	10000	4004	21055	0.40	0.44	
		1	60012	0	8965	0.13	0.35	
	$SL0 + W_1$	$\overline{2}$	16254	Õ	11336	1.00	NA	0.38
		3	15401	Ő	25985	0.37	0.44	0.00
		-		-			-	
Moderate		1	61693	0	7284	0.11	0.30	
$\sigma^2 = 4$	$SL + W_1$	2	16267	0	11323	1.00	NA	0.33
$\phi = 0.2$	_	3	10211	0	31175	0.25	0.37	
$\nu = 0.8$								
		1	48080	12942	7955	0.30	0.26	
	$\mathrm{SL0}+W_2$	2	8862	8941	9787	0.68	0.70	0.41
		3	8009	8413	24964	0.40	0.42	
		1	47961	16150	4866	0.30	0.20	
	$SL + W_2$	2	8354	10350	8885	0.62	0.72	0.37
		3	3419	10004	27964	0.32	0.33	
		1	55815	5060	9164	0.20	0.34	
	Baseline	2	13061	6857	8097	0.20 0.76	0.51	0.40
	Dasenne	3	15544	4493	21986	0.10	0.30 0.44	0.10
		0	10011	1100	21000	0.10	0.11	
		1	60899	0	9139	0.13	0.35	
	${ m SL0}+W_1$	2	16645	0	11370	1.00	NA	0.38
	· 1	3	15767	0	26256	0.38	0.44	
Strong		1	64120	3433	2485	0.08	0.19	
$\sigma^2 = 10$	$\mathrm{SL} + W_1$	2	12469	5468	10078	0.80	0.57	0.25
$\phi = 0.5$		3	3028	3570	35425	0.16	0.26	
$\nu = 1.5$								
		1	48754	13095	8189	0.30	0.26	
	$\mathrm{SL0}+W_2$	2	9045	9046	9923	0.68	0.70	0.41
		3	8214	8339	25470	0.39	0.42	
		1	55396	13190	1452	0.21	0.12	
	$SL + W_2$	2	6388	14191	7435	0.49	0.61	0.27
		3	933	8656	32435	0.23	0.21	

Table S7. Simulation results for classification of the ordinal clinical significance of PCa assuming strong regional heterogeneity using RF as the base learner.

Spatial	M - + 1	True PCa	Class	ified Cat	egory	EDD		Overall
Correlation	Method	Category	1	2	3	FPK	FDR	Error Rate
		1	61024	0	8621	0.12	0.33	
	${ m SL0}+W_1$	2	16180	0	11677	1.00	NA	0.36
		3	14085	0	27702	0.34	0.42	
		1	63155	0	6489	0.09	0.29	
	$\mathrm{SL}+W_1$	2	16440	0	11417	1.00	NA	0.31
Moderate	-	3	9206	0	32581	0.22	0.35	
$\sigma^2 = 4$ $\phi = 0.2$		1	48114	14220	7311	0.31	0.23	
$\nu = 0.8$	$SL0 + W_2$	$\frac{1}{2}$	8102	10361	9395	0.63	0.69	0.39
	10 <u> </u>	3	6584	8927	26276	0.37	0.39	
		1	50473	15254	3918	0.28	0.18	
	$SL + W_2$	2	8164	11347	8347	0.59	0.69	0.35
		3	2890	10245	28651	0.31	0.30	
		1	60814	0	8675	0.12	0.33	
	${ m SL0}+W_1$	2	16169	0	11626	1.00	NA	0.36
		3	14171	0	27522	0.34	0.42	
		1	63582	4570	1337	0.09	0.16	
	${ m SL}+W_1$	2	10582	8792	8421	0.68	0.51	0.22
Strong		3	1605	4696	35392	0.15	0.22	
$\sigma^2 = 10$ $\phi = 0.5$		1	48102	14000	7387	0.31	0.23	
$\nu = 1.5$	$SL0 + W_2$	2	8122	10252	9421	0.63	0.69	0.39
$\nu = 1.5$	2	3	6620	8765	26308	0.37	0.39	
		1	57296	11324	869	0.18	0.10	
	$SL + W_2$	$\frac{1}{2}$	5793	15441	6561	0.44	0.55	0.24
		3	552	7890	33251	0.20	0.18	

Table S8. Simulation results of GLM + QDA + RF for classifying the ordinal clinical significance of PCa assuming moderate regional heterogeneity.

