SUPPORTING INFORMATION

Low-Valent Tungsten Catalysis Enables Site-Selective IsomerizationHydroboration of Unactivated Alkenes

Tanner C. Jankins, ${ }^{\dagger}$ Raul Martin-Montero, ${ }^{\ddagger \S}$ Phillippa Cooper, ${ }^{\dagger}$ Ruben Martin, ${ }^{\ddagger \ddagger *}$ Keary M. Engle ${ }^{\dagger *}$
\dagger Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
\ddagger Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain $£$ ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
*Corresponding authors: rmartinromo@iciq.es; keary@scripps.edu
Table of Contents
General Information S-2
Reaction Information S-3
Reaction Optimization S-3
Characterization of New Compounds S-12
Determination of Deuterium Incorporation S-39
Determination of Enantiomeric Excess S-41
In Situ Monitoring of Reactions by ${ }^{1} \mathrm{H}$ NMR S-44
X-Ray Crystallography S-46
NMR Spectra S-73
References S-134

GENERAL INFORMATION

General Safety Considerations:

$W(C O)_{6}$ and other $M(C O)_{x}$ complexes used in this study can decompose to give off free CO, so all reactions run with $M(C O)_{x}$ complexes should be handled with the same precautions as those using gaseous CO, while taking into account any potential hazards introduced by the metal carbonyl species themselves.

All sealed reactions were allowed to cool to room temperature before being carefully opened in a well ventilated fumehood as gas build-up $\left(\mathrm{H}_{2}\right.$ and/or CO$)$ is commonly observed.

Reagents. All materials were used as received from commercial sources without further purification. $\mathrm{W}(\mathrm{CO})_{6}$ was purchased from Strem Chemicals 99.9% purity (Lot 31679900). $\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}$ was purchased from MilliporeSigma (Lot MKCH4360). HBpin was ordered from MilliporeSigma and stored in the glovebox freezer in between uses. THF was purchased from MilliporeSigma in 100-mL Sure/Seal bottles and used as received.

Analytical methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX instrument equipped with a 5 mm DCH cryoprobe (600 MHz and 151 MHz , respectively) and also on Bruker 300 MHz , Bruker 400 MHz and Bruker 500 MHz instruments at $20^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ spectra were reported relative to residual solvent signals unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated to residual solvent signals. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, hept $=$ heptet and $\mathrm{m}=$ multiplet. ${ }^{11} \mathrm{~B}$ NMR and ${ }^{19} \mathrm{~F}$ NMR were obtained with ${ }^{1} \mathrm{H}$ decoupling unless otherwise indicated. Coupling constants, J, are reported in Hertz. Gas chromatographic analyses were performed on Hewlett-Packard 6890 gas chromatography instrument with a FID detector. Flash chromatography was performed with EM Science silica gel 60 ($230-400$ mesh). Thin layer chromatography was used to monitor reaction progress and analyze fractions from column chromatography. For this purpose TLC Silica gel 60 F254 aluminum sheets from Merck were used. and visualization was achieved using UV irradiation and/or staining with potassium permanganate or cerium molybdate solution. High-resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization (positive mode) time of flight experiments.

REACTION INFORMATION

Reaction optimization

General Procedure. To a 6-mL vial equipped with a Teflon®-coated magnetic stir bar, 1a (17.5 $\mathrm{mg}, 0.100 \mathrm{mmol}$) was added, and the vial was then pumped into an argon-filled glovebox. The appropriate tungsten catalyst (specified amount) was added followed by ligand (if applicable) and solvent. The boron reagent was added, and the vial was sealed, removed from the glovebox, and heated in a preheated oil bath for the specified amount of time.

For reactions with HBpin: The reaction vessel was allowed to cool to room temperature and was vented in the fumehood. A $\sim 5-\mu \mathrm{L}$ aliquot was diluted in EtOAc and analyzed by GCMS or LCMS. For reactions with HBcat: The reaction vessel was allowed to cool to room temperature, and a solution of pinacol ($47 \mathrm{mg}, 0.400 \mathrm{mmol}$) in $\mathrm{NEt}_{3}(55 \mu \mathrm{~L}, 0.400 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 3 h , at which point a $\sim 5-\mu \mathrm{L}$ aliquot was diluted in EtOAc and analyzed by GCMS or LCMS.

Analysis of crude reactions: The LCMS and GCMS methods used for analysis were able to separate the γ-, δ-, and β-boryl products. The regioisomeric ratio (r.r.) was calculated by their relative integration. Isomerized alkene starting material peaks showed significant overlap with each other and could not be separated, however, the reduced alkane byproduct was separable from this mixture.

Table S1. Screening of boron reagents.

	boron reagent (x equiv)	$\xrightarrow[\substack{\text { THF (0.1 M), } \\ 70^{\circ} \mathrm{C}, 16 \mathrm{~h}}]{\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(20 \mathrm{~mol} \%)}$			reduced isomers
Entry	Boron reagent	Conv. (\%)	2a (\%)	W (\%)	Z (\%)
1	HBcat (3.0 equiv)	100	65	16	16
2	HBcat (4.0 equiv)	100	74	13	13
3	HBcat (5.0 equiv)	100	75	13	12
4	HBcat (3.0 equiv), rt	52	32	16	2
5	HBpin (2.0 equiv)	40	18	22	0
6	HBpin (3.0 equiv)	49	28	21	0
7	HBpin (4.0 equiv)	82	42	40	0
8	HBpin (5.0 equiv)	100	43	46	0
9	HBpin (3.0 equiv), rt	25	10	16	0
10	HBdan (3.0 equiv)	21	0	15	5

Reaction conditions: 1a (0.1 mmol), boron reagent (x equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(20 \mathrm{~mol} \%)$, THF $(1.0 \mathrm{~mL}), 70{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard. Bcat was converted to Bpin with pinacol and NEt_{3}. Entry 10, HBdan, no boron containing products were observed.

Table S2. Screening of precatalysts and solvent concentration.

Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathrm{HBpin}\left(4.0\right.$ equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(20 \mathrm{~mol} \%), 70^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard. Bcat was converted to Bpin with pinacol and NEt_{3}.

Table S3. Screening of solvent and solvent concentration.

Reaction conditions: 1a (0.1 mmol), HBpin (4.0 equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(5 \mathrm{~mol} \%)$, THF (1.0 mL), $70{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Screening of HBpin addition method and temperature.

Reaction conditions: 1a (0.1 mmol), HBpin (4.0 equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(5 \mathrm{~mol} \%)$, THF $(0.2 \mathrm{~mL}), 70{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with $1,3,5$-trimethoxybenzene as an internal standard.

Table S5. Concentration, time, and temperature screening.

Entry	Deviation from standard conditions	Conv. (\%)	2a (\%)	$\mathbf{W}(\%)$	$\mathbf{Z}(\%)$
$\mathbf{1}$	none	95	90	4	0
$\mathbf{2}$	24 h	95	90	4	0
$\mathbf{3}$	$\mathrm{~W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(7.5 \mathrm{~mol} \%)$	100	79	20	0
$\mathbf{4}$	$45^{\circ} \mathrm{C}$	96	76	16	0
$\mathbf{5}$	$\mathbf{1 a}(0.2 \mathrm{mmol})$ in THF $(0.3 \mathrm{~mL})$	100	93	3	0
$\mathbf{6}$	No W catalyst	20	0	5	0

Reaction conditions: 1a (0.1 mmol), HBpin (4.0 equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(5 \mathrm{~mol} \%)$, THF $(0.2 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard..

Table S6. Control reactions with 1ab.

Reaction conditions: 1ab (0.1 mmol), HBpin (4.0 equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(5 \mathrm{~mol} \%)$, THF $(0.5 \mathrm{~mL}), \mathrm{T}^{\circ} \mathrm{C}, 16$ h. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard.

Table S7. Control reactions with $\mathbf{1 a c}$.

Reaction conditions: 1ac (0.1 mmol), HBpin (4.0 equiv), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(5 \mathrm{~mol} \%)$, THF $(0.5 \mathrm{~mL}), \mathrm{T}^{\circ} \mathrm{C}, 16 \mathrm{~h}$. Conversion and yields using LC-MS with 1,3,5-trimethoxybenzene as an internal standard.

Table S8. Screening of different low-valent transition metals.

	Catalyst (5 mol\%) HBPin $(4 \mathrm{equiv})$ THF $(0.67 \mathrm{M}), 40^{\circ} \mathrm{C}$ 20 h		
Entry	Catalyst	2a (\%)	2a (r.r.)
1	$\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}$	93	>50:1
2	$\mathrm{Cr}(\mathrm{CO})_{6}$	nd	-
3	$\mathrm{Fe}_{2}(\mathrm{CO})_{9}$	6	3:1
4	$\mathrm{Mo}(\mathrm{PrCN})_{3}(\mathrm{CO})_{3}$	8	>50:1
5	$\mathrm{Ru}_{3}(\mathrm{CO})_{10}$	4	1:2
6	$\mathrm{Ni}(\mathrm{COD})_{2}$	nd	-
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	nd	-

Reaction conditions: 1a (0.1 mmol), HBpin (4.0 equiv), catlayst ($5 \mathrm{~mol} \%$), THF $(0.2 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$. Yields and r.r. determined by GC-MS with $1,3,5-$ trimethoxybenzene as an internal standard.

Table S9. Control reactions to determine the necessity of CuF_{2} additives and potential reaction mechanism.

Reaction conditions: 1ac (0.1 mmol), $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and CsF (1.5 equiv), CuF_{2} (25 $\mathrm{mol} \%), \mathrm{PCy}_{3}$ ($15 \mathrm{~mol} \%$), 2-MeTHF (1.0 mL), 2-PrOH (2 equiv) $100^{\circ} \mathrm{C}$, 20 h . Yields determined using ${ }^{1} \mathrm{H}$ NMR with 1,3,5-trimethoxybenzene as an internal standard.

Table S10. Limitations in alkene scope with brief explanation of reaction outcome.
alkene scope limitations

Scheme S1. δ, ε-Unsaturated amide under the optimized reaction conditions.

Scheme S2. Rationale for loss of regioselectivity when using dioxane as solvent.

Discussion: With 1,4-dioxane as solvent, approximately the same amount of anti-Markovnikov product is observed in the presence or absence of the W catalyst. Therefore, the decrease in regioselectivity in 1,4-dioxane as solvent is attributed to a non-W-catalyzed pathway that is promoted by 1,4-dioxane.

Scheme S3. Attempted experiments with substrates bearing bidentate directing groups.

nd
Discussion: These bidentate directing groups were unable to give any detectable hydroboration products. While the 8 -aminoquinoline (top) directing group gave a messy GCMS and LCMS trace (>10 peaks), the NH-Pic directing group (bottom) gave the isomerization/hydrocarbonylation product as the exclusive product. In this case, consumption of a CO ligand from $\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}$ would likely result in an unstable $\mathrm{W}(\mathrm{L})_{4}(\mathrm{CO})_{2}$ which is predicted to rapidly decompose.

never detected as byproduct

The hydrocarbonylation product shown above is observed with substrate bearing the specific NHPic bidentate directing group (Scheme S3). Other classes of bidentate directing groups, as well as the monodentate directing groups used in this study, did not give any hydrocarbonylation products. The identity of the precatalyst also did not affect whether or not hydrocarbonylation took place. For further studies on tungsten catalyzed hydrocarbonylation, see reference S1.

Scheme S4. Attempted synthesis putative alkyl-W intermediates.

Our previous synthesis of bidentate directing group supported alkyl-W(II)

Discussion: As neither of the bidentate directing groups tested in Scheme S3 provided the desired hydroboration product under standard catalytic conditions, alkyl-W(II) complexes supported by these directing groups, as previously prepared by our group, ${ }^{1}$ were deemed not to be appropriate organometallic model complexes for this catalytic system. Thus, mechanistic studied with these complexes were not pursued. Attempts to synthesize an alkyl-W(II) model complex using a monodentate amide directing group were unsuccessful.

Scheme $\mathbf{S 5}$. Control reactions for hydrogermylation reaction to provide product 3b.

Discussion: These data shown above demonstrate that the hydrogermanylation reaction is tungsten-catalyzed and that it likely proceeds through intermediacy of the α, β-unsaturated alkene 1ac. A non-catalyzed 1,4-reduction accounts for the main byproduct and explains why a lower yield is obtained when starting from 1ac.

Scheme S6. Control experiment showing the role of PCy_{3}.

Characterization of New Compounds

Synthesis of Starting Materials

General Procedure A: a solution of the corresponding acid (1.0 equiv), primary amine (1.1 equiv) and DMAP ($10 \mathrm{~mol} \%$) in DCM (0.33 M) was cooled to $0^{\circ} \mathrm{C}$. Subsequently, DCC (1.5 equiv) was added to the reaction, and the bath was removed, leaving the reaction stirring overnight. HCl (1 M) was then added ($\times 2$), and the mixture was shaken vigorously. The organic layer was then washed with NaHCO_{3} sat. and brine ($\times 3$). Finally, the organic phase was dried over MgSO_{4}, and the solvent was evaporated with a rotavap. Flash silica column chromatography was performed with a mixture of hexane/EtOAc as eluent.

General Procedure B: A round-bottomed flask was charged with DCM ($25 \mathrm{~mL}, 0.4 \mathrm{M}$), EDCHCl (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, $13 \mathrm{mmol}, 1.3$ equiv), and DMAP ($14 \mathrm{mmol}, 1.4$ equiv). The reaction flask was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and the carboxylic acid ($10 \mathrm{mmol}, 1.0$ equiv) was added. After stirring for 5 min , the substituted aniline ($12 \mathrm{mmol}, 1.2$ equiv) was added. The ice bath was then removed, and the reaction was allowed to stir for 16 hours at room temperature. Then, the reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$, and the organic layer was separated. The aqueous layer was then extracted with DCM $(2 \times 25 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated. The crude product was purified by flash silica column chromatography was performed with a mixture of hexane/EtOAc as eluent.

General Procedure \boldsymbol{C} : A solution of the corresponding acid (1.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (4.2 equiv) in THF (0.4 M) was cooled to $0^{\circ} \mathrm{C}$. Then, $\mathrm{ClCO}_{2} \mathrm{Me}$ (1 equiv) was added dropwise, and the resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. Subsequently, a solution of the secondary amine in THF (3 M) was added to the reaction mixture. The solution was stirred for 60 min at $0^{\circ} \mathrm{C}$, at which point the reaction was filtered to remove the precipitate that had formed. The filtrate was concentrated under vacuum, and flash silica column chromatography was performed with a mixture of hexane/EtOAc as eluent.

General Procedure D: HATU (1.2 equiv) was added to a solution of the corresponding acid (1.0 equiv), primary amine (1.2 equiv), and $\mathrm{Et}_{3} \mathrm{~N}$ (2.4 equiv) in DMF (0.2 M). The reaction was left to stir overnight. Then, it was quenched with 1 M NaOH , and the resulting mixture was extracted with DCM. Finally, the organic phase was dried over MgSO_{4}, and the solvent was evaporated with a rotavap. Flash silica column chromatography was performed with a mixture of hexane/EtOAc as eluent.

