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Abstract 

This paper presents a study of moisture absorption-desorption effects in single lap 

adhesive joints. Experiments were carried out to characterise the moisture uptake of the 

single part epoxide adhesive, FM73. Tensile testing of single lap joints manufactured 

from aluminium alloy 2024 T3 and O and FM73 adhesive was carried out after the 

joints were exposed to different conditioning environments. The experimental results 

revealed that the failure strength of the single lap joints with 2024 T3 adherends 

progressively degraded with time when conditioned at 50°C, immersed in water. 

However, the joint strength almost completely recovered after moisture was desorbed. 

The single lap joints with 2024 O adherends showed decreased strength for 28 days of 

conditioning, after which strength recovered, reaching a plateau after 56 days. Again, 

strength almost completely recovered on desorption of moisture. The strength recovery 

of the joints, after desorption of moisture, showed that the degradation of the adhesive 

was largely reversible. Analysis of the failure surfaces revealed that the dry joints failed 

cohesively in the adhesive layer and that the failure path moved towards the interface 

after conditioning. The failure mode then reverted back to cohesive failure after 
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moisture desorption. 

Keywords: Epoxy/Epoxides (A),  Durability (P), Aluminium and alloys (S), Moisture 
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1. Introduction 

The degradation of adhesively bonded joints through the effects of moisture is one of 

the major concerns affecting their wide implementation in structure applications. 

Moisture ingress in an adhesive joint with non-absorbing adherends may occur through 

the bulk adhesive and in the interfacial region between adhesive and the adherends. The 

later is sometimes referred to as the “interphase”. Moisture influences the adhesive by 

plasticisation and swelling [1], which may decrease joint strength [2]. In addition, water 

can disrupt interfacial bonds in a causing non-reversible damage, as predicted by the 

theories of adhesion, or cause failure by corrosion of the underlying metal substrate. 

Fickian diffusion has been used by researchers to predict moisture concentration in 

adhesives [3, 4]. In Fickian diffusion it is assumed that the moisture flux is directly 

proportional to the concentration gradient in a material. The solution to the Fickian 

diffusion for a plane sheet of thickness 2 l  was presented by Crank [5] and is given by: 
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where tC is the moisture concentration at any time interval t , C∞ is the saturated 

moisture concentration, D is the diffusion coefficient and x is the spatial coordinate. 

The mass uptake tM at any time interval t , obtained by integrating Equation (1) over 

the domain, is given by: 
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where M∞  is the saturated mass uptake. Fickian diffusion is observed in polymers well 

above their glass transition temperature (Tg) [6]. At temperatures below Tg, a non-

Fickian moisture uptake is observed, where the diffusion process deviates from Fickian 

behaviour after initial uptake. Several models have been suggested to predict non-

Fickian uptake behaviour [7-10], including a dual Fickian model, which is based on two 

Fickian processes [11]. The two mechanisms of the dual Fickian model are considered 

to be working in parallel, where the concentration at any point may be determined by:  
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where 1C ∞ and 2C ∞  are fractions of saturated concentration C∞ , 1D  and 2D are the 

diffusion coefficients and l is the length of the diffusion path. The mass uptake for the 

dual Fickian model at any time t  is given by: 
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where 1M ∞ and 2M ∞  are fractions of saturated mass uptake M∞ . 



4 
 

In the case of epoxy adhesives, it has been suggested that moisture absorption produces 

irreversible damage to the adhesive and that the strength of the adhesive is not fully 

recoverable after removal of moisture. For example, Apicella et al [12] proposed that 

the moisture diffusion caused irreversible damage by producing microcavities in the 

adhesive. Hand et al [2] also considered that microcavities were responsible for the loss 

of cohesive strength in inherently tough adhesives. Lin and Chen [13] suggested that 

hygrothermal ageing is irreversible and lowers the glass transition temperature (Tg) of 

DGEBA/DDA adhesive systems by about 20°C. It was concluded that the moisture 

absorption had permanently damaged the epoxy system. Bao et al [14] studied moisture 

absorption and hygrothermal aging in a bismaleimide resin. It was suggested that 

moisture caused plasticisation and swelling of the resin, resulting in a more open and 

accessible network structure. On desorption, the plasticisation was removed but it was 

shown that the structural relaxation was irreversible upon drying of water. 

