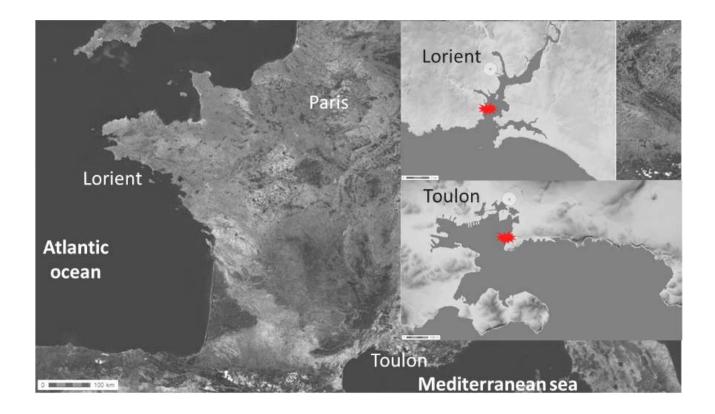
Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts

Running title: Meta-omics reveal shifts in macrofouling communities

Jean-François Briand^{1*}, Xavier Pochon^{2,3}, Susanna A. Wood², Christine Bressy¹, Cédric Garnier⁴, Karine Réhel⁵, Félix Urvois¹, Gérald Culioli¹ and Anastasija Zaiko^{2,3}

¹ Université de Toulon, MAPIEM-EA 4323, Toulon, France,

- ²Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand;
- ³ Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand;


⁴ Université de Toulon, PROTEE-EA 3819, Toulon, France,

⁵ Université de Bretagne Sud, LBCM-EA 3883, IUEM, Lorient, France,

*Corresponding author: <u>briand@univ-tln.fr</u>

Supplementary Figure S1:

Location of the two French sampling sites.

Supplementary Table S2:

Biocidal antifouling coatings composition (a) and associated wettability of the coatings (b)

(a)

Components	Nature of	Weight percent	Weight percent				
	components	(without biocide)	(including biocide)				
Néocryl B725	Binder	30.01	28.83				
Butyl acetate	Solvent	11.67	13.33				
Methoxypropanol	Solvent	23.33	26.67				
Disperbyk 180	Dispersing	3.00	3.00				
	agent						
Aerosil 200	Thickener	1.00	1.00				
Talc 0	Filler	9.66	6.72				
CaCO ₃	Filler	19.33	13.45				
TiO ₂	Pigment	2.00	2.00 5.00				
CuPy or ZnPy or Zineb [®]	Biocide	0					

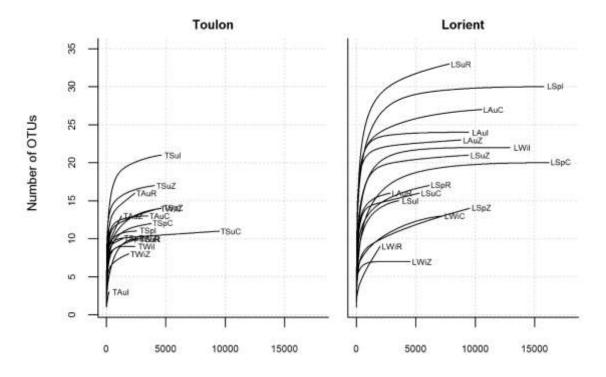
(b)

θ (°)	Diiodomethane	Glycerol	Water
B725 (M)	47.8 ± 1.0	77.0 ± 0.8	79.0 ± 0.8
$B725 + Zineb^{(i)}(I)$	48.6 ± 0.7	78.5 ± 0.9	69.4 ± 0.5
B725 + CuPy (C)	47.2 ± 1.4	77.2 ± 1.1	84.2 ± 0.3
B725 + ZnPy (Z)	44.5 ± 1.0	82.8 ± 2.1	87.6 ± 0.7

Supplementary Table S3:

Periods of immersion in 2012 at the four seasons for both sites

	Toulon	Lorient
Winter (Wi)	16 th February – 16 th March	1 st March – 2 nd April
Spring (Sp)	25 th April – 7 th June	2 nd April – 2 nd May
Summer (Su)	22 th June – 18 th July	17 th September – 28 th October
Autumn (Au)	15 th October – 13 th November	19 th November – 18 th December

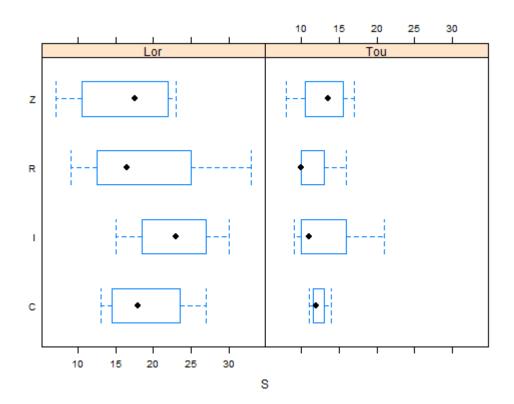

Supplementary Table S4:

Mean values of temperature, pH, salinity, oxygen, nutrients and metals during the immersion periods at the Toulon and Lorient sites. *data from technical report due to the dysfunction of the multiparameters probe at Lorient in autumn

	Temperature (°C)		рН		Salinity		O ₂ (%)		Zn	Cd	Pb	Cu	DOC	DIC	ΤN	Si(OH) ₄	PO4 ³⁻	NO₃ ⁻	
	MOY	SD	MOY	SD	MOY	SD	MOY	SD	(nM)	(nM)	(nM)	(nM)	(mg.L ⁻ 1)	(mg.L ⁻ 1)	(mg.L ⁻ 1)	(μM)	(μM)	(μM)	
TWi	13.08	0.59	8.03	0.06	38.7	0.07	89	2.6	66	0.11	1.1	24	0.90	27.2	0.05	0.63	0.08	1.7	l
TSp	16.90	1.31	8.20	0.02	38.1	0.18	104	3.4	73	0.10	1.4	24	0.98	26.7	0.05	0.61	0.04	1.8	
TSu	21.95	1.86	7.95	0.04	38.9	0.18	103	4.9	67	0.12	1.7	26	1.01	28.2	0.13	3.0	0.05	1.7	
TAu	17.30	1.35	8.61	0.14	37.8	0.93	82	3.1	93	0.13	1.7	23	0.99	30.1	0.14	5.8	0.04	7.5	
LWi	10.84	1.07	8.35	0.05	31.0	1.6	117	5.5	74	0.15	0.11	24	1.81	16.2	1.34	48	0.15	122	
LSp	11.87	0.50	8.27	0.05	32.3	1.4	104	4.8	73	0.17	0.18	41	2.37	17.9	1.09	17	0.10	54	
LSu	15.81	0.93	8.30	0.09	30.6	4.1	95	4.0	86	0.11	0.18	24	2.38	24.3	0.70	32	0.09	21	
LAu	11.9*		8.3*		31*		100*		63	0.13	0.24	36	3.22	17.5	2.33	67	0.10	122	

Supplementary Figure S5:

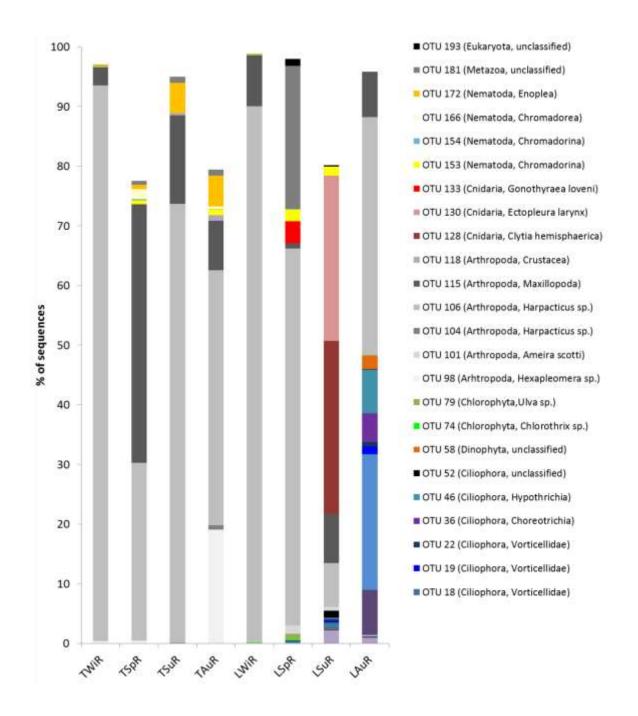
Rarefaction curves plotting the number of reads by the number of Operational Taxonomic Units (OTUs) for each of the samples from Toulon and Lorient locations.



Number of sequences

Supplementary Figure S6:

Species richness (S) determined from the settlement panels by metabarcoding in two studied locations (Lorient and Toulon) for each of the applied AF treatments


(T = Toulon / Winter = Wi, Spring = Sp, Summer = Su, Autumn = Au / R = PVC, I = B725 + Zineb, C = B725 + Copper pyrithione, Z = B725 + Zinc pyrithione)

Supplementary Figure S7:

Relative abundance of Operational Taxonomic Units (OTUs) characteristic of the eukaryotic communities at Toulon and Lorient on the reference surface (R) during the four seasons: both non-specific and frequent (i.e., at least at three seasons at both sites) and site specific (i.e. at least at two seasons at one site without any presence at the other) OTUs.

T = Toulon, Winter = Wi, Spring = Sp, Summer = Su, Autumn = Au.