1a
\boldsymbol{N}-(Phenyl)pent-4-enamide (1a): Following General Procedure A, 4-pentenoic acid ($0.5 \mathrm{~mL}, 4.89$ mmol), aniline ($0.39 \mathrm{~mL}, 5.38 \mathrm{mmol}$), DMAP ($61 \mathrm{mg}, 0.48 \mathrm{mmol}$), and DCC ($1.03 \mathrm{~g}, 7.34 \mathrm{mmol}$) in DCM (15 mL) were used, affording the product as a white solid ($658 \mathrm{mg}, 77 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H})$, 5.89 (ddt, $J=16.8,10.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.96(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.4,137.8,136.9,129.0,124.3,119.8,116.0,36.9,29.4 \mathrm{ppm}$. Spectroscopic data for 1a match those previously reported in the literature. ${ }^{2}$

1b
\boldsymbol{N}-(4-Fluorophenyl)pent-4-enamide (1b): Following General Procedure B, 4-pentenoic acid $(1.22 \mathrm{~mL}, 12.0 \mathrm{mmol})$, 4-fluoroaniline ($1.33 \mathrm{~g}, 12.0 \mathrm{mmol}$), DMAP ($146 \mathrm{mg}, 1.22 \mathrm{mmol}$), and $\operatorname{EDC}(2.53 \mathrm{~g}, 13.2 \mathrm{mmol})$ in $\operatorname{DCM}(20 \mathrm{~mL})$ were used, affording the product as a white solid (1.83 $\mathrm{g}, 79 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45$ (dd, $J=8.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (s, 1H), 7.00 (t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{td}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{dq}, J=12.3,6.7 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.0,158.9\left(\mathrm{~d}, J_{C-F}\right.$ $=243.6 \mathrm{~Hz}), 136.3,133.3,121.2\left(\mathrm{dd}, J_{C-F}=7.8,3.5 \mathrm{~Hz}\right), 115.6,115.1\left(\mathrm{~d}, J_{C-F}=22.6 \mathrm{~Hz}\right), 36.2$, $28.9 \mathrm{ppm} .{ }^{\mathbf{1}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-118.2 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 b}$ match those previously reported in the literature. ${ }^{3}$

\boldsymbol{N}-(4-Chlorophenyl)pent-4-enamide (1c): Following General Procedure B, 4-pentenoic acid ($1.22 \mathrm{~mL}, 12.0 \mathrm{mmol}$), 4-chloroaniline ($1.53 \mathrm{~g}, 12.0 \mathrm{mmol}$), DMAP ($146 \mathrm{mg}, 1.22 \mathrm{mmol}$), and $\operatorname{EDC}(2.53 \mathrm{~g}, 13.2 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ were used, affording the product as a white solid (2.21 $\mathrm{g}, 88 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20$ ($\mathrm{s}, 1 \mathrm{H}$), 5.95-5.76 (m, 1H), 5.18-4.98 (m, 2H), 2.47 (m, 4H) ppm. ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.6,136.8,136.5,129.3,129.1,121.1,116.2,36.9,29.4 \mathrm{ppm}$. Spectroscopic data for $1 \mathbf{c}$ match those previously reported in the literature. ${ }^{3}$

\boldsymbol{N}-(4-Bromophenyl)pent-4-enamide (1d): Following General Procedure B, 4-pentenoic acid ($1.22 \mathrm{~mL}, 12.0 \mathrm{mmol}$), 4-bromoaniline ($2.064 \mathrm{~g}, 12.0 \mathrm{mmol}$), DMAP ($146 \mathrm{mg}, 1.22 \mathrm{mmol}$), and EDC ($2.53 \mathrm{~g}, 13.2 \mathrm{mmol}$) in DCM (20 mL) were used, affording the product as a white solid (1.93 $\mathrm{g}, 62 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.58-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.05-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{tt}, J=14.6,10.5,8.4 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.8,137.0,136.8,132.0,121.5,116.9,116.1,36.8,29.4 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 d}$ match those previously reported in the literature. ${ }^{4}$

\boldsymbol{N}-(4-Methoxyphenyl)pent-4-enamide (1e): Following General Procedure A, 4-pentenoic acid ($0.5 \mathrm{~mL}, 4.89 \mathrm{mmol}$), p-anisidine ($615 \mathrm{mg}, 5.38 \mathrm{mmol}$), DMAP ($61 \mathrm{mg}, 0.48 \mathrm{mmol}$), and DCC $(1.03 \mathrm{~g}, 7.34 \mathrm{mmol})$ in DCM (15 mL) were used, affording the product as a brown solid $(832 \mathrm{mg}$, 83% yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{bs}, 1 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H})$, 5.88 (ddt, $J=16.8,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=17.1,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.38$ (m, $4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.4,156.4,136.9,130.9,121.8,115.8,114.1,55.5$, $36.6,29.5 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 e}$ match those previously reported in the literature. ${ }^{3}$

$1 f$
Ethyl 4-(pent-4-enamido)benzoate (1f): Following General Procedure A, 4-pentenoic acid (0.5 $\mathrm{mL}, 4.89 \mathrm{mmol}$), p-anisidine ($826 \mathrm{mg}, 5.38 \mathrm{mmol}$), DMAP ($61 \mathrm{mg}, 0.48 \mathrm{mmol}$), and DCC (1.03 g, 7.34 mmol) in DCM (15 mL) were used, affording the product as a white solid ($966 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta=8.08-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H})$, $5.96-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.22-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{dt}, J=3.5,0.9 \mathrm{~Hz}, 4 \mathrm{H})$, $1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.7,166.1,141.9,136.6,130.8$, $125.9,118.7,116.1,60.8,36.9,29.2,14.3 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 f}$ match those previously reported in the literature. ${ }^{5}$

\boldsymbol{N}-(3-Iodophenyl)pent-4-enamide (1g): Following General Procedure B, 4-pentenoic acid (1.22 $\mathrm{mL}, 12.0 \mathrm{mmol}$), 3-iodoaniline ($2.62 \mathrm{~g}, 12.0 \mathrm{mmol}$), DMAP ($146 \mathrm{mg}, 1.22 \mathrm{mmol}$), and EDC (2.53 $\mathrm{g}, 13.2 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ were used, affording the product as a white solid $(2.11 \mathrm{~g}, 58 \%$
yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.92(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=14.8,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J$ $=8.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (ddt, $J=16.9,10.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.6,139.0,136.8,133.4$, $130.6,128.6,119.0,116.2,94.2,36.8,29.4 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 g}$ match those previously reported in the literature. ${ }^{6}$

1h
N-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pent-4-enamide (1h): Following General Procedure B, 4-pentenoic acid ($2.00 \mathrm{~mL}, 20.0 \mathrm{mmol}$), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline ($4.38 \mathrm{~g}, 20.0 \mathrm{mmol}$), DMAP ($244 \mathrm{mg}, 2.00 \mathrm{mmol}$), and EDC (4.17 g , $22.0 \mathrm{mmol})$ in $\mathrm{DCM}(40 \mathrm{~mL})$ were used, affording the product as a white solid ($4.49 \mathrm{~g}, 75 \%$ yield $)$. ${ }^{1} H$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, 5.88 (ddt, $J=16.8,10.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ $(\mathrm{m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.5,140.6,136.9,135.9,118.6$, 116.1, 83.8, 37.1, 29.4, 25.0 ppm . (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~B}\right)[\mathrm{M}+\mathrm{H}]^{+}: 302.1922$, found 302.1920 .

$1 i$
1-(Indolin-1-yl)pent-4-en-1-one (1i): Following General Procedure B, 4-pentenoic acid (2.00 $\mathrm{mL}, 20.0 \mathrm{mmol}$), indoline ($2.25 \mathrm{~mL}, 20.0 \mathrm{mmol}$), DMAP ($244 \mathrm{mg}, 2.0 \mathrm{mmol}$) and EDC-HCl (4.17 $\mathrm{g}, 22.0 \mathrm{mmol})$ in DCM (40 mL) were used, affording the product as a white solid ($2.04 \mathrm{~g}, 51 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{q}, J=7.0,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddt}, J=16.1,11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{q}, J=5.9,5.1 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.6,143.1,137.5,131.1,127.7,124.6,123.6,117.1,115.4,48.0$, 35.3, 28.7, 28.1 ppm . HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}: 202.1226$, found 202.1224.

1-(3,4-Dihydroquinolin-1(2H)-yl)pent-4-en-1-one (1j): Following General Procedure D, pent-4-enoic acid ($0.60 \mathrm{~mL}, 6.00 \mathrm{mmol}$), 1,2,3,4-tetrahydroquinoline ($615 \mathrm{mg}, 4.61 \mathrm{mmol}$), HATU $(2.281 \mathrm{~g}, 6.00 \mathrm{mmol})$, pyridine ($0.75 \mathrm{~mL}, 9.24 \mathrm{mmol})$ in DCM (12 mL) were used, affording the product as a colorless oil ($723 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.20-7.08(\mathrm{~m}$, $4 \mathrm{H}), 5.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{p}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta=172.3,137.5,128.6,128.6,128.6,126.2,125.4$, 124.8, 115.3, 43.0, 33.9, 29.9, 26.9, 24.3 ppm . HRMS calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}: 216.1383$, found 203.1384.

\boldsymbol{N}-Methyl- N-phenylpent-4-enamide (1k): Following the General Procedure C, 4-pentenoic acid $(1.0 \mathrm{~mL}, 9.78 \mathrm{mmol}), N$-methylaniline ($1.62 \mathrm{~mL}, 15.11 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(5.71 \mathrm{~mL}, 40.9 \mathrm{mmol})$ and methyl carbonochloridate $(0.87 \mathrm{~mL}, 9.78 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ were used, affording the product as a yellow oil ($1.40 \mathrm{~g}, 74 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.82(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.3,144.1,137.5$, 129.7, 127.7, 127.3, 114.9, 37.3, 33.4, 29.4 ppm . Spectroscopic data for $\mathbf{1 k}$ match those previously reported in the literature. ${ }^{7}$

11
1-Morpholinopent-4-en-1-one (11): Following General Procedure D, pent-4-enoic acid (0.70 mL , 6.86 mmol), morpholine ($0.54 \mathrm{~mL}, 6.24 \mathrm{mmol}$), HATU ($2.61 \mathrm{~g}, 6.86 \mathrm{mmol}$), and pyridine (0.50 $\mathrm{mL}, 6.24 \mathrm{mmol})$ in DCM $(12 \mathrm{~mL})$ were used, affording the product as a colorless oil (550 mg , 52% yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.91-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99 (dd, $J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.56(\mathrm{~m}, 6 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.36$ (m, 4H) ppm.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta=171.1,137.4,115.5,67.1,66.8,46.1,42.0,32.4,29.3 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 1}$ match those previously reported in the literature. ${ }^{8}$

2-Methyl- \mathbf{N}-phenylpent-4-enamide (1m): Following the General Procedure D, 2-methylpent-4enoic acid ($0.80 \mathrm{~mL}, 6.86 \mathrm{mmol}$), aniline ($0.57 \mathrm{~mL}, 6.24 \mathrm{mmol}$), HATU ($2.61 \mathrm{~g}, 6.86 \mathrm{mmol}$) and pyridine ($0.50 \mathrm{~mL}, 6.24 \mathrm{mmol}$) in $\mathrm{DCM}(12 \mathrm{~mL})$ were used, affording the product as a beige solid ($980 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.27$ (m, 2H), 7.14-7.00 (m, 1H), 5.89-5.74 (m, 1H), $5.11(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=174.3,138.0,135.8,129.1,124.4,120.1,117.4,42.3,38.5,17.6 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 m}$ match those previously reported in the literature. ${ }^{9}$

2-Benzyl- N-phenylpent-4-enamide (1n): Following General Procedure B, 2-benzylpent-4-enoic acid ($500 \mathrm{mg}, 2.63 \mathrm{mmol}$), aniline ($240 \mu \mathrm{~L}, 2.63 \mathrm{mmol}$), DMAP ($32 \mathrm{mg}, 0.26 \mathrm{mmol}$), and EDC$\mathrm{HCl}(554 \mathrm{mg}, 2.63 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ were used, affording the product as a white solid (390 $\mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.37-7.18(\mathrm{~m}, 9 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 5.87(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddt, $J=10.1,1.9$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.45-$ $2.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.6,139.7,137.5,135.5,129.0,128.7$, 126.6, 124.4, 120.3, 117.6, 51.1, 38.9, 36.9 ppm . HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 266.1539, found 266.1538 .

2-Phenyl- N-phenylpent-4-enamide (10): Following General Procedure B, 2-phenyl-pent-4enoic $\operatorname{acid}^{10}(370 \mathrm{mg}, 2.10 \mathrm{mmol})$, aniline ($287 \mu \mathrm{~L}, 3.15 \mathrm{mmol}$), HATU ($1.198 \mathrm{~g}, 3.150 \mathrm{mmol}$)
and pyridine $(0.50 \mathrm{~mL}, 6.24 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ were used, affording the product as a white solid ($210 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.18(\mathrm{~m}, 9 \mathrm{H}), 7.15-7.05(\mathrm{~m}$, $1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddt, $J=10.1,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=$ $14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.6,139.7,137.5,135.5,129.0,128.7$, 126.6, 124.4, 120.3, 117.6, 51.1, 38.9, 36.9 ppm . HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 252.1383, found 252.1383.

2,2-Dimethyl- N-phenylpent-4-enamide (1p): Following General Procedure D, 2,2-dimethylpent-4-enoic acid ($0.5 \mathrm{~g}, 3.9 \mathrm{mmol}$), aniline ($0.42 \mathrm{~mL}, 4.68 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.36 \mathrm{~mL}, 9.4$ $\mathrm{mmol})$, and HATU ($1.76 \mathrm{~g}, 4.68 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ were used, affording the product as a white solid ($657 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.09(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.30$ (s, 6H) ppm. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.6,138.0,134.4,129.1,124.4,120.2,118.6$, 45.4, 43.0, 25.4 ppm . HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}: 206.1539$, found 206.1540.

1q
\boldsymbol{N}-(tert-Butyl)pent-4-enamide (1q): Following General Procedure D, 4-pentenoic acid (0.5 mL , $4.89 \mathrm{mmol}), t$-butylamine ($0.61 \mathrm{~mL}, 5.85 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 11.75 \mathrm{mmol})$ and HATU (2.2 g , $5.85 \mathrm{mmol})$ in DMF (25 mL) were used, affording the product as a pale yellow oil ($521 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta=5.81$ (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.51(\mathrm{~s}, 1 \mathrm{H}), 5.10-$ $4.83(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.6,137.2,115.4,51.2,36.7,29.7,28.8 \mathrm{ppm}$. HRMS calcd. for $\left(\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NNaO}\right)$ $[\mathrm{M}+\mathrm{Na}]^{+}: 178.1202$, found 178.1195.

1r
\boldsymbol{N}-Butylpent-4-enamide (1r): Following General Procedure D, 4-pentenoic acid ($0.5 \mathrm{~mL}, 4.89$ $\mathrm{mmol}), n$-butylamine ($0.58 \mathrm{~mL}, 5.85 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 11.75 \mathrm{mmol})$, and HATU ($2.2 \mathrm{~g}, 5.85$ mmol) in DMF (25 mL) were used, affording the product as pale-yellow oil ($623 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.81(\mathrm{ddt}, J=16.8,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{bs}, 1 \mathrm{H}), 5.19-4.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.24(\mathrm{td}, J=7.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33(\mathrm{dq}, J=14.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=172.2,137.1,115.5,39.2,35.9,31.7,29.7,20.0,13.7 \mathrm{ppm}$. Spectroscopic data for $1 \mathbf{r}$ match those previously reported in the literature. ${ }^{11}$

\boldsymbol{N}-Benzylpent-4-enamide (1s): Following General Procedure B, 4-pentenoic acid ($2.00 \mathrm{~mL}, 20.0$ mmol), benzylamine ($2.143 \mathrm{~g}, 20.0 \mathrm{mmol}$), DMAP ($244 \mathrm{mg}, 2.0 \mathrm{mmol}$), and EDC-HCl (4.17 g , $22.0 \mathrm{mmol})$ in $\mathrm{DCM}(40 \mathrm{~mL})$ were used, affording the product as a white solid ($3.36 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{ddt}, J=16.8,10.2$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dq}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 (dd, $J=6.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37-2.23 (m, 2H) ppm. ${ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=172.1,138.4,137.1,128.8,127.9,127.6,115.8,43.7,36.0,29.7 \mathrm{ppm}$. HRMS calcd. for $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}: 190.1226$, found 190.1226 .