The decrease in mechanical properties of the adhesive on absorption of moisture is also 

accompanied by a loss of joint strength [15]. The joint strength does not decrease to 

zero but becomes constant at a certain level [16]. Minford [1] showed that the shear 

strength of aluminium / epoxy joints recovered when exposed to 5% and 100% RH and 

then dried at 90°C. Similarly, Comyn and co-workers [17] conditioned aluminium 

joints bonded with modified epoxide adhesives at 50°C, 100% relative humidity (RH) 

for 5000 hours and then partially dried them at 50% RH for a further 5000 hours. Some 

strength recovery was observed after drying the joints, however, full strength recovery 

of joints was not seen in any case. The recovery of strength was attributed to the 

reversible effect of plasticisation while the irrecoverable strength was attributed to 

irreversible disruption at the interface due to the effect of moisture [16]. 
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Many authors [18-20] have reported that the mechanics of failure changes from 

cohesive failure in the adhesive to apparent interfacial failure with increasing amount of 

moisture. Based on this, it was suggested by Kerr et al [21] and Butt and Cotter [22] 

that interfacial weakening was responsible for the decreased strength in conditioned 

joints. 

Analysis of failed joint surfaces provides clues to the nature of failure and the 

underlying mechanisms. Various methods, including, optical microscopy, scanning 

electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and infra-red 

spectroscopy (IR) have been employed for this purpose [23]. In well prepared epoxy / 

aluminium joints, failure is generally cohesive in dry joints. The failure path becomes 

more complex under wet conditions and a mixed mode failure can be observed. It has 

been observed that the failure path in cyclic fatigue tested joints under wet conditions is 

mainly through the aluminium-oxide layer or at the primer / adhesive / aluminium-

oxide interphase [24, 25]. The surfaces of the aluminium in this work were prepared by 

chromic acid etching (CAE) or grit blasting after degreasing. Both of these treatments 

produce inferior surfaces to the anodising procedure used in the present study.  

The study of moisture absorption-desorption characteristics of structural adhesives 

provides a basis for the predictive modelling of adhesive joints. Predictive modelling 

can reduce uncertainties in the use of adhesive joints by providing information about 

the residual strength of joints after extended periods in service. The present work 

explores the change and recovery of strength in toughened epoxy / aluminium single lap 

joints. The joints were conditioned at 50°C, immersed in water for a maximum duration 

of 182 days. During this period, sets of joints were removed at predetermined intervals 

and tensile tested to determine the failure strength. Duplicate sets of the conditioned 
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joints were dried to remove moisture and the degree of strength recovery was 

determined by tensile testing. The failure surfaces of these joints were examined using 

digital image analysis, SEM and XPS. This investigation helps to explain the 

mechanisms of strength reduction and stress recovery observed during the experimental 

work. Finite element modelling was performed to predict the moisture concentration in 

the adhesive layer during the conditioning. 

2. Experimental 

2.1. Characterisation of Moisture Diffusion 

The structural adhesive FM73 manufactured by Cytec Engineered Materials was used 

in this study. FM73 is a rubber toughened epoxy that comes with a polyester knit carrier 

for support and handling purposes. The manufacturer’s recommended curing cycle for 

FM73 includes heating to 120°C for one hour [26] and the Tg of the adhesive has been 

reported to be 98.12 to 99.7°C [27, 28]. 

Bulk samples of 1 mm thickness were prepared by stacking multiple layers of the 

adhesive film, each of 0.12 mm thickness. During manufacture, the layers were 

compressed using a steel roller to ensure that air trapped between the layers was 

released as this helps to minimise the formation of voids during curing. The adhesive 

layup was placed in a mould and cured in a hot press at 120°C for one hour [26]. The 

bulk samples, of dimensions 60 x 40 x 1 mm, were cut from the cured panel. 

The moisture diffusion properties of the adhesive were determined by the gravimetric 

method. Before commencing the environmental conditioning, the bulk samples were 

dried in an oven at 50°C to constant weight. The samples were then subjected to a 

single absorption-desorption cycle in water at 50°C. A Mettler Toledo AL204 electronic 
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balance with 0.1 mg accuracy was used to weigh the samples at predetermined time 

intervals during conditioning. 

2.2. Preparation and Testing of Single Lap Joints 

Single lap joints were used to determine changes in joint strength after moisture 

absorption. The adherends were prepared from aluminium 2024 alloy (Al2024). The 

Al2024 is available in unclad and clad forms, where in the clad form the surface is 

coated with a layer of pure aluminium. In this work, unclad Al2024 was used in both a 

solution heat treated (T3) and soft state (O), in order to investigate the effects of 

adherend strength and yielding on joint strength. The environmental conditioning of the 

joints was carried out at 50°C, immersed in deionised water. 

The single lap joints were prepared according to BS ISO 4587:2003 [29] and their 

configuration and geometry is shown in Figure 1.  The adherends were cut from 3.2 mm 

thick Al2024 T3 and O sheets. The surfaces of the adherends were prepared by 

degreasing followed by ACDC anodising. ACDC anodising is an environmentally 

friendly process, which is free from the hexavalent chromium found in the aerospace 

industry standard Chromic Acid Anodising (CAA).  

During ACDC anodising, the adherends alternatively act as anodes and cathodes. The 

adherends were suspended in an overall 5% solution of phosphoric and sulphuric acid. 

