Habrophlebia lauta (HLAU)
Nb points=53 Occ=46 Nb rivers=1 Nb sites=1 Nb surveys=2

Chaetopterygini (CHAE)

Nb points=136 Occ=64 Nb rivers=2 Nb sites=4 Nb surveys=5

Micrasema spp._tot (MICRA)
Nb points=163 Occ=98 Nb rivers=5 Nb sites=5 Nb surveys=6

Rhyacophila praemorsa (RPRA)

Nb points=61
Occ=45
Nb rivers $=1 \quad \mathrm{Nb}$ sites $=1$
Nb surveys=2

Atrichops crassipes (ACRA)

Nb points=45 Occ=38 Nb rivers=1 Nb sites=1 Nb surveys=2

Brachyptera spp._tot (BRAC)
Nb points=134 Occ=67 Nb rivers=4 Nb sites=5 Nb surveys=5

Protonemura spp._tot (PROTO)
Nb points=243 Occ=153 Nb rivers=5 Nb sites=7 Nb surveys=10

Centroptilum luteolum (CLUT)
Nb points=56 Occ=23 Nb rivers=2 Nb sites=2 Nb surveys=2

Allogamus auricollis (AAUR)

Atyaephyra desmarestii (ADES)

Nb points=40 Occ=8 Nb rivers=1 Nb sites=2 Nb surveys=2

Agapetus fuscipes (AFUS)

Nb points=55 Occ=13 Nb rivers=2 Nb sites=2 Nb surveys=2

Atherix ibis (AIBI)
Nb points=94 Occ=42 Nb rivers=1 Nb sites=1 Nb surveys=3

Baetis muticus (BMUT)

Brachyptera seticornis (BSET)

Nb points=61 Occ=45 Nb rivers=2 Nb sites=2 Nb surveys=2

Chimarra marginata (CMAR)

Nb points=70 Occ=27
Nb rivers=1 Nb sites $=1 \quad \mathrm{Nb}$ surveys=2

Glossiphonia complanata (GCOM)

Glossiphonia spp._tot (GLOS)

Gammarus pulex (GPUL)

Liponeura spp. (LIPO)
Nb points=61 Occ=9 Nb rivers=1 Nb sites=1 Nb surveys=2

Micrasema longulum (MLON)

Oreodytes sanmarki (OSAN)

Procloeon bifidum (PBIF)
Nb points=133 Occ=31 Nb rivers=2 Nb sites=2 Nb surveys=5

Protonemura nitida (PNIT)
Nb points=155 Occ=93 Nb rivers=2 Nb sites=2 Nb surveys=5

Procloeon spp._tot (PROC)
Nb points=133 Occ=31 Nb rivers=2 Nb sites=2 Nb surveys=5

Simulium ornatum (SORN)

Siphonoperla torrentium (STOR)

Tinodes dives (TDIV)

Nb points=72 Occ=39 Nb rivers=2 Nb sites=2 Nb surveys=2

Thremma gallicum (TGAL)

Nb points=61 Occ=35 Nb rivers=1 Nb sites=1 Nb surveys=2

Simulium monticola (SMON)

Nb points=61 Occ=42 Nb rivers=2 Nb sites=2 Nb surveys=2

Limnomysis benedeni (LBEN)

Prosimulium spp._tot (PROS)
Nb points=61 Occ=29 Nb rivers=2 Nb sites=2 Nb surveys=2

Hydropsyche instabilis (HINS)

Mystacides azurea (MAZU)
Nb points=107 Occ=12 Nb rivers=2 Nb sites=4 Nb surveys=4

Baetis vardarensis (BVAR)

Helobdella stagnalis (HSTA)
Nb points=260 Occ=54 Nb rivers=1 Nb sites=5 Nb surveys=10

Rhyacophila nubila (RNUB)
Nb points=260 Occ=153 Nb rivers=3 Nb sites=4 Nb surveys=10

Simulium spp._tot (SIMU)

Rhyacophila spp._tot (RHYA)

