cs6b03192_si_001.pdf (2.75 MB)
Download file

MoS2–Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting

Download (2.75 MB)
journal contribution
posted on 16.02.2017, 00:00 by Yaqing Yang, Kai Zhang, Huanlei Lin, Xiang Li, Hang Cheong Chan, Lichun Yang, Qingsheng Gao
Exploring noble-metal-free electrocatalysts with high efficiency for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) holds promise for advancing the production of H2 fuel through water splitting. Herein, one-pot synthesis was introduced for MoS2–Ni3S2 heteronanorods supported by Ni foam (MoS2–Ni3S2 HNRs/NF), in which the Ni3S2 nanorods were hierarchically integrated with MoS2 nanosheets. The hierarchical MoS2–Ni3S2 heteronanorods allow not only the good exposure of highly active heterointerfaces but also the facilitated charge transport along Ni3S2 nanorods anchored on conducting nickel foam, accomplishing the promoted kinetics and activity for HER, OER, and overall water splitting. The optimal MoS2–Ni3S2 HNRs/NF presents low overpotentials (η10) of 98 and 249 mV to reach a current density of 10 mA cm–2 in 1.0 M KOH for HER and OER, respectively. Assembled as an electrolyzer for overall water splitting, such heteronanorods show a quite low cell voltage of 1.50 V at 10 mA cm–2 and remarkable stability for more than 48 h, which are among the best values of current noble-metal-free electrocatalysts. This work elucidates a rational design of heterostructures as efficient electrocatalysts, shedding some light on the development of functional materials in energy chemistry.

History