An alternating current (AC) was applied at a voltage of 15V for 2 minutes at 35°C. This 

process was followed by the application of direct current (DC) with a voltage of 20V 

for 10 minutes at 35°C. The ACDC anodising process provides a high energy, porous 

oxide surface with a dense, corrosion resistant layer adjacent to the aluminium. The 

surface was rinsed with water after anodising and adherends were dried in air. Further 

details of the ACDC pretreatment may be found in [30]. The ACDC pretreatment was 
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followed by the application of BR127 corrosion inhibiting primer. The primer was air 

dried for 30 minutes and then cured for one hour at 120°C. 

The adhesive was brought to room temperature in a desiccator from its storage 

temperature of -24°C before bonding and the bonded adherends were held together by 

clips. The bondline thickness was maintained by the carrier knit in the adhesive film. 

The adhesive was cured at 120°C for one hour, giving a bondline thickness of 

0.12 0.02 mm. Small fillets were formed at the edges of the overlap due to overflow of 

the adhesive. 

A set of three joints was tensile tested at room temperature using a Hounsfield H20K-W 

tensometer to obtain the failure strength of unconditioned joints. The rest of the joints 

were conditioned in water at 50°C. A set of six joints were removed from the 

conditioning environment at predefined intervals of 7, 14, 28, 56 and 182 days. Three 

joints from the extracted set were immediately tensile tested while the remaining three 

joints were placed in an oven for drying at 50°C. Drying continued until complete 

desorption of moisture. After drying, the joints were brought to room temperature in a 

desiccator and tensile testing was carried out. The joints dried after conditioning will 

hereafter be referred to as dried joints. 

2.3. Failure surface characterisation 

The exposed surfaces from tested joints were analysed to determine the failure 

characteristics and locus of failure. Two types of failure could be identified by image 

analysis. The first was failure within the adhesive layer, which will be referred to as 

“cohesive” failure. The second appeared to at the interface between the adhesive and 

aluminium adherend and this will be referred to as “apparent interfacial failure”. Digital 

image analysis was used as a first step to quantify the proportions of cohesive and 
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apparent interfacial failure. The failure surface was digitised using a Reichert MEF-3 

Microscope with a macro arm attachment and the image was converted to a grey scale 

image to obtain high contrast between different image areas. The grey scale image was 

further converted to a two bit image using the mathematical software Matlab. A Matlab 

subroutine was then used to determine the percentage area covered by adhesive and 

“metal”. The same procedure was carried out on both adherends of a failed joint.  

The surfaces of adherends were also examined using a LEO 1530 VP ultra-high-

resolution scanning electron microscope (SEM) operating with a primary electron beam 

of 5 kV and a current of approximately 200 pA. To determine the locus of failure, the 

failure surfaces were further analysed using X-ray Photoelectron Spectroscopy (XPS) 

where an ESCALAB MK II surface analysis system using an Al Kα X-ray source 

operating at a power of 160 W was used. The interface between adhesive and adherend 

is composed of several layers of oxide, primer and adhesive. XPS provides material 

composition from a depth of a few nanometres (about 10nm) of the exposed surface and 

thus has been successfully used in the past for the analysis of fracture surfaces in 

adhesive joints [24, 25, 31]. XPS data was obtained from an area of approximately 2 

mm diameter, full width, half maximum (FWHM). Quantification was achieved using 

theoretically derived relative sensitivity factors based upon ionisation cross-sections 

and known instrument parameters and verified using standards of known composition. 

Peak areas were measured following the removal of a shirley-type background. 

3. Modelling Moisture Diffusion in the Adhesive 

Figure 2 shows the normalised mass uptake as a function of /t l  from the absorption 

and desorption experiments. Repeatability of the tests was good with a standard 

deviation of 11%. Considering the moisture uptake, it can be seen that the rate of 
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absorption is faster during the initial stages of diffusion. At later stages, the absorption 

deviates from the initial uptake trend and follows a different gradient. The overall 

diffusion coefficient does not remain constant and changes with increasing 

concentration. After reaching an apparent equilibrium, the absorption plot shows a 

sudden increase in mass uptake at /t l of approximately 28 √hr/mm. Similar 

behaviour has also been reported previously, for a DGEBA/dicy based adhesive [32]. It 

is clear from the experimental observations that Fickian diffusion based on a single 

absorption process is inadequate in explaining the moisture uptake. 

In the case of desorption, diffusion takes place in a single step until a constant weight is 

achieved as in a Fickian diffusion process. It was noted that the bulk adhesive samples 

achieved their original weight after desorption. The desorption process was faster than 

the absorption, which is an indication of changing adhesive structure due to moisture 

ingress. 