Simuliidae tot（SIMULI tot）

	Nb poin	892 Occ＝	＝1258 Nb	r	Nb sites	Nb	eys＝80		
	Al＿05＿201	EL＿01＿200	EL＿04＿200	EL＿05＿200	EL＿05＿20	EL＿05＿201	1 EL＿05＿201	EL＿08＿200	EL＿08＿201
		；	-"		\％		$\because{ }^{\circ}$	\cdots	\cdots
	EL＿09＿200	EL＿09＿200	EL＿09＿201	1 RE＿01＿20C	RE＿04＿200	RE＿05＿201	RE＿05＿201	RE＿06＿20C	RE＿08＿200
㑗				\%	．	－60	\％		$\therefore \square^{\circ}$
	RE＿08＿201	RE＿08＿201	RE＿09＿200	RE＿09＿20d	AL＿08＿198	AL＿12＿198	HA＿01＿20d	HA＿04＿200	HA＿05＿200
			\％		\％	\ldots	－	20	\％$\%$
		HA＿05＿201	HA＿05＿201	HA＿06＿200	HA＿06＿20C	HA＿08＿200	HA＿08＿200	HA＿08＿201	HA＿08＿20
			80		$\therefore \%$	$\dot{\%}$		\therefore	
		HA＿09＿200	HA＿10＿201	DN＿04＿20d	DN＿04＿20	DN＿04＿20	DN＿07＿200	DN＿07＿20	
		$\%$		\because	$\therefore \div$	\ldots	－	$\stackrel{\square}{\square}$	
		AU＿10＿200	EL＿03＿199	EL＿08＿199	G0＿09＿20	G1＿09＿20	G2＿09＿20	｜1R＿04＿201	IR＿05＿200
$\begin{aligned} & \text { 管 } \\ & 0 \end{aligned}$			OFim：			$\dot{\square}$		-	\％
	｜1R＿07＿201	IR＿08＿201	ON＿04＿20	ON＿05＿201	ON＿07＿20	ON＿08＿201		LS＿08＿198	RRO09＿20
		－0．\％		\because \％\％	\qquad	0		－\because	－．
	ÉA＿04＿201	ÉA＿04＿201	ÉA＿04＿201	ÉA＿05＿200	ÉA＿07＿201	ÉA＿07＿201	ÉA＿07＿201	ÉA＿09＿200	RI＿04＿199
		\because		$\%$		\therefore \％	$\begin{array}{r} \dot{\circ} \\ 0.0 \end{array}$	\because	
	RI＿08＿199	RI＿11＿199	AL＿08＿198	AL＿12＿198	GU＿03＿19：	GU＿08＿19	IIC＿08＿198	IC＿12＿198	
			$\begin{array}{r} \ddot{\circ} \\ 0 \\ 0 \\ 0 \end{array}$	菑					
			Occurences	$\begin{array}{r} 1: 3 \\ \cdot \\ 2: 4 \end{array}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned} \cdot 7$	colour	M2－		

Baetis alpinus (BALP)
Nb points=186 Occ=132 Nb rivers=3 Nb sites=3 Nb surveys=6

Baetis lutheri (BLUT)

Nb points=77 Occ=24 Nb rivers=2 Nb sites=2 Nb surveys=3

Epeorus sylvicola (ESYL)
Nb points=175 Occ=108 Nb rivers=4 \quad Nb sites=4 \quad Nb surveys=6

Glossosoma spp._tot (GLOSSO)
Nb points=371 Occ=198 Nb rivers=3 Nb sites=5 Nb surveys=17

HFST
Occurences • 1 • 2 • 3 • 4 colour - M2-M3

Haitia acuta (PACU)

Philopotamus spp._tot (PHIL)

Philopotamus montanus (PMON)

Baetidae (non_Baetis) (BAET)
Nb points=120 Occ=29 Nb rivers=1 Nb sites=2 Nb surveys=5

Bithynia tentaculata (BTEN)

Hydraena minutissima_a (HMIN_a)
Nb points=61 Occ=33 Nb rivers=1 Nb sites=1 Nb surveys=2

Hydropsyche sittalai (HSLL)

Hydropsyche spp._tot (HYDROPS)
Nb points=2001 Occ=1572 Nb rivers=10 Nb sites=21 Nb surveys=84

05101520051015200510152005101520

Oreodytes sanmarki_a (OSAN_a)
Nb points=228 Occ=83 Nb rivers=4 Nb sites=4 Nb surveys=8

Rhyacophila dorsalis (RDOR)

Rhithrogena spp._tot (RHIT)

Cheumatopsyche lepida (CLEP)