Benzyl 3-(2-(pent-4-enamido)ethyl)-1H-indole-1-carboxylate (1t): The indole nitrogen was protected according to known procedure. ${ }^{12}$ Benzyl $1 H$-imidazole-1-carboxylate ($222 \mathrm{mg}, 1.1$ mmol) and N -(2-(1H-indol-3-yl)ethyl)pent-4-enamide ($242 \mathrm{mg}, 1.00 \mathrm{mmol})^{13}$ were dissolved in
$\mathrm{MeCN}(3 \mathrm{~mL})$, and $\mathrm{DBU}(30 \mu \mathrm{~L}, 0.200 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 1 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, and the mixture was stirred for 10 min before being extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and concentrated. The crude material was then purified by flash silica column chromatography using EtOAc:hexane (1:3) as eluent to afford the product as a white solid ($310 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.17(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.30(\mathrm{~m}, 8 \mathrm{H}), 5.77(\mathrm{ddt}, J=16.9,10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 3 \mathrm{H}), 5.13-4.86$ (m, 2H), 3.59 (q, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.22$ (dd, $J=8.2$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.6,137.4,135.5,129.2,128.9,125.3,123.4$, 123.1, 119.4, 119.1, 116.0, 115.7, 69.1, 39.3, 36.2, 29.9, 25.5 ppm . HRMS calcd. For $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 377.1860$, found 377.1862 .

N-(2-(Cyclohex-1-en-1-yl)ethyl)pent-4-enamide (1u): Following General Procedure D, 4pentenoic acid ($0.5 \mathrm{~mL}, 4.89 \mathrm{mmol}$), 2-(cyclohex-1-en-1-yl)ethan-1-amine ($0.82 \mathrm{~mL}, 5.85 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 11.75 \mathrm{mmol})$, and HATU ($2.2 \mathrm{~g}, 5.85 \mathrm{mmol}$) in DMF (25 mL) were used, affording the product as pale-yellow semisolid ($670 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.95-$ 5.68 (m, 1H), 5.45 (s, 2H), 5.10-4.96 (m, 2H), 3.32 (q, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.1,137.1,134.6,123.5,115.5,37.6,37.0,35.9$, 29.6, 27.8, 25.2, 22.8, 22.3 ppm. HRMS calcd. for ($\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}$) $[\mathrm{M}+\mathrm{H}]^{+}$: 208.1696, found 208.1692.

4-(Pent-4-enamido)phenyl pent-4-enoate (1v): Following General Procedure A, 4-pentenoic $\operatorname{acid}(0.5 \mathrm{~mL}, 4.89 \mathrm{mmol}), 4$-aminophenol ($545 \mathrm{mg}, 5.38 \mathrm{mmol}$), DMAP ($61 \mathrm{mg}, 0.48 \mathrm{mmol}$) and DCC ($1.03 \mathrm{~g}, 7.34 \mathrm{mmol}$) in DCM (15 mL), affording the product as a pale-brown solid (400 mg , 59% yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{bs}, 1 \mathrm{H}), 7.10-6.96(\mathrm{~m}, 2 \mathrm{H})$,
$5.89(\mathrm{~m}, 2 \mathrm{H}), 5.20-4.95(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.7,170.4,146.8,136.8,136.2,135.5,121.9,120.8,115.9,36.7,33.6,29.4$, 28.8 ppm . HRMS calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 272.1292$, found 272.1284.

1xa
(\boldsymbol{E})- \boldsymbol{N}-Phenylhex-4-enamide (1xa): Following General Procedure A, (E)-hex-4-enoic acid (1.14 $\mathrm{g}, 10.0 \mathrm{mmol}$), aniline ($0.91 \mathrm{~mL}, 11.1 \mathrm{mmol}$), DMAP ($120 \mathrm{mg}, 1.0 \mathrm{mmol}$), and DCC ($2.05 \mathrm{~g}, 13.35$ $\mathrm{mmol})$ in $\mathrm{DCM}(30 \mathrm{~mL})$ were used, affording the product as a white solid ($1.2 \mathrm{~g}, 63 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.89 (ddt, $J=16.8,10.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-4.94$ (m, 2H), 2.63-2.37 (m, 4H), 1.66 (d, J $=6.0 \mathrm{~Hz} 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.4,137.8,136.9,129.0,124.3,119.8$, 116.0, 36.9, 29.4 ppm . Spectroscopic data for 1xa match those previously reported in the literature. ${ }^{2}$

\boldsymbol{N}-Phenylhex-5-enamide (1xb) Following General Procedure A, 5-pentenoic acid (1.0 g, 8.76 mmol), aniline ($0.8 \mathrm{~mL}, 9.63 \mathrm{mmol}$), DMAP ($106 \mathrm{mg}, 0.88 \mathrm{mmol}$) and DCC ($1.80 \mathrm{~g}, 13.14 \mathrm{mmol}$) in DCM (30 mL) were used, affording the product as a white solid ($1.28 \mathrm{~g}, 77 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}$, $1 \mathrm{H}), 5.91-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.18-4.87(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84$ $(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3$) \delta=171.0,137.8,129.0,124.2,119.7$, $115.5,36.9,33.0,24.5 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 x b}$ match those previously reported in the literature. ${ }^{14}$

3-Methyl- \boldsymbol{N}-phenylpent-4-enamide (1z): Following General Procedure A, 3-methylpent-4-enoic acid ($1.0 \mathrm{~mL}, 8.76 \mathrm{mmol}$), aniline ($0.8 \mathrm{~mL}, 9.63 \mathrm{mmol}$), DMAP ($106 \mathrm{mg}, 0.88 \mathrm{mmol}$), and DCC $(1.80 \mathrm{~g}, 13.14 \mathrm{mmol})$ in 30 mL of DCM were used, affording the product as a white solid $(1.16 \mathrm{~g}$, 70% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.57-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{ddd}, \mathrm{J}=17.3,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.12(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.24$ $(\mathrm{m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=167.0,142.6,137.8$, $129.0,124.3,119.9,113.9,44.8,34.8,19.7 \mathrm{ppm}$. Spectroscopic data for $\mathbf{1 y}$ match those previously reported in the literature. ${ }^{9}$

3-Methyl- N-phenylpent-3-enamide (1aa): Following General Procedure D, 4-methylpent-4enoic acid ($250 \mathrm{mg}, 2.19 \mathrm{mmol}$), aniline ($0.2 \mathrm{~mL}, 2.19 \mathrm{mmol}$), DMAP ($106 \mathrm{mg}, 0.88 \mathrm{mmol}$), and HATU ($1.083 \mathrm{~g}, 1.85 \mathrm{mmol}$) in 3 mL of DCM were used, affording the product as a white solid $\left(155 \mathrm{mg}, 37 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=23.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.60,147.69,144.53,129.16,124.41,119.92$, $111.05,35.96,33.27,22.67 \mathrm{ppm}$. Spectroscopic data for 1aa match those previously reported in the literature. ${ }^{2}$

Catalytic Reactions

General Procedure E: An oven-dried $8-\mathrm{mL}$ screw-cap test tube containing a Teflon®-coated magnetic stir bar was charged with the alkenyl amide (0.20 mmol). The test tube was introduced into an argon-filled glovebox, where it was further charged with $\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}(3.8 \mathrm{mg}, 5$ mol\%) in THF (0.3 mL). Subsequently, HBpin ($116 \mu \mathrm{~L}, 4$ equiv) was added, and the tube was removed from the glovebox and stirred (approximately 800 rpm) at $40^{\circ} \mathrm{C}$ for 20 h . After this period of time, the reaction mixture was diluted with EtOAc and transferred to a round-bottom flask. After concentration on a rotavap, the crude material was purified by flash silica column chromatography with a mixture of hexane/EtOAc as eluent.

2a
N-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (2a): Following General Procedure E, N-(phenyl)pent-4-enamide (1a) ($35.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), W $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4$ $\mathrm{mg}, 5 \mathrm{~mol} \%$), and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($62 \mathrm{mg}, 91 \%$ yield) by using DCM/MeCN (95/5) as eluent. ${ }^{1} \mathbf{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.61(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{dd}, J=14.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{ddq}, J=39.5,13.7,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38(\mathrm{dq}, J=9.9,5.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 12 \mathrm{H}), 0.96$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.7,138.4,129.0,123.9,119.6,83.5,39.1,24.9,24.9,24.8$, 23.9, 13.4 ppm. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 304.2079$, found 304.2078.

2b

N -(4-Fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide

Following General Procedure E, N-(4-fluorophenyl)pent-4-enamide (1b) ($38.6 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($56 \mathrm{mg}, 87 \%$ yield) by using DCM/MeCN (95/5) as eluent. Single crystals suitable for X-ray diffraction were grown by slow evaporation from a concentrated EtOAc solution. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.61(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.7,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=$
$8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{dd}, J=14.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dq}, J=14.7$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{dq}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{p}, J=6.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $12 \mathrm{H}) 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.1,158.6\left(\mathrm{~d}, J_{C-F}=242.7\right.$ $\mathrm{Hz}), 133.8\left(\mathrm{~d}, J_{C-F}=2.8 \mathrm{~Hz}\right), 120.7\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{C-F}=22.5 \mathrm{~Hz}\right), 83.0,38.4,24.4$, 24.3, 23.4, 21.8, $12.8 \mathrm{ppm} .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-118.9 \mathrm{ppm}$. X-ray (CCDC 2012996). ${ }^{16}$ HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BFNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 322.1984$, found 322.1984 .

N-(4-Chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide
Following General Procedure E, N-(4-chlorophenyl)pent-4-enamide (1c) ($42.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($60 \mathrm{mg}, 85 \%$ yield) by using DCM/MeCN (95/5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.62(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 2.52-2.36(\mathrm{~m}$, $2 \mathrm{H}), 1.62-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 12 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta=171.8,136.9,129.0,128.8,120.8,83.6,39.1,25.0,24.9$, 24.0, 13.3 ppm (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BClNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 338.1689$, found 338.1689.

2d
\boldsymbol{N}-(4-Bromophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide
Following General Procedure E, N-(4-bromophenyl)pent-4-enamide (1d) ($50.8 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$ affording the title compound as a white solid ($62 \mathrm{mg}, 81 \%$ yield) by using DCM/MeCN (95/5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.67(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{dd}, J=14.8,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 12 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
$171.8,137.4,132.0,121.1,116.3,83.6,39.1,24.9,24.9,23.9,22.3,13.3 \mathrm{ppm}$. HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BBrNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 382.1184$, found 382.1183.

N-(4-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (2e):
Following General Procedure E, N-(4-methoxyphenyl)pent-4-enamide (1e) ($41.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a brown solid ($55 \mathrm{mg}, 85 \%$ yield) by using hexane/EtOAc (70/30) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.51(\mathrm{bs}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=171.4,156.0,131.4,121.3,114.0,83.3,55.4,38.8,24.8,24.7,23.9,13.2 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BNO}_{4}\right)[\mathrm{M}+\mathrm{H}]^{+}: 333.2220$, found 333.2224 .

Ethyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamido)benzoate
(2f):
Following General Procedure E, ethyl 4-(pent-4-enamido)benzoate (1f) ($50.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}$, 4 equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid (51 mg , 65% yield) by using hexane/EtOAc (75/25) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.08-7.94$ $(\mathrm{m}, 2 \mathrm{H}), 7.83(\mathrm{bs}, 1 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.43$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 12 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.9,166.2,142.4,130.7,125.5,118.4,83.5,60.8,39.1,24.8,24.7,23.8$, $14.3,13.2 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{BNO}_{5}\right)[\mathrm{M}+\mathrm{H}]^{+}: 375.2326$, found 375.2324.

2 g
3-Hydroxy- N -(3-iodophenyl)pentanamide (2g): Following General Procedure E, N -(3-Iodophenyl)pent-4-enamide ($\mathbf{1 g}$) $(60.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$. Prior to isolation, the Bpin group was oxidized to the alcohol upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ $(30 \%)(41 \mu \mathrm{~L}, 0.400 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ and THF (1 mL), affording the title compound as a white powder ($48 \mathrm{mg}, 75 \%$ yield) by using hexane/EtOAc (70/30) as eluent. ${ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{qd}, J=7.2,5.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.5,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-1.69(\mathrm{~s}, 1 \mathrm{H}), 1.69-1.50(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.02$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.5,138.9,133.4,130.6,128.7,119.2$, 94.2, 70.3, 43.6, 30.1, 9.9 ppm . HRMS calcd. for $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{INO}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}: 320.0142$, found 320.0141.

2h
3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)phenyl)hexanamide (2h): Following a modified General Procedure E, N -(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pent-4-enamide (1h) ($60.2 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and HBpin ($145 \mu \mathrm{~L}, 5$ equiv) were used at $40^{\circ} \mathrm{C}$ for 48 h , affording the title compound as a white solid ($58 \mathrm{mg}, 65 \%$ yield) by using acetone/hexanes (10/90) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=14.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{dq}, J=14.8,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47$ (dp, $J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}), 1.24(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $12 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.8,141.0,135.9,118.3$, 83.8, 83.6, 39.3, 25.0, 24.8, 24.7, 24.0, 13.3 ppm . (The carbons attached to boron were not
observed due to quadrupolar relaxation $)$. HRMS calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{NO}_{5}\right)[\mathrm{M}+\mathrm{H}]^{+}: 430.2931$, found 430.2939.

1-(Indolin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-1-one (2i): Following General Procedure E, (indolin-1-yl)pent-4-en-1-one (1i) (40.2 mg, 0.20 mmol), W(CO) $)_{3}(\mathrm{MeCN})_{3}$ ($4 \mathrm{mg}, 5 \mathrm{~mol} \%$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($51 \mathrm{mg}, 75 \%$ yield) by using $\mathrm{DCM} / \mathrm{MeCN}(95 / 5)$ as eluent. The same reaction was performed on gram scale (1i) ($1.05 \mathrm{~g}, 5 \mathrm{mmol}$), affording the title compound ($1.400 \mathrm{~g}, 85 \%$ yield). Single crystals suitable for X-ray diffraction were grown by slow evaporation from acetone. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 1 \mathrm{H})$, 4.04 (dtd, $J=18.4,10.1,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.17$ (t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~h}, J=9.7,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{dp}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.7,143.3,131.0,127.5,124.5,123.3$, 117.0, 82.9, 47.8, 38.0, 28.1, 24.9, 24.8, 23.7, 13.7 ppm (The carbon attached to boron was not observed due to quadrupolar relaxation). X-ray (CCDC 2033217). ${ }^{16}$ HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NBO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 330.2235$, found 330.2235.

1-(3,4-Dihydroquinolin-1(2H)-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-1-

 one (2j): Following General Procedure E, 1-(dihydroquinolin-1-yl)pent-4-en-1-one (1i) (42.2 mg, $0.20 \mathrm{mmol}), \mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($52 \mathrm{mg}, 73 \%$ yield) by using $\mathrm{DCM} / \mathrm{MeCN}(95 / 5$) as eluent. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.21-7.00(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{qd}, J=16.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.88(\mathrm{~m}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.45(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 14 \mathrm{H}), 0.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.58,138.91,128.51,128.50,126.08,125.08,124.79,82.77$,37.12, 26.97, 24.98, 24.94, 24.18, 23.71, 13.63. HRMS calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NBO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 344.2392 , found 344.2388 .

N-Methyl- N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide
Following General Procedure E, N-methyl- N-phenylpent-4-enamide ($\mathbf{1 k}$) ($37.9 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a yellow oil (45.1 $\mathrm{mg}, 71 \%$ yield) by using hexane/EtOAc (90/10) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 12 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.6,144.2,129.5,127.5,127.2,82.6,37.3,36.1,24.8$, $24.8,23.5,13.4 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~B}\right)[\mathrm{M}+\mathrm{H}]^{+}: 317.2271$, found 317.2266.