Full saturation was not achieved during absorptions as the samples were conditioned for 

a predetermined time. M∞ and D  were estimated by least square fitting of analytical 

models to the experimental data. The curve fitting was carried out in MathCAD using 

the genfit function, which employs an optimised Levenberg-Marquardt method [33]. 

Three different analytical models were used to determine the best curve fit to the 

experimental data and the resulting plots are shown in Figure 2a. The Fickian and dual 

Fickian models were not able to adequately represent the moisture uptake owing to the 

presence of the secondary uptake in the experimental data. To incorporate the 

secondary uptake in the analytical model, a dual Fickian model with a Heaviside step 

function was used. A Heaviside step function returns zero for negative values and one 

for positive values. This model is termed the “delayed” dual Fickian model, where the 
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secondary uptake is modelled by power law. The mass uptake by a delayed dual Fickian 

model is, hence, given by: 
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where Φ  is the Heaviside step function, 1t  is the start time of secondary uptake as 

determined experimentally and ,a b  and c  are the power law constants determined by 

curve fitting. The desorption process was modelled using Fickian diffusion and it is 

seen in Figure 2b that this provides a good fit to the desorption plots. 

The spatial distribution of moisture concentration in the adhesive layer of the simple lap 

joints was determined using the finite element method. The commercially available 

finite element code, Abaqus, was used, where only a quarter of the single lap joint was 

modelled due to geometric and loading symmetry, as shown in Figure 3a. Fillets were 

included at the end of the adhesive layer in the models based on average dimensions 

measured from manufactured joints. Three dimensional continuum field elements were 

used, with a minimum element size of 0.12 x 0.06 x 0.12 mm. The mesh of the adhesive 

layer is shown in Figure 3b. As the adherends were prepared by degreasing and the 

ACDC pretreatment (Section 2.2), which promoted good wetting of the adherends, the 

potential of enhanced moisture diffusion along the interface is reduced and, hence the 

main moisture path was considered to be through the adhesive. Normalised moisture 

concentration was applied as a boundary condition and a transient solution was obtained 

for moisture absorption at 7, 14, 28, 56 and 182 days. The dual Fickian model was 

implemented by running two sequential analyses with 1D D= and 2D D=  and a script 
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was used to add the concentration at each integration point, providing the dual Fickian 

moisture uptake. The moisture diffusion step was followed by the application of a load 

of 8 kN to determine the stresses in the joint after various levels of moisture diffusion. 

4. Results 

Figure 4 plots the failure load as a function of conditioning time for the single lap 

joints. It can be seen that the strength of unconditioned Al2024 O joints is significantly 

less than that of Al2024 T3 joints. This is because of the plastic deformation of the 

Al2024 O adherends during tensile testing, which occurs because of the lower yield 

stress of Al2024 O (75.8 MPa) compared to Al2024 T3 (345 MPa). 

The Al2024 T3 joints exhibited a progressive decrease in strength with conditioning 

time. When Al2024 T3 joints were dried after conditioning for 7 days and tensile tested, 

they achieved at least 98% of the original strength. The recovered percentage of the 

original strength is similar for all moisture absorption intervals. The Al2024 O joints 

showed a more rapid decrease in strength than the Al2024 T3 joints for the initial 

conditioning period of 14 days. However, a strength increase was then observed after 

tensile testing for 28 days of conditioning. After moisture absorption for 56 days, the 

strength of the joint recovered to about 86% of its original strength and remained at a 

similar value after conditioning of 182 days. The Al2024 O joints were also tested after 

drying and the strength recovered to 88% or more of the unconditioned joint strength. 

The two main types of failure observed in the joints were cohesive failure and apparent 

interfacial failure. Cohesive failure in the adhesive layer was observed in the single lap 

joints tested in the unconditioned state. Representative failure surfaces for cohesively 

failed Al2024 T3 and Al2024 O joints are shown in Figures 7a and b respectively. With 
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the conditioned Al2024 T3 joints, cohesive failure predominated in joints tested after 7, 

14, 28 and 56 days, whereas, a mixed failure was observed in joints conditioned for 182 

days. However, patches of apparent interfacial failure were present to some degree on 

most of the failure surfaces. A similar pattern of cohesive or mixed failure was 

observed in the dried joints. A quantitative assessment of the failure surfaces was 

carried out by digital image analysis and is discussed in later sections. 

Considering the Al2024 O joints, failure in unconditioned joints occurred in the 

adhesive layer as seen in Figure 5b. After conditioning for 7 days, a mixed failure 

comprised of cohesive and apparent interfacial areas was observed. The failure started 

as apparent interfacial failure at the edges of the overlap and progressed to cohesive 

failure towards the middle of the overlap. Mixed failure was also observed when joints 

were tested after 14 days and 28 days of environmental conditioning, as seen in Figure 

6b and c. The dried Al2024 O joints also showed a mixed failure, as shown in Figure 6f 

and g, for 7 and 14 days respectively. However, cohesive failure was observed after 28 

days, as seen in Figure 6h. 