Hydropsyche exocellata (HEXO)

Micronecta spp._tot (MICRO)
Nb points=267 Occ=65 Nb rivers=2 Nb sites=6 Nb surveys=11

Hydropsyche pellucidula_incognita (HPEIN)

Tipula montium (TMON)
Nb points=62 Occ=37 Nb rivers=1 Nb sites=1 Nb surveys=2

Chelicorophium curvispinum_sowinskyi (CCUSO)

Chironomini (CHIR)

Girardia tigrina (DTIG)

	Nb points=1045	Occ=709	$=1 \quad \mathrm{Nb}$,	eys=44		
$\begin{array}{r} 1096 \\ 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$	BEL_04_2009	BEL_05_2002	BEL_05_2011	BEL_08_2002	BEL_08_2012	BEL_09_2007	BEL_09_2009
		\cdots		$\because \because$	$\because \cdot \cdot \quad \cdots$		$\because \because:$
	BEL_09_2011	BRE_01_2003	BRE_04_2009	BRE_05_2011	BRE_05_2012	BRE_06_2002	BRE_08_2002
$\begin{array}{r} 1096 \\ 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$		$\quad \therefore \quad \therefore \dot{0}$					
	BRE_08_2011	BRE_08_2012	BRE_09_2008	BRE_09_2009	CHA_04_2009	CHA_05_2008	CHA_05_2010
$\begin{array}{r} 1096 \\ 402 \\ 147 \\ 54 \\ 19 \end{array}$			$\underset{: ~}{\square}$		$\quad \begin{array}{r} \quad \therefore \\ \ldots \end{array}$		
	CHA_05_2011	CHA_05_2012	CHA_06_2002	CHA_08_2008	CHA_08_2009	CHA_08_2011	CHA_08_2012
	CHA_09_2002	CHA_09_2006	CHA_10_2010	MIR_04_2010	MIR_04_2011	MIR_05_2002	MIR_07_2010
$\begin{array}{r} 1096 \\ 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$							
	MIR_08_2011	MIR_09_2002	MON_07_2011	MON_08_2008	PÉA_04_2010	PÉA_04_2012	PÉA_05_2008
		PÉA_09_2007	$0 \quad 5 \quad 1015$	$\begin{array}{llll}0 & 5 & 10 & 15 \\ \end{array}$	$0 \quad 5 \quad 1015$	$0 \quad 51015$	$0 \quad 5101520$
$\begin{array}{llllllllllllllllllllll}0 & 5 & 10 & 15 & 200 & 5 & 10 & 15 & 20\end{array}$			HFST				

Erpobdella spp._tot (ERPO)

	points=1027	=52	Nb	Nb surveys=42			
	BAI_05_2011	BEL_05_2011	BEL_08_2002	BEL_09_2009	BEL_09_2011	BRE_01_2003	BRE_04_2009
$\begin{array}{r} 147 \\ 54 \\ 19 \end{array}$			$\begin{array}{cc} \bullet . . & . . \\ \hdashline \bullet \cdots & \ldots \end{array}$			$\because \quad \because$	
	BRE_05_2011	BRE_05_2012	BRE_06_2002	BRE_08_2002	BRE_08_2011	BRE_08_2012	BRE_09_2008
$\begin{array}{r} 147 \\ 54 \\ 19 \\ 6 \\ 6 \\ 2 \\ 0 \end{array}$							
	BRE_09_2009	CAL_04_1990	CAL_08_1989	CAL_12_1989	DON_04_2009	DON_04_2011	
	DON_07_2009	DON_07_2011	DON_07_2012	MIR_04_2010	MIR_04_2011	MIR_05_2002	MIR_07_2010
	MIR_08_2011	MIR_09_2002	MON_04_2011	MON_05_2008	PÉA_04_2010	PÉA_04_2011	PÉA_04_2012
$\begin{array}{r} 147 \\ 54- \\ 19- \\ 6 \\ 2 \\ 2 \\ 0 \end{array}$		$\begin{aligned} & \bullet \bullet \\ & \hdashline \cdots \\ & \bullet \bullet \end{aligned}$					
	PÉA_05_2008	PÉA_07_2010	PÉA_07_2011	PÉA_09_2007	WIC_04_1990	WIC_08_1989	WIC_12_1989
$\begin{array}{r} 147- \\ 54 \\ 19- \\ 6 \end{array}$							
	$\begin{array}{llll}0 & 5 & 10 & 15\end{array}$	$\begin{array}{llll}0 & 5 & 10 & 15\end{array}$	$\begin{array}{llll} 1 & 5 & 10 & 15 \end{array}$ Occurences	$\left.\begin{array}{ll} 0 & 51015 \\ & \text { HFST } \\ \bullet & 3 \bullet 5 \\ \bullet & 4 \end{array}\right)$	ur - M2 - M3	$\begin{array}{llll} 0 & 5 & 10 & 15 \end{array}$	$\begin{array}{lll} 5 & 10 & 15 \end{array}$