1-Morpholino-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-1-one (21): Following General Procedure E, 1-morpholinopent-4-en-1-one (1r) ($33.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin (116 $\mu \mathrm{L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a colorless oil ($35.6 \mathrm{mg}, 60 \%$ yield) by using hexane/EtOAc (10/90) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.69-3.61(\mathrm{~m}$, $4 \mathrm{H}), 3.61-3.35(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.17(\mathrm{~m}$, $13 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.5,82.7,67.1,66.7,45.9$, $42.3,35.0,25.0,24.9,23.8,13.7 \mathrm{ppm}$ (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{BNO}_{4}\right)[\mathrm{M}+\mathrm{OH}]^{-}$: 313.2175 , found 313.2177.

2m
2-Methyl- N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide
(2m):
Following General Procedure E, 2-methyl- N-phenylpent-4-enamide (1m) ($37.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($58.8 \mathrm{mg}, 93 \%$ yield; $>20: 1$ d.r.) by using DCM/MeCN (97.5/2.5) as eluent. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.88(\mathrm{bs}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.00(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}$, $1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 16 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=175.2,138.7,129.1,123.8,119.5,83.7,44.1,25.1,25.0,21.9,17.5,13.6 \mathrm{ppm}$ (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 317.2277$, found 317.2272.

2-Benzyl- N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (2n): Following General Procedure E, 2-benzyl- N-phenylpent-4-enamide (1n) ($53.1 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($66 \mathrm{mg}, 81 \%$ yield; $>20: 1$ d.r.) by using $\mathrm{DCM} / \mathrm{MeCN}(95 / 5)$ as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 13 \mathrm{H}), 1.02(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.6,140.3,138.1,129.1,128.8,128.6$, $126.4,123.8,119.7,83.5,52.8,38.4,25.0,25.0,22.2,13.5 \mathrm{ppm}$ (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{BNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 394.2548 , found 394.2550 .

2-Benzyl-3-hydroxy-N-phenylpentanamide (2na): Following General Procedure E, 2-benzyl-N-phenylpent-4-enamide (1n) $(53.1 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and HBpin $\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$. Prior to isolation, the Bpin group was oxidized to the alcohol upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)(41 \mu \mathrm{~L}, 0.400 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ and THF (1 mL), affording the title compound as a white powder ($39 \mathrm{mg}, 69 \%$ yield; $>20: 1$ d.r.) by using hexane/EtOAc (70/30) as eluent. Single crystals suitable for X-ray diffraction were grown by slow evaporation from a concentrated acetone solution. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{~s}, 1 \mathrm{H})$, $7.28-7.12(\mathrm{~m}, 9 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.4,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.97(\mathrm{dd}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H})$. (The OH proton could not accurately be identified, likely due to strong H-bonding with the carbonyl oxygen). ${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta=173.14,139.26,137.28,129.10,129.07$, 128.87, 126.79, 124.77, 120.56, 73.63, 54.92, 37.09, 29.00, 10.59. X-ray (CCDC 2045265). ${ }^{16}$ HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}: 284.1645$, found 284.1645.

(Trans)-3-hydroxy-N,2-diphenylpentanamide (20): Following General Procedure E, 2-phenyl- N -phenylpent-4-enamide ($\mathbf{1 0}$) ($60.2 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$. Prior to isolation, the Bpin group was oxidized to the alcohol upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ $(41 \mu \mathrm{~L}, 0.400 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ and THF (1 mL), affording the title compound as a white powder ($41 \mathrm{mg}, 76 \%$ yield; $>20: 1$ d.r.) by using hexane/EtOAc (70/30) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{tt}, J=8.0,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.20,137.42,137.09,129.43,129.14,128.71,128.14$, $124.86,120.27,74.69,59.73,27.20,9.87 \mathrm{ppm}$. HRMS calcd. For $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$, found 252.1383.

2,2-Dimethyl- N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (2p):
Following General Procedure E, 2,2-dimethyl- N-phenylpent-4-enamide (1p) ($40.6 \mathrm{mg}, 0.20$ mmol) and HBpin ($116 \mu \mathrm{~L}$, 4 equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($38 \mathrm{mg}, 57 \%$ yield) by using hexane/EtOAc (80/20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.37(\mathrm{bs}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-$ $1.41(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.29(\mathrm{bs}, 3 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.2,138.8,128.8,123.6,119.5,83.8,44.9,26.5,25.7$, 25.0, 24.9, 20.5, 14.5 ppm . (The carbon attached to boron was not observed due to quadrupolar relaxation $)$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BNO}_{3} \mathrm{Na}\right)[\mathrm{M}+\mathrm{Na}]^{+}: 353.2247$, found 353.2248 .

2q
\boldsymbol{N}-(tert-Butyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (2q): Following General Procedure E, N-(tert-butyl)pent-4-enamide (1q) ($31.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin (116 $\mu \mathrm{L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white powder ($51 \mathrm{mg}, 91 \%$ yield) by using hexane/EtOAc (90/10) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.47(\mathrm{~s}, 1 \mathrm{H})$, 2.15-2.12 (m, 2H), 1.50-1.37 (m, 2H), 1.36-1.32 (m, 1H), $1.30(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 12 \mathrm{H})$, $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.6,83.0,50.9,38.7,28.8,24.8$, 24.7, 23.7, 13.3 ppm . (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~B}\right)[\mathrm{M}+\mathrm{H}]^{+}: 283.2428$, found 283.2427.

N-Butyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (2r): Following General Procedure E, N-butylpent-4-enamide ($\mathbf{1 r}$) ($31.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40{ }^{\circ} \mathrm{C}$, affording the title compound as a white solid ($29 \mathrm{mg}, 51 \%$ yield) by using hexane/EtOAc (90/10) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.59(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.18(\mathrm{~m}$, $2 \mathrm{H}), 2.40-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 12 \mathrm{H}$), 0.97-0.89 (m, 6H) ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.1,83.1,39.2,38.0$, $31.8,24.8,24.8,23.8,20.1,13.7,13.3 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{BNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 283.2428$, found 283.2434.

N-Benzyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (2s): Following General Procedure E, N-benzylbut-3-enamide (1s) ($35 \mathrm{mg}, 0.20 \mathrm{mmol}$), W(CO) $)_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}$, $5 \mathrm{~mol} \%$) and $\mathrm{HBpin}\left(116 \mu \mathrm{~L}, 4\right.$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($52 \mathrm{mg}, 82 \%$ yield) by using EtOAc/hexanes (85/15) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.49-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.37(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{ddq}, J=41.4$, $13.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.15(\mathrm{~m}, 12 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.2,138.64,128.7,128.0,127.5,83.3,43.7,37.9,24.8,24.8,24.0,13.4$ ppm (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NBO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 318.2235$, found 318.2234.

Benzyl 3-(2-(3-hydroxypentanamido)ethyl)-1H-indole-1-carboxylate (2t): Following General Procedure E, benzyl 3-(2-(pent-4-enamido)ethyl)-1 H-indole-1-carboxylate (1t) ($78 \mathrm{mg}, 0.20$ mmol) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$. Prior to isolation, the Bpin group was oxidized to the alcohol upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)(41 \mu \mathrm{~L}, 0.400 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{NaOH}(1$ mL) and THF (1 mL), affording the title compound as a white powder ($65 \mathrm{mg}, 80 \%$ yield) by using hexane/EtOAc (70/30) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8$ Hz, 1H), 7.48 (t, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), $7.45-7.37$ (m, 2H), 7.34 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.84$ (s, 1H), 5.45 (s, 2H), 3.87 (qd, $J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (hept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{dd}, J=15.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=15.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.38(\mathrm{~m}$, $2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.6,134.9,129.0,128.9$, 128.7, 125.1, 123.2, 119.1, 118.7, 115.6, 70.1, 42.2, 39.0, 29.9, 25.2, 9.9 ppm. HRMS calcd. For $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\right)[\mathrm{M}+\mathrm{H}]^{+}: 395.1965$, found 395.1920.

N-(2-(Cyclohex-1-en-1-yl)ethyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

$\mathbf{y l})$ pentanamide (2u): Following General Procedure E, N-(2-(cyclohex-1-en-1-yl)ethyl)pent-4enamide ($\mathbf{1 u}$) ($41.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a colorless oil ($34 \mathrm{mg}, 50 \%$ yield) by using hexane/EtOAc (90/10) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.51(\mathrm{bs}, 1 \mathrm{H}), 5.45(\mathrm{bs}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.16(\mathrm{~m}, 2 \mathrm{H})$, $2.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.88(\mathrm{~m}, ~ J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 12 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.0,134.7,123.3,83.1,37.9,37.7,37.1,27.9,25.2,24.8,24.8$, 23.7, 22.8, 22.3, 13.3 ppm . (The carbon attached to boron was not observed due to quadrupolar relaxation $)$. HRMS calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{BNO}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}: 333.2595$, found 333.2604 .

4-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamido)phenyl pent-4-enoate (2v): Following General Procedure E, 4-(pent-4-enamido)phenyl pent-4-enoate (1v) ($54.6 \mathrm{mg}, 0.20$ mmol) and HBpin ($116 \mu \mathrm{~L}$, 4 equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid (42 mg, 52\% yield) by using hexane/EtOAc (75/25) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.64(\mathrm{bs}, 1 \mathrm{H}), 7.57-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.98-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.01(\mathrm{~m}, 2 \mathrm{H})$, 2.64 (td, $J=7.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.41$ (m, 4H), 1.68-1.35 (m, 2H), 1.41-1.31 (m, 1H), 1.25 (d, $J=3.1 \mathrm{~Hz}, 12 \mathrm{H}$), $0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.7,171.5$, $146.5,136.3,135.9,121.8,120.3,115.9,83.4,38.9,33.6,28.8,24.8,24.7,23.8,13.2 \mathrm{ppm}(T h e$ carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BNO}_{5}\right)[\mathrm{M}+\mathrm{H}]^{+}: 401.2483$, found 401.2483 .

2w
3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)butanoic acid (2w): Following General Procedure E, vinyl acetic acid ($17 \mu \mathrm{~L}, 0.20 \mathrm{mmol}), \mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40^{\circ} \mathrm{C}$, affording the title compound as a white solid ($32 \mathrm{mg}, 75 \%$ yield) by filtering the crude reaction through celite followed by evaporation of the solvent and overnight vacuum at ~ 0.1 mtorr. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.43(\mathrm{qd}, J=16.8,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 12 \mathrm{H}), 1.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=178.2,83.4,37.4,24.8,15.1 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). The desired product $\mathbf{2 w}$ is a known compound and our data matched the published spectra. ${ }^{15}$

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)- N-phenylhexanamide (2x): Following a modified General Procedure E, N-phenylhex-5-enamide (1xb) ($37.9 \mathrm{mg}, 0.200 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{Pin}_{2}(76$ $\mathrm{mg}, 1.5$ equiv), CsF ($30.4 \mathrm{mg}, 1$ equiv), $\mathrm{PCy}_{3}\left(8.0 \mathrm{mg}, 0.15\right.$ equiv), and $\mathrm{CuF}_{2}(5.7 \mathrm{mg}, 0.25$ equiv) were used at $100^{\circ} \mathrm{C}$ in 2-Me-THF (1.0 mL) and 2-propanol ($31 \mu \mathrm{~L}, 2$ equiv), affording the title compound as a white solid ($26 \mathrm{mg}, 41 \%$ yield) by using hexane/EtOAc (80/20) as eluent. ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{q}, J=6.6,4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 12 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.1,137.8,128.5,123.4,118.9,82.9,38.8,32.6$, $24.4,24.3,21.5,13.8 \mathrm{ppm}$. Spectroscopic data for $\mathbf{2 x}$ match those previously reported in the literature. ${ }^{12}$

3-Hydroxy- N-phenylhexanamide (2xa): Following General Procedure E, (E)- N-phenylhex-4enamide (1xa) ($39.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBpin ($116 \mu \mathrm{~L}, 4$ equiv) were used at $40{ }^{\circ} \mathrm{C}$. Prior to isolation, the Bpin group was oxidized to the alcohol upon treatment with $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)(41 \mu \mathrm{~L}$, $0.400 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ and THF (1 mL), affording the title compound as a white powder ($21 \mathrm{mg}, 50 \%$ yield) by using hexane/EtOAc (70/30) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta=7.77(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ $(\mathrm{td}, J=7.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.4,137.6,129.0,124.4,120.0,68.5,43.9,39.1$, 18.7, 13.9 ppm . Spectroscopic data for $\mathbf{2 x a}$ match those previously reported in the literature. ${ }^{12}$

3-Triethylsilyl- N-phenylpent-4-enamide (3a): Following a modified General Procedure E, N -phenylpent-4-enamide (1a) ($35.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{Pin}_{2}$ (76 mg , 1.5 equiv), $\mathrm{CsF}(30.4 \mathrm{mg}, 1$
equiv), and CuF_{2} ($11.2 \mathrm{mg}, 0.5$ equiv) were used at $100^{\circ} \mathrm{C}$ in $2-\mathrm{Me}-\mathrm{THF}(1.0 \mathrm{~mL})$, affording the title compound as a white powder ($52 \mathrm{mg}, 89 \%$ yield) by using hexane/EtOAc (80/20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{dd}, J=15.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.0$, 138.1, 128.9, 124.1, 119.7, 38.4, 23.5, 21.6, 14.0, 7.7, 2.7 ppm. HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}\right)$ [M-H]: 290.1946, found 290.1942.

N-Phenyl-2-(triethylgermyl)pentanamide (3b): Following a modified General Procedure E, N -(phenyl)pent-4-enamide (1a) ($35.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{HGEEt}_{3}(65 \mu \mathrm{~L}, 2$ equiv) were used at 40 ${ }^{\circ} \mathrm{C}$ in THF (0.3 mL), affording the title compound as a white powder ($18 \mathrm{mg}, 27 \%$ yield) by using hexane/EtOAc (90/10) as eluent. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an acetone solution. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36-7.30 (m, 2H), $7.09(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44$ (dddd, $J=12.7,10.0,5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.00-0.87(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.3,138.5,129.1,123.8,119.7,38.1,30.1,23.7,14.1,9.1,3.9 \mathrm{ppm}$. X-ray (CCDC 2035216). ${ }^{16}$ HRMS calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Ge}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 338.1534, found 338.1530.

N-(3-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)aniline (3c): Following a modified General Procedure E, 3-methyl- N-phenylpent-4-enamide (1y) ($39.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(6 \mathrm{mg}, 7.5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(230 \mu \mathrm{~L}, 8\right.$ equiv) were used at $100^{\circ} \mathrm{C}$, affording the title compound as a brown oil ($24 \mathrm{mg}, 40 \%$ yield) by using hexane/EtOAc (80/20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2 H), 3.10 (ddd, $J=8.7,6.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77 (ddd, $J=13.2,8.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.41$ (m, 2H), $1.31(\mathrm{dd}, J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 12 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=129.2,117.3,113.1,41.5,38.1,31.8,24.9,24.8,24.6,21.0$,
9.8 ppm (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BNO}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}: 303.2484$, found 303.2474.

3d
\boldsymbol{N}-(4-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)aniline (3d): Following a modified General Procedure E, 4-methyl- N-phenylpent-4-enamide (1aa) ($39.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}(6 \mathrm{mg}, 7.5 \mathrm{~mol} \%)$ and $\mathrm{HBpin}\left(230 \mu \mathrm{~L}, 8\right.$ equiv) were used at $100^{\circ} \mathrm{C}$, affording the title compound as a white solid ($27 \mathrm{mg}, 46 \%$ yield) by using hexane/EtOAc (80/20) as eluent. ${ }^{1} H$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.17-$ $3.46(\mathrm{~s}, 1 \mathrm{H}), 3.16-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 12 \mathrm{H}), 0.95(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.76, 129.30, $117.05,112.84,83.23,44.43,29.92,28.99,25.12,25.10,22.29,21.77$. HRMS calcd. For $\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BNO}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}: 303.2484$, found 303.2495 .

