figshare
Browse

Manipulating Aromaticity to Redirect Topochemical Polymerization Pathways

Download (2.75 MB)
journal contribution
posted on 2025-04-15, 15:21 authored by Qingsong Zhang, Zhipeng Pei, Ah-Young Song, Miao Qi, Rebecca Shu Hui Khoo, Chongqing Yang, Tao Xia, Chen Zhou, Haiyan Mao, Zhiyuan Huang, Shiqi Lai, Yunfei Wang, Liang Z. Tan, Jeffrey A. Reimer, Jian Zhang, Michelle L. Coote, Yi Liu
Topochemical polymerization (TCP) represents an essential route to create regio- and stereoregular polymers through solid-state transformations. Herein, we present an innovative strategy for controlling topochemical polymerization pathways by tailoring the terminal group aromaticity in the para-azaquinodimethane (AQM) ring system. Substituting phenyl groups with less aromatic furyl units extends significant spin density delocalization across the conjugated core upon thermal activation, inducing significant diradicaloid characters at furyl positions and enabling unconventional reactivities in both solution and solid states. Thermal treatment in toluene yields a unique cyclophane dimer formed via furyl-methine C–C coupling, confirmed by X-ray crystallography, while solid-state reactions produce polymers formed via both intercolumnar furyl-methine coupling and intracolumnar methine–methine coupling. The spin-center-directed mechanism underlying these transformations is validated through theoretical modeling and isotopic labeling experiments. This study highlights the prowess of aromaticity modulation in functional pro-aromatic systems, which enables the synthesis of polymers with main chain structures that are otherwise difficult to access.

History