Rhithrogena semicolorata (RSEM)
Nb points=409 Occ=259 Nb rivers=6 Nb sites=9 Nb surveys=15

Baetis spp._tot (BAETI)
Nb points=2083 Occ=1918 Nb rivers=10 Nb sites=21 Nb surveys=88

RE_05_201	RE_06_200	RE_08_200
年	$\underset{-1}{\because 0}$	为

0510152005101520051015200510152005101520051015200510152005101520 HFST

Occurences • 1 • $3 \bullet 5 \bullet 7$ colour - M2 - M3

Ephemerella spp._tot (EPHEM)

Polycentropus flavomaculatus (PFLA)
Nb points=285
Occ=137
Nb rivers=4
Nb sites=5
Nb surveys=11

Caenis luctuosa (CLUC)

[^0]Limnius a_spp._tot (LIMN_a)

Limnius opacus (LOPA)

Nb points=70 Occ=39 Nb rivers=1 Nb sites=1 Nb surveys=2

Polycentropus spp._tot (POLYC)
Nb points=304 Occ=155 Nb rivers=5 Nb sites=6 Nb surveys=12

Elmis latreillei_a (ELAT_a)

Nb points=92 Occ=50 Nb rivers=2 Nb sites=2 Nb surveys=3

Caenis macrura (CMAC)
Nb points=584 Occ=378 Nb rivers=1 Nb sites=7 Nb surveys=27

Dreissena polymorpha (DPOL)

Esolus a_spp._tot (ESOL_a)

Heptagenia spp._tot (HEPT)

Orthocladiinae (ORTHO)
Nb points=1446 Occ=1427 Nb rivers=2 Nb sites=11 Nb surveys=65

HFST

Baetis rhodani (BRHO)

Agapetus spp._tot (AGAP)

Caenis luctuosa_macrura (CLUMA)

Erpobdella octoculata (EOCT)

Jaera istri (JIST)
Nb points=354 Occ=339
Nb rivers $=1 \quad \mathrm{Nb}$ sites $=4 \quad \mathrm{Nb}$ surveys $=17$

Tipula spp._tot (TIPU)

Baetis fuscatus (BFUS)
Nb points=1433 Occ=1161 Nb rivers=4 Nb sites=13 Nb surveys=62

Caenis spp._tot (CAEN)
Nb points=1414 Occ=1047 Nb rivers=5 Nb sites=13 Nb surveys=62

Chelicorophium spp._tot (CHEL)

Gyraulus albus (GALB)

Hydropsyche contubernalis (HCONT)

Psychomyia pusilla (PPUS)

Nb points=1533 Occ=1299 Nb rivers=5 Nb sites=14 Nb surveys=67

BRE_08_2002 3RE_08_201

3EL_09 200

 EHA_05_201 CHA_05_2012

- CHA 06

 EHA_08_2012 2HA_09_200: \qquad SHA_10_2010

OON_04_201 DON_04_2014

DON_07_200	JON_07_201
0	\because

JON 072012
\cdots

\qquad 1 MIR_09_2002 ION_04_201

PÉA 05
 8102
408
484
59
0
0

 PR

0510152005101520051015200510152005101520

NIC_12_198: 0

05101520051015200510152005101520
HFST

Chelicorophium curvispinum (CCUR)

Pisidium spp._tot (PISI)

Hydropsyche incognita (HINC)

Oecetis spp._tot (OECE)

Hypania invalida (HINV)
Nb points=260 Occ=235 Nb rivers=1 Nb sites=3 Nb surveys=10

Elmis spp._tot (ELMI)