Figure 7 shows the predicted normalised moisture concentration in the adhesive after 

different conditioning intervals. A quarter portion of the adhesive layer is shown where 

moisture starts to ingress from the exposed surfaces of the adhesive and moves towards 

the middle. After 7 days of moisture absorption, moisture has reached significant levels 

in the fillets and edges of the adhesive layer, however, most of the adhesive layer 

remains dry. With increasing conditioning time, the moisture front keeps progressing 

towards the middle of the adhesive layer. Figure 8 plots the normalised moisture 

concentration in the middle of the adhesive layer at different conditioning times. It can 
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be seen that full saturation of the adhesive layer was not achieved even after the full 182 

days of exposure.   

5. Analysis of Failure Surfaces 

5.1. Failure Type 

The fracture surfaces were analysed by digital image analysis, as discussed in Section 

2.3. The amount of adhesive on the adherends was used in the quantification and a 

cohesive failure was represented by unity. Mixed failure was thus quantified as a 

fraction of the amount of adhesive left on the adherend to the amount of adhesive on a 

cohesively failed surface. Figure 9 shows a comparison of failure load and fractional 

adhesive area at different moisture absorption intervals for T3 joints. The fraction of 

cohesive failure decreases i.e. the amount of apparent interfacial failure increases with 

the decrease in failure load at 7 and 14 days of moisture absorption. However, the 

fraction of cohesive failure increases after 28 and 56 days of moisture absorption, 

finally decreasing to a minimum of 59% after 182 days of moisture absorption. 

The analysis of dried Al2024 T3 joints also showed mixed failure at all conditioning 

intervals. The digital image analysis results are shown in Figure 10. The fraction of 

adhesive area i.e. cohesive failure decreased after 7 days of moisture absorption. Then 

an increase in fractional cohesive failure was seen for 14 and 28 days of moisture 

absorption and finally the fraction of cohesive failure decreased again after 56 days of 

moisture absorption. Although the fraction of cohesive failure area does not exactly 

follow the trend of failure load, the failure remained mainly cohesive. The mixed 

cohesive and apparent interfacial failure of joints means that the fracture path travels 

both through the adhesive as well as within the interfacial regions. This may be 
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attributed to the degradation in the adhesive and primer properties. As already 

mentioned, plasticisation of the adhesive caused by moisture ingress causes degradation 

of the elastic modulus and lower failure strength would be expected, as observed. 

A comparison of failure load and failure type for conditioned Al2024 O joints is shown 

in Figure 11. The proportion of cohesive failure within the adhesive shows a good 

correlation with failure load. As the failure load of the joint decreases after 7 and 14 

days of moisture absorption, the failure surface shows more apparent interfacial failure. 

The strength of the joint started recovering after 28 days of moisture absorption and 

recovery continued until the end of testing. This coincided with further surfaces with 

less apparent interfacial failure. Interestingly, similar trends were seen in the failure 

surfaces of joints which were tested after drying, as can be seen Figure 12.  

Consideration of Figures 12 to 15 indicates that there is a commonality between joint 

strength and failure type, with lower joint strength corresponding to increased apparent 

interfacial failure. Another common trend in these figures is a decrease and recovery in 

proportion of cohesive failure between zero and 56 days exposure. This is more 

pronounced in the joints with Al2024 O adherends and corresponds to a similar drop 

and recovery in joint strength. 

5.2. XPS Studies 

A complex interphase exists between the aluminium adherends and the bulk adhesive 

layer. The oxide layer developed on the adherends has a highly porous structure, as 

illustrated in Figure 13. This enables penetration by the primer which provides strong 

mechanical interlocking. The primer was applied to improve the bonding and corrosion 

characteristics of the surface. The apparent interfacial failure may be originating in any 

of the interface layers and may travel through multiple layers. 
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XPS analysis was carried out to investigate the locus of failure where apparent 

interfacial failure was observed. As mentioned earlier, the failure of unconditioned 

joints was predominately cohesive failure of the adhesive layer. The results of the XPS 

analysis of the Al2024 O and T3 joints are shown in Table 2. Beginning with the 

Al2024 T3 joints, the unconditioned joints were initially analysed in order to establish a 

baseline, indicative of cohesive failure. In Table 2, the adherends of a failed joint are 

referred to as “metal” and “adhesive” side irrespective of the type of failure. For the 

unconditioned Al2024 T3 joint, both failure surfaces showed large amounts of carbon. 

Nitrogen was also detected, which is indicative of failure in the adhesive layer. A small 

amount of aluminium was detected on the metal side, which may be the result of signal 

detection from the edge of the sample or due to surface contamination during the 

sample preparation process. Aluminium was not detected on the adhesive side. 