Spatial	Mathad	True PCa	Class	ified Cat	egory	FDD		Overall
Correlation	Method	Category	1	2	3	I'I IU	FDR	Error Rate
		1	60292	0	8685	0.13	0.33	
	${ m SL0}+W_1$	2	15868	0	11722	1.00	NA	0.37
	-	3	14320	0	27065	0.35	0.43	
		1	COT 40	0	C 490	0.00	0.90	
		1	02048	0	0429 11202	0.09	0.29 NA	0.91
Madamata	$SL + W_1$	2	0104	1	11393 20001	1.00	NA 0.26	0.51
$\sigma^2 - 4$		9	9104	0	32281	0.22	0.50	
$\phi = 0.2$		1	47441	14005	7531	0.31	0.24	
$\nu = 0.8$	$\mathrm{SL0}+W_2$	2	8083	9894	9613	0.64	0.70	0.40
		3	6673	8904	25809	0.38	0.40	
		1	49966	15108	3903	0.28	0.18	
	$\mathrm{SL}+W_2$	2	8093	11104	8393	0.60	0.69	0.35
		3	2888	10060	28438	0.31	0.30	
		1	61141	0	8897	0.13	0.34	
	${ m SL0}+W_1$	2	16245	0	11770	1.00	NA	0.35
		3	14734	0	27289	0.35	0.43	
			01151	1 - 1 -	10.40	0.00	0.10	
		1	04154 10001	4545	1340	0.08	0.16	0.02
C+	$SL + W_1$	2	10801	8734	8480 25659	0.69	0.51	0.23
$\sigma^2 = 10$		3	1080	4079	30008	0.15	0.22	
$\phi = 0.5$		1	48144	14103	7791	0.31	0.24	
$ \psi = 0.5 \\ \nu = 1.5 $	$SL0 + W_2$	2	8256	10020	9738	0.64	0.70	0.40
		3	6937	8839	26247	0.38	0.40	
		1	57678	11490	870	0.18	0.10	
	$SL + W_2$	2	5943	15471	6601	0.45	0.56	0.24
		3	586	7911	33525	0.20	0.18	

Table S9. Simulation results of GLM + QDA + RF for classifying the ordinal clinical significance of PCa assuming strong regional heterogeneity.

C.2 Application to Patient Data

Tables S10 and S11 report the ordinal classification results on patient data using QDA and RF, respectively, as the base learner. Table S12 reports the ordinal classification results on patient data when combining the multi-resolution GLM, QDA and RF together. Each Table reports the results using either the predicted probabilities for the first two categories or the classified cancer categories from the stage-one multi-resolution base learners as the covariates for the stage-two model in the proposed super learner.

Stage-one Output	Method	True PCa Category	Classi 1	fied Cate 2	egory 3	FPR	FDR	Overall Error Rate
			1	2	3			
		1	87136	297	1554	0.021	0.152	
	Baseline	2	5891	10	342	0.998	0.975	0.168
		3	9782	90	1835	0.843	0.508	
		1	97515	0	1479	0.017	0 155	
	$SIO + W_{c}$	1	5037	0	306	1.000	0.155 N A	0.167
		2	10136	0	1571	0.866	0.531	0.107
		5	10130	0	1071	0.800	0.001	
Probabilities		1	87952	0	1035	0.012	0.146	
for the First	$\mathrm{SL}+W_1$	2	5984	0	259	1.000	NA	0.152
Two Categories		3	9011	0	2696	0.770	0.324	
		1	65662	13705	0530	0 262	0.086	
	$SI0 + W_{c}$	1	2484	13795	9000	0.202	0.080 0.025	0 391
	$SL0 \pm W_2$	2	2404 3702	2344	2441 5661	0.750	0.925 0.670	0.521
		5	5102	2044	5001	0.010	0.019	
		1	64615	17302	7070	0.274	0.080	
	$\mathrm{SL}+W_2$	2	2590	1733	1920	0.722	0.921	0.324
	_	3	3000	2768	5939	0.493	0.602	
		1	87136	297	1554	0.021	0.152	
	Baseline	2	5891	10	342	0.998	0.975	0.168
		3	9782	90	1835	0.843	0.508	
		1	07491	0	1550	0.017	0.150	
	$\mathbf{SIO} + \mathbf{W}$	1	57431 5946	0	1000	0.017	0.130 N A	0 169
	$SL0 + W_1$	2	0590	0	১৪7 ১৭০৮	1.000	NA 0.470	0.105
		J	9082	0	2120	0.818	0.479	
		1	87684	0	1303	0.015	0.146	
	${ m SL} + W_1$	2	6111	0	132	1.000	NA	0.153
Categories		3	8842	0	2865	0.755	0.334	
		1	00490	1 400	F140	0.074	0.110	
	CLO + W	1	82439 4245	1400	5148 1971	0.074	0.118	0.199
	$SL0 + W_2$	2	4343 6606	021 460	13/1	0.910	0.779	0.182
		ა	0090	460	4551	0.011	0.589	
		1	76014	8874	4099	0.146	0.088	
	$\mathrm{SL}+W_2$	2	3397	1764	1082	0.717	0.870	0.227
		3	3915	2946	4846	0.586	0.517	

Table S10. Ordinal classification results on patient data using QDA as the base learner.