(Indolin-1-yl)-3-(trifluoro-14-boraneyl)pentan-1-one, potassium salt (3e): The title compound was prepared following a modified literature procedure. ${ }^{11}$ To a solution of 1-(indolin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-1-one (2i) ($150 \mathrm{mg}, 0.46 \mathrm{mmol}$) in MeCN (2 $\mathrm{mL})$ under nitrogen, was added saturated aq. $\mathrm{KHF}_{2}(142 \mathrm{mg}, 1.82 \mathrm{mmol}, 0.4 \mathrm{~mL})$. The resulting solution was stirred at ambient temperature for 2 h , before being concentrated and azeotroped with MeOH with a rotavap. The crude product was placed under high vacuum overnight, extracted with hot $\mathrm{MeCN}(3 \times 10 \mathrm{~mL})$, filtered, and concentrated with a rotavap. The resulting residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and sonicated for 30 min , before being filtered to afford the title compound as a white solid ($123 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-DMSO) $\delta=8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.24-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.25-2.96(\mathrm{~m}$,
$2 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.63-$ $0.49(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, d_{6}$-DMSO) $\delta=174.6,143.7,131.6,126.7,124.5,122.3$, $115.9,47.7,38.0,27.5,23.9,13.8 \mathrm{ppm}$. (The carbon attached to boron was not observed due to quadrupolar relaxation). HRMS calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BF}_{3} \mathrm{KNO}\right)$ [M-K]:: 269.1313, found 269.1308

3-Ethyl-1-(indolin-1-yl)pent-4-en-1-one (3f): The title compound was prepared following a modified literature procedure. ${ }^{12}$ To a solution of 1-(indolin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-1-one (3f) ($50.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (1.5 mL), was added vinylmagnesium bromide $(0.87 \mathrm{~mL}, 0.7 \mathrm{M}, 0.61 \mathrm{mmol})$ dropwise, and the reaction was stirred at ambient temperature for 30 min . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$, before a solution of iodine ($155 \mathrm{mg}, 0.61 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 30 min , before a solution of $\mathrm{NaOMe}(64.8 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.5$ mL) was added dropwise. The solution was warmed to ambient temperature and stirred for another 1.5 h , before being diluted with pentane (10 mL) and washed with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and brine (5 mL). The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the crude residue by flash silica column chromatography with hexane/EtOAc (90/10) as eluent afforded the title compound as an orange oil ($33.5 \mathrm{mg}, 96 \%$). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.93(\mathrm{~m}, 1 \mathrm{H})$, 5.81-5.63 (m, 1H), 5.15-4.95 (m, 2H), 4.16-3.95 (m, 2H), 3.26-3.07 (m, 2H), 2.78-2.33 (m, 3H), $1.71-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.4,143.2,141.4$, 131.2, 127.6, 124.6, 123.6, 117.3, 115.2, 48.3, 41.6, 41.2, 28.1, 27.5, 11.7 ppm . HRMS calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}\right)[\mathrm{M}+\mathrm{H}]^{+}: 230.1545$, found 230.1541.

DETERMINATION OF DEUTERIUM INCORPORATION

Deuterium Labeling Procedure: DBpin was synthesized according to a known procedure by Morken, which yielded 81% D-incorporation in Morken's prior study. ${ }^{17}$ In a $6-\mathrm{mL}$ vial equipped with magnetic stir bar, a 1 M solution of borane $-d_{3} \bullet \mathrm{THF}$ complex ($1 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added under argon at $0^{\circ} \mathrm{C}$, then freshly sublimed pinacol ($118 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added. The reaction mixture was stirred, and when gas evolution slowed, the reaction was allowed to warm up to room
temperature overnight. The solution of deuterated pinacol borane was immediately used directly without further purification.

The sublimed pinacol was directly moved into the glovebox and dissolved in THF. 4A molecular sieves were added to the solution and allowed to sit overnight. The solution was then filtered to remove the sieves and the THF evaporated. The dried pinacol was then directly used for the preparation of DBpin. ${ }^{11} \mathrm{~B}$ NMR was used to determine the purity of the DBpin. The sample was prepared by adding 0.2 mL the DBpin THF solution and diluted out an additional 0.2 mL of d8THF. The sample was then analyzed in a quartz NMR tube with the purity determined to be 84% by ${ }^{11} \mathrm{~B}$ NMR (Note: the 84% purity includes HBpin impurities as they have the same chemical shift).

Inside an argon-filled glovebox, a $6-\mathrm{mL}$ vial containing freshly prepared DBpin ($1 \mathrm{~mL}, 1 \mathrm{M}$ solution, 5 equiv) was charged with $\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}(7.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and the alkene of interest (0.2 mmol) with care taken to ensure that the solids on the wall were washed into the bottom of the tube. The vial was removed from the glovebox and placed in a preheated oil bath $\left(40^{\circ} \mathrm{C}\right)$ and allowed to heat for 20 h . The vial was then cooled to $0^{\circ} \mathrm{C}$, and oxidation to the alcohol was performed by adding $\mathrm{NaOH}(1 \mathrm{~mL}, 1 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(82 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$. The reaction was allowed to warm up to room temperature and stir for 3 h . The crude reaction mixture was diluted with acetone and filtered through a plug of celite and evaporated to dryness. The crude material was purified by flash silica column chromatography using 20% acetone:hexanes, and the purified product was analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the site(s) and extent of deuterium incorporation. All compounds were analyzed by quantitative ${ }^{1} \mathrm{H}$ NMR using standard protocols outlined by Bruker, and the integral values below are reported as their relative quantities. d_{6}-DMSO was used as the solvent of choice, as the water and grease chemical shifts in these solvents did not overlap with the peaks of interest in the compound being analyzed. ${ }^{13} \mathrm{C}$ NMR spectral data for the corresponding non-deuterated products are given above.

(DBpin) ${ }^{11} \mathbf{B}$ NMR ($160 \mathrm{MHz}, \mathrm{THF}$) $\delta 29.89-25.97$ ($\mathrm{m}, 0.84$), 22.18 ($\mathrm{s}, 0.16$, impurity).

(2a-d) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, d_{6}\right.$-DMSO) $\delta=9.84(\mathrm{~s}, 0.95 \mathrm{H}), 7.68-7.52(\mathrm{~m}, 1.94 \mathrm{H}), 7.28(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1.92 \mathrm{H}), 7.02$ (t, $J=7.4 \mathrm{~Hz}, 1.04 \mathrm{H}), 4.69$ (dd, $J=5.2,3.0 \mathrm{~Hz}, 0.99 \mathrm{H}), 3.85(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $1.00 \mathrm{H}), 2.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1.92 \mathrm{H}), 1.53-1.30(\mathrm{~m}, 1.34 \mathrm{H}), 0.89(\mathrm{dd}, J=9.0,7.4 \mathrm{~Hz}, 3.02 \mathrm{H})$.

2i-d
(2i-d) ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-DMSO) $\delta=8.09$ (d, $J=8.1 \mathrm{~Hz}, 0.90 \mathrm{H}$), 7.21 (d, $J=7.4 \mathrm{~Hz}, 1.02 \mathrm{H}$), $7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 0.95 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 0.95 \mathrm{H}), 4.63(\mathrm{dd}, J=5.1,3.1 \mathrm{~Hz}, 1.04 \mathrm{H}), 4.20-4.03(\mathrm{~m}$, $2.00 \mathrm{H}), 3.89(\mathrm{td}, J=7.4,3.6 \mathrm{~Hz}, 1.04 \mathrm{H}), 3.11(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1.85 \mathrm{H}), 2.54-2.42(\mathrm{~m}, 4.09 \mathrm{H}), 1.55-$ 1.34 (m, 1.33H), 0.94-0.85 (m, 3.23H).

DETERMINATION OF ENANTIOMERIC EXCESS

(rac)-1m was separated on preparative scale using SFC.
Method. The samples were analyzed on a Waters UPC2 SFC with a Daicel IG column ($3 \mu \mathrm{~m}$, $4.6 \times 250 \mathrm{~mm}$) under isocratic conditions ($4 \mathrm{~mL} / \mathrm{min}, 5 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 1600$ psi backpressure) at $30^{\circ} \mathrm{C}$. The enantiomers were detected by UV light (260 nm).

Figure S1. Chromatogram for preptartive separation of (rac)-1m by SFC.

Table S11. Integrations from preprative SFC separation of (rac)-1m

Peak	Retention time	Area
Ent2 (1.777)	6.786	565455
Ent1 (2.003)	8.096	571661

(Ent2)-1m

(Ent1)-1m

Figure S2. Chromatogram of $e e$ measurement for peak from (Ent2)-1m

Figure S3. Chromatogram of ee measurement for peak from (Ent1)-1m

Table S12. Determination of $e e$ for ($\mathbf{r a c}$)-1m sample

Sample	Area\% Ent2	Area\% Ent1	ee	Area Ent2	Area Ent1
Ent2 (Figure S2)	100	-	100	5116190	-
Ent1 (Figure S3)	2.81	97.19	94.37	66154	2284637

Figure S4. Chromatogram of ee measurement for (rac)-2m

Table S13. Determination of $e e$ for (rac)-2m sample

Sample	Area\% Ent1	Area\% Ent2	ee	Area Ent1	Area Ent 2
(rac)-2m	49.44	50.56	-1.13	1659281	1697180

Figure S5. Chromatogram of ee measurement for (Ent2)-2m

Table S14. Determination of $e e$ for ($\mathbf{r a c}$)-2m sample

Sample	Area\% Ent1	Area\% Ent2	ee	Area Ent1	Area Ent2
$($ Ent $)-2 m$	-	100	100	-	2279170

IN SITU MONITORING OF REACTIONS BY ${ }^{\mathbf{1}} \mathrm{H}$ NMR

General Procedure F: A J. Young NMR tube containing the alkenyl amide (0.10 mmol) was introduced in an argon-filled glovebox, where it was further charged with $\mathrm{W}(\mathrm{MeCN})_{3}(\mathrm{CO})_{3}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) and $d 8$-THF (0.5 mL). For reaction (1) no HBpin was added, for reaction (2) HBpin ($58 \mu \mathrm{~L}, 4$ equiv) was added, and the tube was removed from the glovebox and shaken vigorously until completely homogeneous. The sample was then placed in the NMR and heated to $40{ }^{\circ} \mathrm{C}$. After the temperature was reached, ${ }^{1} \mathrm{H}$ spectra were collected every 15 min for 3 h . The time from all reagents added to collection of the first time point was 30 minutes.

Figure S6. Time point analysis from the catalytic reactions run using General Procedure F without HBpin (1) and with HBpin (2).

X-RAY CRYSTALLOGRAPHY

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker APEX II ultra CCD diffractometer equipped with Mo K_{α} radiation $(\lambda=0.71073)$. Crystals of the subject compound were used as received (grown from Acetone/Ether). A $0.175 \times 0.150 \times 0.120 \mathrm{~mm}$ colorless block was mounted on a Cryoloop with Paratone oil.

Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-todetector distance was 45 mm using exposure time 5.0 s (depending on the detector 2θ position) with a scan width of 0.80°. Data collection was 100.00% complete to 25.242° in A total of 13436 reflections were collected covering the indices, $-8<=\mathrm{h}<=8,-14<=\mathrm{k}<=14,-14<=1<=14$. 3277 reflections were found to be symmetry independent, with a $\mathrm{R}_{\mathrm{int}}$ of 0.0491 . Indexing and unit cell refinement indicated a Primitive, Triclinic lattice. The space group was found to be $\boldsymbol{P} \mathbf{- 1}$. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Crystallographic data are summarized in Table S15.
Notes: Excellent data and model refinement.
Note: "racemic" space group

Table S15. Crystal data and structure refinement for 2b.

Report date	2020-06-29
Empirical formula	C17 H25 B F N O3
Molecular formula	C17 H25 B F N O3
Formula weight	321.19
Temperature	100.15 K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=6.650(4) \AA \quad \alpha=71.589(13)^{\circ}$.
	$\mathrm{b}=11.516(6) \AA \quad \beta=79.394(14)^{\circ}$.
	$\mathrm{c}=12.213(6) \AA \quad \gamma=79.986(14)^{\circ}$.
Volume	865.5(8) \AA^{3}
Z	2
Density (calculated)	$1.232 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.089 \mathrm{~mm}^{-1}$
F(000)	344
Crystal size	$0.22 \times 0.18 \times 0.035 \mathrm{~mm}^{3}$
Crystal color, habit	colorless plate
Theta range for data collection	1.774 to 25.675°.
Index ranges	$-8<=\mathrm{h}<=8,-14<=\mathrm{k}<=14,-14<=\mathrm{l}<=14$
Reflections collected	13436
Independent reflections	3277 [R(int) $=0.0491]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5624 and 0.4744
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3277 / 1 / 216
Goodness-of-fit on F^{2}	1.023
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0405, \mathrm{wR} 2=0.0886$
R indices (all data)	$\mathrm{R} 1=0.0643, \mathrm{wR} 2=0.0995$
Extinction coefficient	n / a
Largest diff. peak and hole	0.211 and -0.206 e. \AA^{-3}

Table S16. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 b}$. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{F}(1)$	12756(2)	654(1)	9880(1)	32(1)
$\mathrm{O}(1)$	6846(2)	4804(1)	6644(1)	56(1)
$\mathrm{O}(2)$	5170(2)	7651(1)	7101(1)	21(1)
$\mathrm{O}(3)$	2473(2)	6982(1)	6653(1)	20(1)
$\mathrm{N}(1)$	10178(2)	4971(1)	6632(1)	21(1)
C(1)	3652(3)	8739(2)	3812(2)	41(1)
C(2)	5768(3)	8351(2)	4223(2)	27(1)
C(3)	5896(2)	7112(2)	5176(1)	21(1)
C(4)	8125(2)	6664(2)	5416(1)	21(1)
C(5)	8302(2)	5399(2)	6286(2)	25(1)
C(6)	10768(2)	3844(1)	7450(1)	20(1)
C(7)	12689(2)	3694(2)	7814(1)	23(1)
C(8)	13367(3)	2624(2)	8621(1)	24(1)
C(9)	12122(3)	1698(2)	9055(1)	23(1)
$\mathrm{C}(10)$	10260(2)	1797(2)	8687(1)	23(1)
C(11)	9563(2)	2876(2)	7884(1)	23(1)
C(12)	3580(2)	7548(2)	8119(1)	21(1)
C(13)	1612(2)	7508(2)	7619(1)	22(1)
C(14)	4209(3)	6361(2)	9031(1)	27(1)
$\mathrm{C}(15)$	3513(3)	8645(2)	8553(2)	29(1)
$C(16)$	92(3)	6686(2)	8462(2)	30(1)
$\mathrm{C}(17)$	502(3)	8771(2)	7084(2)	35(1)
B(1)	4495(3)	7219(2)	6330(2)	19(1)

Table S17. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for $\mathbf{2 b}$.