Al2024 T3 joints conditioned for 56 days were also analysed with XPS. As seen in 

Figure 10, these joints have more apparent interfacial failure than the unconditioned 

joints. A small amount of aluminium was detected on the adhesive side, which was 

similar to the earlier observation of aluminium in the cohesive failure and may not be 

an indication of oxide layer failure. A failure through the oxide layer would have shown 

a large amount of aluminium on both the metal and adhesive sides. The metal side also 

had only a small amount of aluminium present. The amount of carbon on both the metal 

and adhesive sides was high, indicating failure was either through the adhesive layer or 

through the interphasial polymer. Nitrogen was also detected on both sides of the failure 

surface. This suggests that even though some patches of apparent interfacial failure 

were present; the failure predominately occurred within or between the adhesive and 

primer layer, remaining largely cohesive. 
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In the case of the Al2024 O joints, the surfaces of unconditioned joints with 

predominately cohesive failure had similar composition to the Al2024 T3 joints. The 

adhesive side had no aluminium while a very small amount of aluminium was detected 

on the metal side. The large amount of carbon and presence of nitrogen, as found in a 

cohesive failure, were also present. 

The Al2024 O joints conditioned for 7, 14 and 28 days exhibited large areas of apparent 

interfacial failure, as indicated in Figure 6a-c. The maximum reduction in joint strength 

was observed after 14 days of conditioning, with 46% of apparent interfacial area. 

When analysed using XPS, it was seen that a small amount of aluminium was present 

on the adhesive face of an Al2024 O joint conditioned for 14 days. The carbon 

percentage was about 80%, the source of this is most likely to be the epoxy or primer. 

The metal face of the joint, however, showed a significantly higher concentration of the 

aluminium but also showed presence of nitrogen on the surface. The nitrogen indicates 

that there might be a very thin layer of primer present on the metal surface. The 

percentage of carbon on the metal side is also slightly higher than the expected 

percentage resulting from an oxide failure surface. Another reason for the high amount 

of aluminium on the metal side may be that the analysis depth of XPS exceeds the 

thickness of a very thin residual primer layer left on the adherend. The presence of 

primer was further investigated by scanning electron microscopy and is discussed later.  

The highest amount of interfacial failure in dried Al2024 O joints was observed after 

conditioning for 7 days and then drying. XPS analysis revealed that the adhesive side 

did not have any aluminium and a high percentage of carbon was present. The metal 

side had a large percentage of aluminium, indicating that the failure had occurred close 



18 
 

to the oxide layer. The failure surface composition was similar to the apparent 

interfacial failure surfaces observed in conditioned Al2024 O joints, discussed earlier. 

As mentioned above, the XPS analysis of the surfaces, which had undergone apparent 

interfacial failure, pointed towards the possibility that a very thin layer of primer may 

be present on the metal side of failed joints and failure had not been through the oxide 

layer. This was further investigated by performing scanning electron microscopy. This 

allowed for high magnification (x50000) images of the apparent interfacial area. Upon 

close inspection, tiny particles were observed spread throughout the failure surface. 

These particles may serve as a fingerprint to identify the presence of the thin layer of 

primer. 

A comparative failure surface of the primer was obtained by preparing a joint with the 

same surface preparation as the conditioned joints i.e. degreasing followed by ACDC 

anodising. However, the adherends were joined together using only primer BR127, i.e. 

without adhesive. The joint was subjected to tensile testing and the failure surfaces were 

observed using SEM, as shown in Figure 14. Primer BR127 is an epoxy phenolic 

system, which contains strontium chromate for corrosion inhibition [34]. This was 

observed in the form of tiny particles in the failed primer joint. Similar particles were 

also observed in the failure surfaces of conditioned joints. By comparison of the two 

surfaces and using these primer particles as a fingerprint, it may be deduced that a thin 

layer of primer may be present even in the case of an apparent interfacial failure. It is 

likely, therefore, that the failure occurred in the primer layer close to the oxide layer but 

did not travel into the oxide layer.  
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6. Discussion 

The degradation of joint strength may be due to deterioration of the adhesive system i.e. 

FM73 and BR127, the interface or a combination of the two. Moisture affects the 

adhesive in the form of plasticisation and swelling. A combination of both chemical and 

mechanical adhesion mechanisms may explain the nature of adhesion in the 

aluminium/epoxy joint system used in this work. The chemical theories attribute 

adhesion to polar and dispersive Van der Walls forces, acid base interactions, chemical 

bonds or metal organic complex formation [35-37]. The ACDC pretreatment, which 

was used in the present work, develops an oxide layer with a needle like structure at the 

interface of primer and the metal organic complex is also thought to be giving a “fibre 

reinforced” interphase. The mechanical interlocking theory is based on a lock and key 

effect achieved through the surface porosity of the adherends.  