Heptagenia sulphurea (HSUL)

	Nb points=1	Occ=624	rivers=1 Nb sid	,	eys=44		
	BEL_04_2009	BEL_05_2002	BEL_05_2008	BEL_05_2011	BEL_05_2012	BEL_08_2002	BEL_08_2012
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \\ 0 \end{array}$			$\therefore \because \because$ $\therefore \quad \because \cdot$				
	BEL_09_2007	BEL_09_2009	BEL_09_2011	BRE_04_2009	BRE_05_2011	BRE_05_2012	BRE_06_2002
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$							
	BRE_08_2002	BRE_08_2011	BRE_08_2012	BRE_09_2008	BRE_09_2009	CHA_04_2009	CHA_05_2008
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 2 \\ 0 \end{array}$						$\stackrel{\cdot}{\bullet} \cdot$	$\begin{array}{ll} & \because \\ \because & \ddots \end{array}$
	CHA_05_2010	CHA_05_2011	CHA_05_2012	CHA_06_2002	CHA_08_2008	CHA_08_2009	CHA_08_2011
	CHA_08_2012	CHA_09_2002	CHA_09_2006	CHA_10_2010	DON_04_2009	DON_07_2012	MIR_04_2010
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$			$\stackrel{\vdots}{\because \because}$		$\underset{-0.000}{\vdots}$	$\stackrel{.}{\infty}$	
	MIR_04_2011	MIR_05_2002	MIR_07_2010	MIR_08_2011	MIR_09_2002	MON_08_2008	PÉA_04_2010
		PÉA_09_2007	0	0	51015	[$\quad 51015$	5101520
$\begin{array}{lllllllllllllllll}0 & 5 & 10 & 15 & 200 & 5 & 10 & 15 & 20\end{array}$				HFST			

Dugesia spp. (DUGE)
Nb points=70 Occ=54 Nb rivers=1 Nb sites=1 Nb surveys=2

Ecdyonurus venosus (EVEN)

Gyraulus spp._tot (GYRA)

Leuctra spp._tot (LEUC)
Nb points=1350 Occ=907 Nb rivers=9 Nb sites=20 Nb surveys=57

1096
402
147
54
19
6
0
05101520

HFST

Oulimnius troglodytes_a (OTRO_a)
Nb points=79 Occ=64 Nb rivers=2 Nb sites=2 Nb surveys=2

Oulimnius a_spp._tot (OULI_a)
Nb points=79 Occ=64 Nb rivers=2 Nb sites=2 Nb surveys=2

Radix spp._tot (RADI)

	Nb points=556 Occ=28	1 Nb rivers=5 Nb sites=10 Nb surveys=23			CHA_05_2010
	BAI_05_2011	CAL_04_1990	CAL_08_1989	CAL_12_1989	
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 19 \\ 6 \\ 2 \\ 0 \\ 0 \end{array}$					
	CHA_05_2011	CHA_06_2002	CHA_08_2011	DON_07_2011	GAU_06_2000
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 6 \\ 2 \\ 0 \end{array}-$		¢ $\quad .$.			
	MON_07_2011	PÉA_04_2010	PÉA_04_2011	PÉA_04_2012	PÉA_05_2008
	\ldots.				
	PÉA_07_2010	PÉA_07_2011	PÉA_07_2012	PRI_08_1990	PRI_11_1990
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 6 \end{array} .$					
	SAL_04_1990	SAL_08_1989	WIC_08_1989	0 ¢ $\quad \begin{array}{lll} \\ 0 & 10 & 15\end{array}$	0 5 10
$\begin{array}{r} 402 \\ 147 \\ 54 \\ 19 \\ 6 \\ 2 \\ 0 \end{array}$					
	$\begin{array}{llll}0 & 5 & 10 & 15\end{array}$	$\begin{array}{llll}0 & 5 & 10 & 15\end{array}$	$\begin{array}{llrl} 0 & 5 & 10 \\ \text { HFST } \end{array}$		

Radix ovata (ROVA)

Simuliidae n (SIMU_n)
Nb points=202 Occ=67 Nb rivers=4 Nb sites=4 Nb surveys=6

Tanytarsini (TANYT)

[^0]: $\bullet 1 \cdot 3 \bullet 5$
 $-2 \cdot 4 \bullet 6$