$\mathrm{F}(1)-\mathrm{C}(9)$	1.3612(19)	$\mathrm{C}(13)-\mathrm{C}(16)$	1.520(2)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.218(2)	$\mathrm{C}(13)-\mathrm{C}(17)$	1.514(2)
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.4645(19)$	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{O}(2)-\mathrm{B}(1)$	1.367(2)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{O}(3)-\mathrm{C}(13)$	1.473(2)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{O}(3)-\mathrm{B}(1)$	1.379(2)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{N}(1)-\mathrm{H}(1)$	0.868(13)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{N}(1)-\mathrm{C}(5)$	1.351(2)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{N}(1)-\mathrm{C}(6)$	1.409(2)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.526(2)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900		
$\mathrm{C}(2)-\mathrm{C}(3)$	1.531(2)	$\mathrm{B}(1)-\mathrm{O}(2)-\mathrm{C}(12)$	107.95(12)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{B}(1)-\mathrm{O}(3)-\mathrm{C}(13)$	107.10(12)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.532(2)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{H}(1)$	115.5(12)
$\mathrm{C}(3)-\mathrm{B}(1)$	1.566(2)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	127.83(14)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{H}(1)$	115.2(12)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)$	1.508(2)	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)$	1.394(2)	$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(11)$	1.396(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)$	1.377(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.376(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(9)-\mathrm{C}(10)$	1.368(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.80(14)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.8
$\mathrm{C}(10)-\mathrm{C}(11)$	1.385(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(12)-\mathrm{C}(13)$	1.556(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6
$\mathrm{C}(12)-\mathrm{C}(14)$	1.514(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.71(13)
$\mathrm{C}(12)-\mathrm{C}(15)$	1.508(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{B}(1)$	110.80(14)
S-50			

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(16)$	108.90(13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{B}(1)$	109.52(13)	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(17)$	106.55(14)
$\mathrm{B}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(12)$	114.85(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.4	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(12)$	113.54(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.4	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(16)$	110.04(15)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.0	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.33(13)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.4	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.4	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}(1)$	122.57(17)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	121.80(15)	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	115.63(14)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(1)$	117.28(14)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	119.08(15)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{N}(1)$	123.62(15)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.6	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.77(15)	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.6	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.6	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	118.79(16)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.6	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{F}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	119.06(15)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{F}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	118.96(14)	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	121.98(16)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.3	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.38(15)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.3	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11)$	120.0	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	119.94(16)	$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.0	$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{O}(3)$	112.60(14)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	102.40(13)	$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(3)$	121.30(14)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(14)$	106.98(13)	$\mathrm{O}(3)-\mathrm{B}(1)-\mathrm{C}(3)$	125.97(15)
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(15)$	108.11(13)		
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(13)$	113.08(13)		
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(13)$	114.84(14)		
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(14)$	110.68(14)		
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(12)$	102.25(12)		

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker APEX II Ultra diffractometer equipped with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation $(\lambda=1.54178)$. Crystals of the subject compound were used as received (grown from Acetone). A $0.180 \times 0.150 \times 0.085 \mathrm{~mm}$ red crystal was mounted on a Cryoloop with Paratone oil.

Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-todetector distance was 40 mm using exposure times $4,6,20.0$ s (depending on the detector 2θ position) with a scan width of 1.40°. Data collection was 99.9% complete to 58.031° in θ. A total of 45664 reflections were collected covering the indices, $-11<=\mathrm{h}<=11,-15<=\mathrm{k}<=15,-27<=1<=27$. 5246 reflections were found to be symmetry independent, with a $R_{\text {int }}$ of 0.0627 . Indexing and unit cell refinement indicated a Primitive, Monoclinic lattice. The space group was found to be $\boldsymbol{P} \mathbf{2}_{\mathbf{1}} / \mathbf{c}$. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Crystallographic data are summarized in Table S18.
Notes: Twinned dataset, confident in connectivity.
Final refinement using HKL 5 file format.
Two molecules in asymmetric unit.

Table S18. Crystal data and structure refinement for $\mathbf{2 i}$.

Report date	2020-09-21
Identification code	engle265
Empirical formula	C19 H28 B N O3
Molecular formula	C19 H28 B N O3
Formula weight	329.23
Temperature	100.0 K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P $121 / \mathrm{c} 1$
Unit cell dimensions	$a=10.5238(3) \AA \quad \alpha=90^{\circ}$.
	$b=14.0554(3) \AA \quad \beta=96.2420(10)^{\circ}$.
	$\mathrm{c}=25.2685(6) \AA \quad \gamma=90^{\circ}$.
Volume	3715.46(16) \AA^{3}
Z	8
Density (calculated)	$1.177 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.614 \mathrm{~mm}^{-1}$
F(000)	1424
Crystal size	$0.18 \times 0.15 \times 0.085 \mathrm{~mm}^{3}$
Crystal color, habit	colorless plate
Theta range for data collection	3.519 to 58.031°.
Index ranges	$-11<=\mathrm{h}<=11,0<=\mathrm{k}<=15,0<=\mathrm{l}<=27$
Reflections collected	45664
Independent reflections	$5245[\mathrm{R}(\mathrm{int})=0.0627]$
Completeness to theta $=58.031^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.751 and 0.504
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5245 / 0 / 444
Goodness-of-fit on F^{2}	1.126
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0505, \mathrm{wR} 2=0.1257$
R indices (all data)	$\mathrm{R} 1=0.0591, \mathrm{wR} 2=0.1308$
Largest diff. peak and hole	0.304 and -0.202 e. \AA^{-3}

Table S19. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2i. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	10057(2)	3596(2)	7053(1)	41(1)
$\mathrm{O}\left(1{ }^{\prime}\right)$	4619(2)	1993(2)	6783(1)	41(1)
$\mathrm{O}\left(2^{\prime}\right)$	3739(2)	411(1)	6001(1)	36(1)
$\mathrm{O}(2)$	7808(2)	3903(1)	6120(1)	38(1)
$\mathrm{O}(3)$	9133(2)	5188(1)	6260(1)	35(1)
$\mathrm{O}\left(3^{\prime}\right)$	2312(2)	1632(1)	5828(1)	36(1)
$\mathrm{N}\left(1^{\prime}\right)$	6729(2)	1725(2)	7009(1)	32(1)
N(1)	12134(2)	3943(2)	7315(1)	33(1)
C(1')	5739(4)	2644(3)	4919(1)	50(1)
C(1)	9394(3)	3476(2)	4993(1)	46(1)
C(2^{\prime})	4818(3)	1924(2)	5126(1)	46(1)
C(2)	10490(3)	3783(2)	5405(1)	40(1)
C(3)	10203(3)	3638(2)	5982(1)	35(1)
C(3^{\prime})	4661(3)	2019(2)	5715(1)	37(1)
C(4)	11406(3)	3851(2)	6362(1)	35(1)
C(4')	5913(3)	1824(2)	6069(1)	37(1)
C(5')	5692(3)	1857(2)	6644(1)	33(1)
C(5)	11138(3)	3782(2)	6936(1)	34(1)
C(6)	13459(3)	4159(2)	7197(1)	38(1)
C(6')	8056(3)	1581(2)	6868(1)	36(1)
C(7')	8878(3)	1425(2)	7402(1)	34(1)
C(7)	14233(3)	4288(2)	7743(1)	38(1)
C(8')	7965(3)	1555(2)	7814(1)	30(1)
C(8)	13282(3)	4101(2)	8136(1)	35(1)
C(9')	8186(3)	1510(2)	8360(1)	34(1)
C(9)	13470(3)	4102(2)	8687(1)	42(1)
C(10')	7170(3)	1645(2)	8666(1)	37(1)
C(10)	12444(3)	3904(2)	8969(1)	44(1)
C(11')	5952(3)	1821(2)	8417(1)	34(1)
C(11)	11244(3)	3714(2)	8702(1)	39(1)
C(12)	11043(3)	3715(2)	8149(1)	34(1)
C(12')	5706(3)	1862(2)	7868(1)	32(1)

$\mathrm{C}(13)$	$12083(3)$	$3910(2)$	$7872(1)$	$31(1)$
$\mathrm{C}\left(13^{\prime}\right)$	$6728(3)$	$1732(2)$	$7569(1)$	$29(1)$
$\mathrm{C}\left(14^{\prime}\right)$	$2474(3)$	$-23(2)$	$5999(1)$	$34(1)$
$\mathrm{C}(14)$	$7052(3)$	$4633(2)$	$6357(1)$	$38(1)$
$\mathrm{C}(15)$	$7839(3)$	$5559(2)$	$6280(1)$	$35(1)$
$\mathrm{C}\left(15^{\prime}\right)$	$1590(3)$	$859(2)$	$6049(1)$	$33(1)$
$\mathrm{C}\left(16^{\prime}\right)$	$2527(3)$	$-713(2)$	$6458(1)$	$42(1)$
$\mathrm{C}(16)$	$7018(4)$	$4365(2)$	$6939(1)$	$49(1)$
$\mathrm{C}(17)$	$5710(3)$	$4632(3)$	$6069(2)$	$54(1)$
$\mathrm{C}\left(17^{\prime}\right)$	$2212(4)$	$-538(2)$	$5469(1)$	$48(1)$
$\mathrm{C}(18)$	$7871(3)$	$6257(2)$	$6738(1)$	$42(1)$
$\mathrm{C}\left(18^{\prime}\right)$	$1461(3)$	$1125(2)$	$6625(1)$	$42(1)$
$\mathrm{C}\left(19^{\prime}\right)$	$293(3)$	$802(2)$	$5725(1)$	$42(1)$
$\mathrm{C}(19)$	$7473(3)$	$6050(3)$	$5754(1)$	$48(1)$
$\mathrm{B}(1)$	$9043(4)$	$4240(2)$	$6134(1)$	$34(1)$
$\mathrm{B}\left(1^{\prime}\right)$	$3561(4)$	$1359(3)$	$5869(1)$	$35(1)$

Table S20. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2 i}$.

O(1)-C(5)	1.235(4)	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	0.9900
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.233(4)	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{B}\right)$	0.9900
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.464(4)	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	1.503(4)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)$	1.381(4)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900
$\mathrm{O}(2)-\mathrm{C}(14)$	1.464(4)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900
$\mathrm{O}(2)-\mathrm{B}(1)$	1.380(4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.506(5)
$\mathrm{O}(3)-\mathrm{C}(15)$	1.464(4)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	1.376(4)
$\mathrm{O}(3)-\mathrm{B}(1)$	1.371(4)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13{ }^{\prime}\right)$	1.401(4)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.470(3)	C(8)-C(9)	1.387(5)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)$	1.362(4)	$\mathrm{C}(8)-\mathrm{C}(13)$	1.388(4)
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.362(4)	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	0.9500
$\mathrm{N}\left(1^{\prime}\right)$-C(6')	1.492(4)	$\mathrm{C}\left(9^{\prime}\right)$ - $\mathrm{C}\left(10^{\prime}\right)$	1.398(4)
$\mathrm{N}\left(1^{\prime}\right)$-C(13')	1.416(4)	$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(5)$	1.361(4)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.385(5)$
$\mathrm{N}(1)-\mathrm{C}(6)$	1.488(4)	$\mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(13)$	1.416(4)	$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.386(4)
$\mathrm{C}\left(1{ }^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{A}\right)$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{B}\right)$	0.9800	$\mathrm{C}(10)-\mathrm{C}(11)$	1.391(5)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{C}\right)$	0.9800	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{H}\left(11^{\prime}\right)$	0.9500
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.531(5)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.385(4)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800	$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	$\mathrm{C}(11)-\mathrm{C}(12)$	1.389(4)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.528(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.389(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{A}\right)$	0.9900	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{H}\left(12^{\prime}\right)$	0.9500
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{B}\right)$	0.9900	$\mathrm{C}\left(12^{\prime}\right)$ - $\mathrm{C}\left(13^{\prime}\right)$	1.392(4)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.521(4)	$\mathrm{C}\left(14^{\prime}\right)$-C(15')	1.564(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.509(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	1.519(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.536(4)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.567(4)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{C}(14)-\mathrm{C}(16)$	1.523(5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.532(4)	$\mathrm{C}(14)-\mathrm{C}(17)$	1.517(5)
$\mathrm{C}(3)-\mathrm{B}(1)$	$1.566(5)$	$\mathrm{C}(15)-\mathrm{C}(18)$	$1.515(4)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime}\right)$	1.0000	$\mathrm{C}(15)-\mathrm{C}(19)$	1.510(5)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.535(4)	$\mathrm{C}\left(15^{\prime}\right)$-C(18')	1.522(4)
$\mathrm{C}\left(3^{\prime}\right)$ - $\mathrm{B}\left(1^{\prime}\right)$	$1.565(5)$	$\mathrm{C}\left(15^{\prime}\right)$-C(19')	1.517(4)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}\left(16{ }^{\prime}\right)-\mathrm{H}(16 \mathrm{D})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{C}\left(16{ }^{\prime}\right)-\mathrm{H}(16 \mathrm{E})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	1.510(4)	$\mathrm{C}(16)$ - $\mathrm{H}(16 \mathrm{~F})$	0.9800
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	0.9900	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	0.9900	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.498(4)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.535(4)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	0.9900	$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{D})$	0.9800
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{B}\right)$	0.9900	$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{E})$	0.9800
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.537(4)	$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{H}(17 \mathrm{~F})$	0.9800

$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	107.6
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{B}(1)$	110.8(2)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800	$\mathrm{B}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	107.6
$\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{H}(18 \mathrm{D})$	0.9800	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime}\right)$	107.5
C(18')-H(18E)	0.9800	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	112.1(3)
C(18')-H(18F)	0.9800	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)$	110.7(3)
$\mathrm{C}(19$ ')-H(19D)	0.9800	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime}\right)$	107.5
C(19')-H(19E)	0.9800	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)$	111.1(3)
$\mathrm{C}(19$ ')-H(19F)	0.9800	$\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime}\right)$	107.5
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.4
C(19)-H(19B)	0.9800	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.4
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.0
		$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.1(3)
$\mathrm{B}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	107.6(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.4
$\mathrm{B}(1)-\mathrm{O}(2)-\mathrm{C}(14)$	107.6(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.4
$\mathrm{B}(1)-\mathrm{O}(3)-\mathrm{C}(15)$	108.3(2)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	109.6
$\mathrm{B}\left(1^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	107.3(2)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	109.6
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	124.0(2)	$\mathrm{H}\left(4^{\prime} \mathrm{A}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	108.1
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	126.0(3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	110.3(3)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	110.0(2)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	109.6
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	124.0(3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	109.6
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(13)$	125.9(3)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	121.4(3)
$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(6)$	110.1(2)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	121.6(3)
$\mathrm{H}\left(1^{\prime} \mathrm{A}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{B}\right)$	109.5	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	117.0(3)
$\mathrm{H}\left(1^{\prime} \mathrm{A}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{C}\right)$	109.5	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}(1)$	121.7(3)
$\mathrm{H}\left(1^{\prime} \mathrm{B}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{C}\right)$	109.5	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	121.1(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{A}\right)$	109.5	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	117.2(3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{B}\right)$	109.5	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.7
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \mathrm{C}\right)$	109.5	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.7
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	105.1(3)
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.8
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.7
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.7
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	110.7
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{B}\right)$	110.7
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{A}\right)$	108.6	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	105.2(2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{B}\right)$	108.6	$\mathrm{H}\left(6^{\prime} \mathrm{A}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{B}\right)$	108.8
$\mathrm{H}\left(2^{\prime} \mathrm{A}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{B}\right)$	107.6	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{A}\right)$	110.7
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	114.6(3)	$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}\left(6^{\prime} \mathrm{B}\right)$	110.7
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{A}\right)$	108.6	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	110.9
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime} \mathrm{B}\right)$	108.6	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{B}\right)$	110.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.9	H(7'A)-C(7')-H(7'B)	108.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.9	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	104.4(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.4(3)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{A}\right)$	110.9
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.7	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{H}\left(7^{\prime} \mathrm{B}\right)$	110.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.9	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.9	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.9
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	107.6	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.9
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{B}(1)$	113.5(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	104.2(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	109.5(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.9