In the single lap joints, the interface between the primer and the oxide layer forms a 

non-regular path as the primer penetrates the oxide layer. Also, there is no distinct 

interface between the primer and the adhesive but an interphase is present. This is 

because primer BR127 is an epoxy phenolic and forms bonds with the epoxy adhesive 

FM73. In the case of a cohesive failure, the crack travels through the adhesive/primer 

layer and the failure may be attributed to the breakage of primary bonds. This suggests 

that the interface has strong adhesion forces in an unconditioned joint. In the case of 

conditioned joints, the adhesive and interface or interphase may be affected by the 

moisture uptake. The adhesive plasticises and swells, which decreases strength and the 

oxide layer may become hydrated. When cohesive failure was observed, it is suggested 

that the degradation of the interface is not considerable whilst the adhesive has 

degraded and caused the failure. 
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In the case of apparent interfacial failure, it is important to consider that the primer and 

oxide layer are not only joined by interatomic forces, but a strong mechanical 

interlocking is also present, which would make complete separation of the primer from 

the oxide layer very difficult. Thus where apparent interfacial failure was observed, the 

SEM based analysis has shown that failure is within the primer layer, very close to the 

oxide layer. This allows for the explanation of strength recovery in cases when moisture 

was dried out of the joint. If it is considered that the diffused water caused disruption of 

inter-atomic forces at the interface, the re-establishment of strong secondary forces is 

difficult as they require very close contact between of the primer and adherend surfaces. 

This was possible during joint manufacture because of the flow of the primer.  

However, if the adhesive or primer layer fails cohesively, as is the case in this study, the 

removal of moisture by drying would recover the strength of the adhesive and primer 

and recovery of joint strength would be observed. 

Recovery of strength was observed in Al2024 O joints after conditioning for greater 

than 56 days, while no such phenomenon was observed in Al2024 T3 joints. The only 

differentiating characteristic of the two types of joints is the strength of the adherends. 

When tested in the unconditioned state, the Al2024 O joints undergo large deformations 

in the form of rotations and adherend yielding occurs before failure. After moisture 

absorption for 7 and 14 days, most of the adhesive layer still has low moisture 

concentration, as shown in Figures 10a and b, but the adhesive may have become 

significantly weaker in the critical fracture initiation sites. Hence a combination of 

yielding in the adherends and a decrease in the strength of the adhesive and the primer 

in the failure initiation region may be responsible for the observed decrease in failure 

strength. After 56 or 182 days of moisture absorption, larger areas of the adhesive 

become plasticised (Figure 7c, d, e), which results in reduced yielding and rotation of 
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the adherends whilst there is little change in the moisture content and hence strength of 

the adhesive and primer in the areas of failure initiation. Figure 15a shows the change in 

failure strength and moisture concentration in the single lap joint with conditioning time 

when observed at a point in the fillet where failure initiates as shown in Figure 15b. 

It can be seen that moisture concentration in the failure initiation area reaches almost 

complete saturation in 56 days and that this corresponds to a fall in adhesive strength in 

this area. The rotation and yielding of adherends occurred during tensile testing. Hence 

the combination of high interfacial strains through yielding and rotation of the 

adherends and the weakness of the adhesive in the area of failure initiation results in a 

decrease in strength, that recovers when plasticisation of the adhesive layer reduce the 

yielding and hence interfacial strains. As expected, this effect is much reduced when a 

high yield adherend is used. 

7. Conclusions 

Joint strength degradation followed by strength recovery after long moisture exposure 

times and subsequent dehydration of joints was observed during the conditioning and 

testing of single lap joints. Mixed cohesive and apparent interfacial failure modes were 

observed in the joints after conditioning. The loss of cohesive strength of the joints may 

be explained by the plasticisation of the adhesive or primer due to moisture absorption. 

In the case of apparent interfacial failure, surface analysis revealed that complete 

removal of the primer and adhesive from the surface of the adherend is not likely. This 

may be attributed to the porous nature of the oxide surface developed by the anodising 

process. Thus the presence of a very thin layer of primer was detected in cases of 

apparent interfacial failure. 
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The recovery of joint strength; up to 100% of the original strength for Al2024 T3 and 

88% of the original strength for Al2024 O was observed upon drying of conditioned 

joints. The strength recovery may be due to the reestablishment of the interatomic 

forces, however, primary bonds require a large amount of energy and it is unlikely that 

they will reform upon drying. Secondary bonding forces, such as London dispersion 

forces, may re-establish once the moisture is removed from the joint, however, the most 

significant influence of drying would be to recover the cohesive strength of the primer 

and adhesive.  
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Figure 1: Geometry of Single lap joint with Al 2024 adherends and FM73 epoxy 
adhesive (not to scale) 

 

 

 

 

 

 

3.2 mm 
100 mm 

12.5 mm
End tabAdhesive 

0.12 mm

25 mm 



26 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45

N
or
m
al
is
ed

 M
as
s u

pt
ak
e 
(M

t/
M

∞
)

√t/l (√hr/mm)

Experimental Data
Fickian
Dual Fickian
Delayed Dual Fickian

 

(a) 

‐1.2

‐1

‐0.8

‐0.6

‐0.4

‐0.2

0

0 5 10 15 20 25 30 35

N
or
m
al
is
ed

 M
as
s u

pt
ak
e 
(M

t/
M

∞
)

√t/l (√hr/mm)

Experimental Data
Fickian Curve Fit

 

(b) 

Figure 2: Curve fits of experimental moisture uptake for 1 mm thick samples 
when conditioned at 50°C, immersed in water (a) absorption (b) desorption. 
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Figure 3: Finite element model of single lap joint (a) symmetry conditions applied
to joint (b) detailed mesh of the adhesive layer 
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Figure 4: Failure load of single lap joints after conditioning at 50°C, immersed in 
water. 

 

 

 

(a) (b) 

Figure 5: Cohesive failure in unconditioned single lap joints with adherends of 
type (a) Al2024 T3 (b) Al2024 O 

 



29 
 

 
 

No of 
Days 

Conditioned Joints  Joints Dried after Conditioning 

7 

(a)  (f) 

14 

(b)  (g) 

28 

(c)  (h) 

56 
(

d)  (i) 

182 

(e)  (j) 

 

Figure 6: Failure surfaces of single lap joints, with Al2024 O adherends, after 
tensile testing. A set of joints was tested after conditioning in water at 50°C, and 
other set was tested after drying. 
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Figure 7: Normalised moisture concentration profiles in the adhesive layer after 
various intervals, when conditioned in water at 50°C. 
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Figure 8: Normalised moisture concentration in the middle of the adhesive layer. 
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Figure 9: Comparison of failure load and failure type in Al2024 T3 joints after 
conditioning at 50°C in water. 
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Figure 10: Comparison of failure load and failure type in Al2024 T3 joints after 
conditioning at 50°C in water and drying. 
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Figure 11: Comparison of failure load and failure type in Al2024 O joints after 
conditioning at 50°C in water. 
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Figure 12: Comparison of failure load and failure type in Al2024 O joints after 
conditioning at 50°C in water and drying. 
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Figure 13: Scanning electron microscope image of porous oxide surface generated 
by ACDC pretreatment on aluminium 2024 T3. 

 

 

Figure 14: Failure surface of a joint made from primer BR127 only (no adhesive 
was used) when seen by SEM. The circles show the tiny strontium chromate 
particles. 
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(a) 

 

(b) 

Figure 15: Failure strength and moisture concentration (a) change with 
conditioning time and (b) critical area in the adhesive (not to scale).

Critical area in 
the adhesive 
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Table 1: Coefficients of diffusion determined by curve fitting to experimental data. 

Dual Fickian curve fit for absorption 
       

1D  (m2/s)  2D (m2/s)  1M ∞ (wt%)  2M ∞ (wt%)   

9.75 x 10‐13  3.11 x 10‐14  1.78  1.92 

Delayed Dual Fickian curve fit for absorption 
       

1D  
 (m2/s) 

2D  
(m2/s) 

1M ∞ (wt%) 2M ∞  
(wt%) 

  1t  
(sec) 

a   b   c  

9.27 x 10‐
13  4.75 x 10‐14  2.03  0.67  3.09 x 106 

‐2.56 x 
1012 

‐4.26  0.85

Fickian curve fit for desorption 
       

D (m2/s)  M∞ (wt%)             

1.17 x 10‐12  3.7     
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Table 2: Composition of failure surfaces when analysed with XPS. 

Joint Type Conditioning Failure 
Surface 

Failure Surface Composition (Atomic %) 
Al O C N 

Anodised 
Substrate 

    27.2  48.4  20.8  ‐ 

Al2024 T3  Unconditioned  Metal  1.2  15.1  81.0  1.3 

    Adhesive  0.0  16.3  82.5  Trace 

  56 days in water  Metal  1.9  14.6  82.4  1.1 

    Adhesive  1.4  13.3  84.2  1.2 

Al2024 O  Unconditioned  Metal  0.5  14.2  83.6  0.8 

    Adhesive  0.0  13.6  85.8  Trace 

  14 days in water  Metal  13.9  27.6  56.1  0.4 

    Adhesive  2.6  17.3  80.0  1.0 

 
Dried after 7 days 
in water  

Metal  18.0  27.8  49.9  0.0 

    Adhesive  0.0  16.8  82.9  Trace 

 