Stage-one	Method	True PCa	Classi	fied Cate	egory	FPR		Overall
Output	Method	Category	1	2	3	1110	FDR	Error Rate
		1	84951	1021	3015	0.045	0.143	
	Baseline	2	5511	169	563	0.973	0.898	0.180
		3	8719	470	2518	0.785	0.587	
		1	87393	0	1594	0.018	0.146	
	$SL0 + W_1$	2	5833	0	410	1.000	NA	0.158
		3	9113	0	2594	0.778	0.436	
		1	87309	0	1678	0.019	0.125	
Probabilities	$\mathrm{SL}+W_1$	$\frac{1}{2}$	5970	Õ	273	1.000	NA	0.134
for the First		3	6456	Õ	5251	0.551	0.271	0.202
Two Categories		÷	0 - 0 0	Ŭ		0.00-		
Ũ		1	65908	13174	9905	0.259	0.086	
	${ m SL0}+W_2$	2	3206	1291	1746	0.793	0.923	0.311
		3	2977	2385	6345	0.458	0.647	
		1	64888	17586	6513	0.271	0.050	
	$\mathrm{SL}+W_2$	2	2304	2545	1394	0.592	0.888	0.295
		3	1100	2626	7981	0.318	0.498	0.134 0.311 0.295 0.180 0.160
		1	84927	1037	3023	0.046	0.143	
	Baseline	2	5475	172	596	0.972	0.898	0.180
		3	8671	481	2555	0.782	0.586	
		1	87495	0	1492	0.017	0.149	
	$SL0 + W_1$	2	5964	0	279	1.000	NA	0.160
		3	9363	0	2344	0.800	0.430	
		1	87515	0	1472	0.017	0.132	
	$\mathrm{SL}+W_1$	2	6115	Õ	128	1.000	NA	0.139
Categories		3	7197	0	4510	0.615	0.262	
0								
		1	78988	2218	7781	0.112	0.115	
	$\mathrm{SL0}+W_2$	2	4558	305	1380	0.951	0.903	0.209
		3	5683	687	5337	0.544	0.633	
			Hoccos	10000	10-0	0.010	0.001	
		1	70088	13920	4979	0.212	0.064	0.049
	$SL + W_2$	2	3199	1770	1274	0.716	0.906	0.263
		3	1610	3141	6956	0.406	0.473	

Table S11. Ordinal classification results on patient data using RF as the base learner.

Stage-one	Mothod	True PCa	Classi	fied Cate	egory	FDD		Overall
Output	method	Category	1	2	3	ΓIΙ	FDR	Error Rate
		1	86704	0	2283	0.026	0.141	
	${ m SL0} + W_1$	2	5865	0	378	1.000	NA	0.158
		3	8381	0	3326	0.716	0.444	
		1	00050	0	0000	0.000	0.105	
		1	86358	0	2629	0.030	0.125	0 1 40
	$SL + W_1$	2	6023	0	220	1.000	NA	0.143
Drobabilition		3	6369	0	5338	0.544	0.348	
for the First		1	66003	15079	7905	0.258	0.076	
Two Categories	$SL0 + W_2$	2	2487	2004	1752	0.679	0.897	0.304
		3	2931	2318	6458	0.448	0.599	0.001
		1	66130	16911	5946	0.257	0.058	
	$\mathrm{SL}+W_2$	2	2600	2826	817	0.547	0.877	0.290
	_	3	1456	3266	6985	0.403	0.492	
		1	87613	0	1374	0.015	0.146	
	${ m SL0}+W_1$	2	5944	0	299	1.000	NA	0.156
		3	9016	0	2691	0.770	0.383	
		1	86699	0	2288	0.026	0.131	
	${ m SL}+W_1$	2	6090	0	153	1.000	NA	0.145
		3	6989	0	4718	0.597	0.341	
Catagoria		1	70000	4002	5006	0 119	0 100	
Categories	SIO + W	1	10090	4095	1078	0.113 0.877	0.109 0.873	0.206
	$SL0 + W_2$	2	4090	1109	5252	0.677	0.673	0.200
		ა	9209	1192	9292	0.001	0.074	
		1	71464	13560	3963	0.219	0.077	
	$\mathrm{SL}+W_2$	2	3573	1909	761	0.662	0.893	0.266
	_	3	2664	2589	6454	0.411	0.418	

Table S12. Ordinal classification results for GLM + QDA + RF on patient data.