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.9	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(18)$	108.3(2)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	129.7(3)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(19)$	106.4(2)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	119.9(3)	$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(14)$	114.3(3)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	110.4(3)	$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{C}(14)$	113.7(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	129.0(3)	$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{C}(18)$	111.0(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	120.3(3)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	102.6(2)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	110.7(3)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	106.6(2)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	120.3	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	107.8(2)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	119.4(3)	$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	112.9(3)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{H}\left(9^{\prime}\right)$	120.3	$\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	115.0(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.6	$\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	111.2(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.9(3)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{H}(16 \mathrm{D})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.6	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{H}(16 \mathrm{E})$	109.5
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	120.0	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{H}(16 \mathrm{~F})$	109.5
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	119.9(3)	$\mathrm{H}(16 \mathrm{D})-\mathrm{C}\left(16^{\prime}\right)-\mathrm{H}(16 \mathrm{E})$	109.5
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right)$	120.0	H(16D)-C(16')-H(16F)	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.8	H(16E)-C(16')-H(16F)	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.4(3)	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.8	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{H}\left(11^{\prime}\right)$	119.2	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	121.6(3)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{H}\left(11^{\prime}\right)$	119.2	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.4	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	121.3(3)	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.4	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	121.2	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	117.6(3)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	121.2	H(17A)-C(17)-H(17C)	109.5
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{H}\left(12^{\prime}\right)$	121.1	H(17B)-C(17)-H(17C)	109.5
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	117.9(3)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{D})$	109.5
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{H}\left(12^{\prime}\right)$	121.1	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{E})$	109.5
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{N}(1)$	109.8(3)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{H}(17 \mathrm{~F})$	109.5
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	121.5(3)	H(17D)-C(17')-H(17E)	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(1)$	128.7(3)	H(17D)-C(17')-H(17F)	109.5
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	109.8(3)	H(17E)-C(17')-H(17F)	109.5
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	129.0(3)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	121.3(3)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	102.6(2)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	107.9(2)	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	106.3(2)	H(18A)-C(18)-H(18C)	109.5
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	114.8(3)	$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	111.1(3)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{H}(18 \mathrm{D})$	109.5
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	113.4(3)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{H}(18 \mathrm{E})$	109.5
$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	102.3(2)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(188^{\prime}\right)-\mathrm{H}(18 \mathrm{~F})$	109.5
$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(16)$	107.0(3)	H(18D)-C(18')-H(18E)	109.5
$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(17)$	108.8(2)	H(18D)-C(18')-H(18F)	109.5
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(15)$	113.2(3)	H(18E)-C(18')-H(18F)	109.5
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{C}(15)$	114.7(3)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}(19 ')-\mathrm{H}(19 \mathrm{D})$	109.5
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{C}(16)$	110.2(3)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(19{ }^{\prime}\right)-\mathrm{H}(19 \mathrm{E})$	109.5
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	102.4(2)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{~F})$	109.5

$\mathrm{H}(19 \mathrm{D})-\mathrm{C}\left(19^{\prime}\right)-\mathrm{H}(19 \mathrm{E})$	109.5
$\mathrm{H}(19 \mathrm{D})-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}(19 \mathrm{~F})$	109.5
$\mathrm{H}(19 \mathrm{E})-\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}(19 \mathrm{~F})$	109.5
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(3)$	$124.5(3)$
$\mathrm{O}(3)-\mathrm{B}(1)-\mathrm{O}(2)$	$112.3(3)$
$\mathrm{O}(3)-\mathrm{B}(1)-\mathrm{C}(3)$	$123.1(3)$
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$123.2(3)$
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	$113.2(3)$
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$123.2(3)$

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker SMART APEX II diffractometer equipped with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation $(\lambda=1.54179)$. Crystals of the subject compound were used as received (grown from Acetone solution). A $0.220 \times 0.125 \times 0.090 \mathrm{~mm}$ colorless crystal was mounted on a Cryoloop with Paratone oil.

Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-todetector distance was 40 mm using exposure time 5.0, 10.0 and 30 s (depending on the detector 2θ position) with a scan width of 1.25°. Data collection was 100.0% complete to 67.679° in θ. A total of 31889 reflections were collected. 2939 reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0456 . Indexing and unit cell refinement indicated a Primitive, Orthorhombic lattice. The space group was found to be $\boldsymbol{P} \mathbf{2}_{1} \mathbf{2}_{1} \mathbf{2}_{1}$. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Crystallographic data are summarized in Table S21.

Notes: Excellent data and refinement.
Racemic TWIN, final refinement using HKL 4 file format

Table S21. Crystal data and structure refinement for $\mathbf{2 m}$.

Report date	2020-11-18
Identification code	engle291
Empirical formula	C18 H21 N O2
Molecular formula	C18 H21 N O2
Formula weight	283.36
Temperature	100.0 K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	$a=4.9552(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=15.4018(10) \AA \quad \beta=90^{\circ}$.
Volume	1553.18(17) \AA^{3}
Z	4
Density (calculated)	$1.212 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.621 \mathrm{~mm}^{-1}$
F(000)	608
Crystal size	$0.22 \times 0.125 \times 0.09 \mathrm{~mm}^{3}$
Crystal color, habit	colorless plank
Theta range for data collection	3.599 to 70.087°.
Reflections collected	31889
Independent reflections	2939 [R(int) $=0.0456]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.753 and 0.637
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2939 / 0 / 196
Goodness-of-fit on F^{2}	1.106
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0335, \mathrm{wR} 2=0.0762$
R indices (all data)	$\mathrm{R} 1=0.0370, \mathrm{wR} 2=0.0774$
Absolute structure parameter	0.3(3)
Largest diff. peak and hole	0.146 and -0.148 e. \AA^{-3}

Table S22. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)for $\mathbf{2 m}$. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$5445(3)$	$2781(1)$	$5211(1)$	$23(1)$
$\mathrm{O}(2)$	$8197(3)$	$4589(1)$	$4857(1)$	$24(1)$
$\mathrm{N}(1)$	$3776(3)$	$4761(1)$	$4586(1)$	$18(1)$
$\mathrm{C}(1)$	$6400(5)$	$1996(2)$	$6535(1)$	$34(1)$
$\mathrm{C}(2)$	$4968(5)$	$2848(1)$	$6387(1)$	$25(1)$
$\mathrm{C}(3)$	$6070(4)$	$3299(1)$	$5777(1)$	$19(1)$
$\mathrm{C}(4)$	$4906(4)$	$4212(1)$	$5671(1)$	$17(1)$
$\mathrm{C}(5)$	$5783(4)$	$4530(1)$	$4997(1)$	$18(1)$
$\mathrm{C}(6)$	$5952(4)$	$4854(1)$	$6196(1)$	$22(1)$
$\mathrm{C}(7)$	$4769(4)$	$5755(1)$	$6151(1)$	$20(1)$
$\mathrm{C}(8)$	$2727(5)$	$6012(1)$	$6582(1)$	$26(1)$
$\mathrm{C}(9)$	$1604(5)$	$6833(2)$	$6545(1)$	$31(1)$
$\mathrm{C}(10)$	$2487(5)$	$7417(1)$	$6074(1)$	$29(1)$
$\mathrm{C}(11)$	$4518(5)$	$7173(1)$	$5646(1)$	$28(1)$
$\mathrm{C}(12)$	$5651(5)$	$6351(1)$	$5684(1)$	$25(1)$
$\mathrm{C}(13)$	$4124(4)$	$5125(1)$	$3950(1)$	$19(1)$
$\mathrm{C}(14)$	$6114(4)$	$4829(2)$	$3526(1)$	$25(1)$
$\mathrm{C}(15)$	$6339(5)$	$5196(2)$	$2906(1)$	$31(1)$
$\mathrm{C}(16)$	$2621(5)$	$5852(2)$	$2708(1)$	$30(1)$
$\mathrm{C}(18)$	$6137(2)$	$3129(1)$	$28(1)$	

Table S23. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2 m}$.

$\mathrm{O}(1)-\mathrm{H}(1)$	0.8400	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.388(3)$
$\mathrm{O}(1)-\mathrm{C}(3)$	1.435(2)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{O}(2)-\mathrm{C}(5)$	1.233(2)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.381(4)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.87(3)	$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(5)$	1.347(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.386(4)
$\mathrm{N}(1)-\mathrm{C}(13)$	1.421(2)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	$\mathrm{C}(17)-\mathrm{C}(18)$	1.391(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$	0.9800		
$\mathrm{C}(1)-\mathrm{C}(2)$	1.523(3)	$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	117.3(16)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(13)$	125.44(17)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.524(3)	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	116.7(16)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(4)$	1.535(3)	$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$	109.5
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{H}(1 \mathrm{C})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)$	1.520(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(6)$	1.545(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{D})$	109.5
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
$\mathrm{C}(6)-\mathrm{C}(7)$	1.509(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.396(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.78(19)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.392(3)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.8
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0
C(8)-C(9)	1.384(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	108.83(17)
C(9)-C(10)	$1.385(3)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	108.7
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	108.40(16)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.383(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	108.7
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	113.41(17)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.387(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	108.7
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)$	1.387(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	111.29(16)
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.386(3)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	108.32(16)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	109.5

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	108.77(16)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.5
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{H}(4)$	109.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.2
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{N}(1)$	123.63(19)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.6(2)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	120.61(17)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.2
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	115.73(17)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.0
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.6	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.0(2)
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.6	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	120.0
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.6	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	120.0(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(4)$	114.61(17)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.6	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.6		
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.25(19)		
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	121.70(19)		
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	118.1(2)		
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.5		
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	121.1(2)		
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.5		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.9		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.3(2)		
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.9		
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4		
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.3(2)		
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.7		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.5(2)		
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.7		
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$	119.6		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	120.8(2)		
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.6		
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)$	121.54(19)		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{N}(1)$	118.21(18)		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	120.21(18)		
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4		
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119.3(2)		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.5		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	120.9(2)		

Table S24. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 m}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$16(1)$	$28(1)$	$24(1)$	$-11(1)$	$1(1)$	$0(1)$
$\mathrm{O}(2)$	$10(1)$	$38(1)$	$26(1)$	$2(1)$	$2(1)$	$-2(1)$
$\mathrm{N}(1)$	$11(1)$	$26(1)$	$17(1)$	$-1(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(1)$	$36(1)$	$26(1)$	$40(1)$	$6(1)$	$-2(1)$	$-1(1)$
$\mathrm{C}(2)$	$30(1)$	$22(1)$	$23(1)$	$-2(1)$	$2(1)$	$0(1)$
$\mathrm{C}(3)$	$14(1)$	$22(1)$	$20(1)$	$-5(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(4)$	$11(1)$	$22(1)$	$19(1)$	$-2(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(5)$	$13(1)$	$20(1)$	$20(1)$	$-5(1)$	$0(1)$	$0(1)$
$\mathrm{C}(6)$	$24(1)$	$22(1)$	$20(1)$	$-3(1)$	$-4(1)$	$-1(1)$
$\mathrm{C}(7)$	$20(1)$	$22(1)$	$20(1)$	$-5(1)$	$-5(1)$	$-2(1)$
$\mathrm{C}(8)$	$28(1)$	$23(1)$	$25(1)$	$1(1)$	$4(1)$	$-4(1)$
$\mathrm{C}(9)$	$26(1)$	$31(1)$	$36(1)$	$-5(1)$	$6(1)$	$1(1)$
$\mathrm{C}(10)$	$28(1)$	$22(1)$	$37(1)$	$-3(1)$	$-4(1)$	$3(1)$
$\mathrm{C}(11)$	$34(1)$	$23(1)$	$27(1)$	$1(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(12)$	$25(1)$	$25(1)$	$24(1)$	$-5(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(13)$	$16(1)$	$23(1)$	$17(1)$	$-2(1)$	$-1(1)$	$-6(1)$
$\mathrm{C}(14)$	$19(1)$	$36(1)$	$21(1)$	$-1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(15)$	$25(1)$	$50(2)$	$19(1)$	$-1(1)$	$4(1)$	$-4(1)$
$\mathrm{C}(16)$	$31(1)$	$41(1)$	$18(1)$	$6(1)$	$-3(1)$	$-12(1)$
$\mathrm{C}(17)$	$29(1)$	$28(1)$	$27(1)$	$4(1)$	$-8(1)$	$-5(1)$
$\mathrm{C}(18)$	$20(1)$	$26(1)$	$24(1)$	$-2(1)$	$0(1)$	$-2(1)$

Table S25. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 m}$.

	x	y	z	U(eq)
H(1)	6884	2622	5029	34
H(1A)	2140(50)	4753(16)	4742(12)	22
H(1B)	6234	1607	6156	51
H(1C)	5574	1723	6921	51
H(1D)	8312	2109	6623	51
H(2A)	5165	3241	6769	30
H(2B)	3019	2734	6325	30
H(3)	8076	3345	5818	22
H(4)	2891	4186	5690	21
H(6A)	5548	4615	6636	26
H(6B)	7939	4898	6155	26
H(8)	2099	5616	6906	31
H(9)	221	6997	6843	37
H(10)	1706	7979	6045	34
H(11)	5143	7572	5324	34
H(12)	7046	6193	5387	30
H(14)	7311	4380	3659	30
H(15)	7694	4993	2613	38
H(16)	4815	6105	2285	36
H(17)	1406	6582	2993	33
H(18)	973	5964	4039	28

Table S26. Hydrogen bonds for $\mathbf{2 m}\left[\AA\right.$ and $\left.^{\circ}\right]$.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(1)-H(1) \ldots O(1) \# 1$	0.84	1.93	$2.7615(12)$	168.4
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 2$	$0.87(3)$	$1.98(3)$	$2.831(2)$	$164(2)$

Symmetry transformations used to generate equivalent atoms:
\#1 x+1/2,-y+1/2,-z+1 \#2 x-1,y,z

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker D8 Venture Ultra diffractometer equipped with Mo K_{α} radiation $(\lambda=0.71073)$. Crystals of the subject compound were used as received (grown from Acetone/Et 2 O). A $0.400 \times 0.030 \times 0.030 \mathrm{~mm}$ colorless crystal was mounted on a Cryoloop with Paratone oil.

Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-todetector distance was 50 mm using exposure time 4.0 s (depending on the detector 2θ position) with a scan width of 0.80°. Data collection was 99.7% complete to 25.242° in θ. A total of 52216 reflections were collected covering the indices, $-14<=\mathrm{h}<=14,-11<=\mathrm{k}<=10,-38<=1<=38$. 3186 reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0926 . Indexing and unit cell refinement indicated a Primitive, Orthorhombic lattice. The space group was found to be Pbca. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Crystallographic data are summarized in Table S27.
Notes: Minor disorder group modeled.

Table S27. Crystal data and structure refinement for 3b.

Report date	2020-10-02
Identification code	engle277
Empirical formula	C17 H29 Ge N O
Molecular formula	C17 H29 Ge N O
Formula weight	336.00
Temperature	100.0 K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$\mathrm{a}=11.7114(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=9.2986(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=32.1084(10) \AA \quad \gamma=90^{\circ}$.
Volume	3496.6(2) \AA^{3}
Z	8
Density (calculated)	$1.277 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.749 \mathrm{~mm}^{-1}$
F(000)	1424
Crystal size	$0.4 \times 0.03 \times 0.03 \mathrm{~mm}^{3}$
Crystal color, habit	colorless needle
Theta range for data collection	3.384 to 25.344°.
Index ranges	$-14<=\mathrm{h}<=14,-11<=\mathrm{k}<=10,-38<=\mathrm{l}<=38$
Reflections collected	52216
Independent reflections	$3186[\mathrm{R}(\mathrm{int})=0.0926]$
Completeness to theta $=25.242^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5568 and 0.4601
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3186 / 18/208
Goodness-of-fit on F^{2}	1.072
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0325, \mathrm{wR} 2=0.0667$
R indices (all data)	$\mathrm{R} 1=0.0449, \mathrm{wR} 2=0.0727$
Largest diff. peak and hole	0.361 and -0.366 e. \AA^{-3}

Table S28. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 b}$. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Ge}(1)$	5202(1)	5277(1)	6002(1)	20(1)
$\mathrm{O}(1)$	3158(2)	2681(2)	6200(1)	26(1)
$\mathrm{N}(1)$	2403(2)	4757(2)	6456(1)	22(1)
C(1)	3035(2)	4002(3)	6177(1)	21(1)
C(2)	3595(2)	4872(3)	5842(1)	24(1)
C(6)	6209(3)	3711(3)	5830(1)	39(1)
C(7)	6033(3)	2308(3)	6072(1)	54(1)
C(8)	5647(2)	7035(3)	5711(1)	25(1)
C(9)	5319(3)	8402(3)	5940(1)	38(1)
C(10)	5266(3)	5536(4)	6604(1)	38(1)
C(11)	6476(3)	5777(5)	6771(1)	61(1)
C(12)	1818(2)	4180(3)	6803(1)	20(1)
C(13)	2280(2)	3090(3)	7045(1)	26(1)
C(14)	1656(3)	2541(3)	7378(1)	33(1)
C(15)	594(3)	3078(3)	7472(1)	36(1)
C(16)	149(3)	4188(3)	7237(1)	33(1)
C(17)	756(2)	4737(3)	6904(1)	26(1)
C(3)	3593(4)	4076(5)	5415(1)	29(1)
C(4)	2392(3)	3755(5)	5242(1)	38(1)
C(5)	1689(4)	5075(6)	5155(2)	58(2)
C(3')	3237(15)	4480(30)	5416(5)	29(1)
C(4')	1938(14)	4530(20)	5352(5)	27(4)
C(5')	1654(16)	4230(20)	4901(5)	39(5)

Table S29. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 b}$.

$\mathrm{Ge}(1)-\mathrm{C}(2)$	1.988(3)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{Ge}(1)-\mathrm{C}(6)$	1.953(3)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.373(4)
$\mathrm{Ge}(1)-\mathrm{C}(8)$	1.954(3)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{Ge}(1)-\mathrm{C}(10)$	1.949(3)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.381(4)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.239(3)	$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{N}(1)-\mathrm{H}(1)$	0.8800	$\mathrm{C}(16)-\mathrm{C}(17)$	1.383(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.356(3)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(12)$	1.415(3)	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(2)$	1.498(4)	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1.0000	$\mathrm{C}(3)-\mathrm{C}(4)$	1.542(5)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	1.0000	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	1.555(4)	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)$	1.476(15)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.505(6)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	C(5)-H(5B)	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.532(4)	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.536(11)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	0.9900
$\mathrm{C}(8)$-C(9)	1.518(4)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.510(10)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{A}\right)$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{B}\right)$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{C}\right)$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900		
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900	$\mathrm{C}(6)-\mathrm{Ge}(1)-\mathrm{C}(2)$	110.93(13)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.532(4)	$\mathrm{C}(6)-\mathrm{Ge}(1)-\mathrm{C}(8)$	109.15(12)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800	$\mathrm{C}(8)-\mathrm{Ge}(1)-\mathrm{C}(2)$	106.68(11)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800	$\mathrm{C}(10)-\mathrm{Ge}(1)-\mathrm{C}(2)$	108.44(12)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800	$\mathrm{C}(10)-\mathrm{Ge}(1)-\mathrm{C}(6)$	110.45(15)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.388(4)	$\mathrm{C}(10)-\mathrm{Ge}(1)-\mathrm{C}(8)$	111.13(13)
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.386(4)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	117.0
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	125.9(2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.390(4)	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{H}(1)$	117.0

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	122.5(2)	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.8(2)	$\mathrm{Ge}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.8
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	115.7(2)	$\mathrm{Ge}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.8
$\mathrm{Ge}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.7
$\mathrm{Ge}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	102.1	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Ge}(1)$	113.7(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Ge}(1)$	109.31(18)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	102.1	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.0(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Ge}(1)$	108.6(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.0	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(2)-\mathrm{Ge}(1)$	123.8(8)	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(2)-\mathrm{C}(1)$	114.0(10)	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	102.1	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(1)$	122.1(2)
$\mathrm{Ge}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.7	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{N}(1)$	118.5(2)
$\mathrm{Ge}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.7	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	119.5(2)
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.6	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Ge}(1)$	114.2(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.6(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.7	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.7(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	120.2
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.6(3)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	120.2
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{Ge}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.8	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.3(3)
$\mathrm{Ge}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.8	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.7	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Ge}(1)$	113.66(19)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	120.3(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.8	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.8	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.7
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	114.2(3)
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.7
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.7
S-75			

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.7
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	114.1(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.7
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	108.9
$\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	108.9
$\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	113.4(13)
$\mathrm{H}\left(3^{\prime} \mathrm{A}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	107.7
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{A}\right)$	108.9
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{H}\left(3^{\prime} \mathrm{B}\right)$	108.9
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	109.7
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	109.7
$\mathrm{H}\left(4^{\prime} \mathrm{A}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	108.2
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	109.9(13)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{A}\right)$	109.7
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime} \mathrm{B}\right)$	109.7
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{A}\right)$	109.5
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{B}\right)$	109.5
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{C}\right)$	109.5
$\mathrm{H}\left(5^{\prime} \mathrm{A}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{B}\right)$	109.5
$\mathrm{H}\left(5^{\prime} \mathrm{A}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{C}\right)$	109.5
$\mathrm{H}\left(5^{\prime} \mathrm{B}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{H}\left(5^{\prime} \mathrm{C}\right)$	109.5

Table S30. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3b. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Ge}(1)$	$18(1)$	$17(1)$	$25(1)$	$3(1)$	$2(1)$	$-2(1)$
$\mathrm{O}(1)$	$27(1)$	$17(1)$	$35(1)$	$2(1)$	$7(1)$	$-1(1)$
$\mathrm{N}(1)$	$22(1)$	$15(1)$	$30(1)$	$1(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(1)$	$15(1)$	$21(1)$	$27(1)$	$1(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(2)$	$22(1)$	$22(1)$	$29(1)$	$7(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(6)$	$27(2)$	$21(2)$	$67(2)$	$5(2)$	$9(2)$	$3(1)$
$\mathrm{C}(7)$	$30(2)$	$24(2)$	$109(3)$	$18(2)$	$10(2)$	$7(1)$
$\mathrm{C}(8)$	$23(1)$	$22(1)$	$31(2)$	$1(1)$	$9(1)$	$-2(1)$
$\mathrm{C}(9)$	$39(2)$	$24(2)$	$51(2)$	$-1(1)$	$13(2)$	$-3(1)$
$\mathrm{C}(10)$	$32(2)$	$54(2)$	$28(2)$	$8(2)$	$-4(1)$	$-18(2)$
$\mathrm{C}(11)$	$46(2)$	$98(3)$	$38(2)$	$15(2)$	$-17(2)$	$-36(2)$
$\mathrm{C}(12)$	$23(1)$	$16(1)$	$21(1)$	$-2(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(13)$	$28(2)$	$24(2)$	$28(2)$	$-1(1)$	$-5(1)$	$1(1)$
$\mathrm{C}(14)$	$46(2)$	$28(2)$	$25(2)$	$6(1)$	$-5(1)$	$-1(1)$
$\mathrm{C}(15)$	$49(2)$	$34(2)$	$24(2)$	$-2(1)$	$13(1)$	$-4(2)$
$\mathrm{C}(16)$	$37(2)$	$28(2)$	$35(2)$	$-5(1)$	$11(1)$	$5(1)$
$\mathrm{C}(17)$	$30(2)$	$20(1)$	$29(2)$	$-2(1)$	$2(1)$	$4(1)$
$\mathrm{C}(3)$	$23(2)$	$35(3)$	$28(2)$	$-1(2)$	$1(2)$	$-6(2)$
$\mathrm{C}(4)$	$28(2)$	$63(3)$	$25(2)$	$-13(2)$	$4(2)$	$-9(2)$
$\mathrm{C}(5)$	$30(2)$	$98(5)$	$44(3)$	$26(3)$	$-8(2)$	$-3(2)$
$\mathrm{C}\left(3^{\prime}\right)$	$23(2)$	$35(3)$	$28(2)$	$-1(2)$	$1(2)$	$-6(2)$
$\mathrm{C}\left(4^{\prime}\right)$	$23(4)$	$30(11)$	$27(8)$	$-13(8)$	$-2(5)$	$-7(6)$
$\mathrm{C}\left(5^{\prime}\right)$	$39(9)$	$50(12)$	$26(8)$	$-15(8)$	$-1(5)$	$-10(9)$

Table S31. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 b}$.

	x			
			z	$\mathrm{U}(\mathrm{eq})$
	2352	5692	6416	26
H(1)	3177	5804	5811	29
H(2A)	3226	5833	5878	29
H(2B)	6085	3519	5530	46
H(6A)	7011	4024	5865	46
H(6B)	5254	1955	6026	81
H(7A)	6148	2486	6370	81
H(7B)	6582	1587	5976	81
H(7C)	6484	7027	5669	30
H(8A)	5282	7043	5432	30
H(8B)	5730	8447	6205	57
H(9A)	4495	8402	5993	57
H(9B)	5520	9239	5770	57
H(9C)	4786	6371	6680	45
H(10A)	4938	4674	6740	45
H(10B)	6964	4968	6690	91
H(11A)	6452	5848	7075	91
H(11B)	6786	6670	6655	91
H(11C)	3018	2721	6985	32
H(13)	1967	1785	7541	40
H(14)	169	2689	7697	43
H(15)	-578	4576	7304	40
H(16)	444	5500	6743	32
H(17)	4013	4668	5210	35
H(3A)	4011	3157	5447	35
H(3B)	2470	3196	4982	46
H(4A)	1977	3147	5446	46
H(4B)	1536	5584	5416	86
H(5A)	965	4792	5026	86
H(5B)	2109	5710	4965	86
H(5C)	3508	3489	5355	35
H(3'A)	3606	5135	5215	35
H(3'B)	1562	3813	5533	32
H(4'A)	1648	5497	5430	32
H(4'B)	1810	5089	4734	58
H(5'A)	2124	3976	4877	58
H(5'B)	3431	4801	58	
H(5'C)				

Table S32. Hydrogen bonds for $\mathbf{3 b}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$N(1)-H(1) \ldots O(1) \# 1$	0.88	2.06	$2.914(3)$	162.2

Symmetry transformations used to generate equivalent atoms:
\#1-x+1/2,y+1/2,z

NMR SPECTRA

1e

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-2

S-89

$$
\iint
$$

N

1s

鑃

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
J0	190	180	170	160	150	140	130	120	110	$\mathrm{f}_{1}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0

S-100

[^0]S－102

S-103

 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\lim _{\mathrm{fl}(\mathrm{ppm})}^{100}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | S-104

S-105

S-106

/ \| \|

2g

S-107

S-110

S-111

S-112

					ছ	正 MO:												$\begin{aligned} & \text { 'T' } \\ & \text { d } \\ & \text { N } \end{aligned}$	$\begin{aligned} & T \\ & \text { T } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { 'T } \\ & \stackrel{\circ}{c} \end{aligned}$		
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	$\begin{gathered} 5.5 \\ \mathrm{f} 1 \end{gathered}$	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5		1.0	0.5	0

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

S-113

S-117

S-118

S-119

								$\begin{aligned} & \text { T' } \\ & 8 \end{aligned}$			$\begin{aligned} & T \\ & \sqrt[\infty]{*} \end{aligned}$				$\begin{array}{r} \upharpoonright \\ \text { न्ने } \end{array}$			$\begin{aligned} & \text { T' } \\ & \text { F } \end{aligned}$		
1.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\mathrm{ff}^{5.0}(\mathrm{ppm})$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1

 888
बig
γ

S-125

S-126

$\ldots 1$

T

$\stackrel{8}{8}$

S-132

REFERENCES

1) Jankins, T.C.; Bell, W.C.; Zhang, Y.; Qin, Z.-Y.; Gembicky, M.; Liu, P.; Engle, K.M. Low-Valent

Tungsten Redox Catalysis Enables Controlled Isomerization and Carbonylative Functionalization of Alkenes.
ChemRxiv 2021, DOI: 10.26434/chemrxiv. 14362238.
2) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles. R. R. Catalytic Olefin Hydroamination Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2015, 137, 13492-13495.
3) Neukom, J. D.; Perch, N. P.; Wolfe, J. P. Intramolecular Insertion of Alkenes into Pd-N Bonds. Effects of Substrate and Ligand Structure on the Reactivity of $(\mathrm{P}-\mathrm{P}) \operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CR}=\mathrm{CHR}^{\prime}\right]$ Complexes.
Organometallics 2011, 30, 1269-1277.
4) Jia, J.; Ho, Y. A.; Bülow, R. F.; Rueping. M. Brønsted Base Assisted Photoredox Catalysis: Proton Coupled Electron Transfer for Remote C-C Bond Formation via Amidyl Radicals. Chem. Eur. J. 2018, 24, 14054-14058.
5) Li, Z.; Song, L.; Li, C. Silver-Catalyzed Radical Aminofluorination of Unactivated Alkenes in Aqueous Media. J. Am. Chem. Soc. 2013, 135, 4640-4643.
6) Nicolaou, K. C.; Baran. P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. Iodine(V) Reagents in Organic Synthesis. Part 3. New Routes to Heterocyclic Compounds via oIodoxybenzoic Acid-Mediated Cyclizations: Generality, Scope, and Mechanism. J. Am. Chem. Soc. 2002, 124, 2233-2244.
7) Briggs, M. E.; Zard, S. Z. A New Radical-Ionic Allylation Sequence. Synlett, 2005, 2, 334-336.
8) Chen, Y.-H.; Ellwart, M.; Toupalas, G. Ebe, Y.; Knochel, P. Preparation and Application of Solid, SaltStabilized Zinc Amide Enolates with Enhanced Air and Moisture Stability. Angew. Chem. Int. Ed. 2017, 56, 4612-4616.
9) Metz, P.; Mues, C. Thermal O \rightarrow C Rearrangement of N-Phenyl-allylimidates. Tetrahedron, 1988, 44, 6841-6853.
10) Duguet, N.; Slawin, A. M. Z.; Smith, A. D. An Asymmetric Hetero-Claisen Approach to 3-Alkyl-3Aryloxindoles. Org. Lett., 2009, 11, 3858-3861.
11) Xiao, K.-J.; Wang, A. E.; Huang, Y.-H.; Huang. P.-Q. Versatile and Direct Transformation of Secondary Amides into Ketones by Deaminative Alkylation with Organocerium Reagents. Asian J. Org. Chem. 2012, 1, 130-132.
12) Heller, S. T.; Schultz, E. E.; Sarpong, R. Chemoselective N-Acylation of Indoles and Oxazolidinones with Carbonylazoles. Angew. Chem. Int. Ed. 2012, 51, 8304-8308.
13) Abarca, B.; Custodio, R.; Cuadro, A. M.; Sucunza, D.; Domingo, A.; Mendicuti, F.; Alvarez-Builla, J.; Vaquero, J. J. Efficient Synthesis of an Indoloquinolizinium Alkaloid Selective DNA-Binder by RingClosing Metathesis. Org. Lett. 2014, 16, 3464-3467.
14) Cooke, M. P.; Pollock. C. M. Charge-Directed Conjugate Addition Reactions of Silylated $\alpha-\beta-$ Unsaturated Amidate Anions. J. Org. Chem. 1992, 58, 7474-7481.
15) Knott, K.; Fishovitz, J.; Thorpe, S. B.; Lee, I.; Santos, W. L. N-Terminal Peptidic Boronic Acids Selectively Inhibit Human ClpXP. Org. Biomol. Chem. 2010, 8, 3451-3456.
16) (2b, CCDC 2012996), (2i, CCDC 2033217), (2na, CCDC 2045265), and (3b, CCDC 2035216) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
17) Ely, R. J.; Morken, J. P. Regio- and Stereoselective Ni-Catalyzed 1,4-Hydroboration of 1,3-Dienes: Access to Stereodefined (Z)-Allylboron Reagents and Derived Allylic Alcohols. J. Am. Chem Soc. 2010, 132, 2534-2535.

[^0]:

