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Lightweight Image Super-Resolution with
Expectation-Maximization Attention Mechanism

Xiangyuan Zhu, Kehua Guo, Member, IEEE, Sheng Ren, Bin Hu, Min Hu and Hui Fang

Abstract—In recent years, with the rapid development of
deep learning, super-resolution methods based on convolutional
neural networks (CNNs) have made great progress. However,
the parameters and the required consumption of computing
resources of these methods are also increasing to the point that
such methods are difficult to implement on devices with low
computing power. To address this issue, we propose a lightweight
single image super-resolution network with an expectation-
maximization attention mechanism (EMASRN) for better bal-
ancing performance and applicability. Specifically, a progressive
multi-scale feature extraction block (PMSFE) is proposed to
extract feature maps of different sizes. Furthermore, we propose
an HR-size expectation-maximization attention block (HREMAB)
that directly captures the long-range dependencies of HR-size
feature maps. We also utilize a feedback network to feed the
high-level features of each generation into the next generation’s
shallow network. Compared with the existing lightweight single
image super-resolution (SISR) methods, our EMASRN reduces
the number of parameters by almost one-third. The experimental
results demonstrate the superiority of our EMASRN over state-
of-the-art lightweight SISR methods in terms of both quantitative
metrics and visual quality. The source code can be downloaded
at https://github.com/xyzhu1/EMASRN.

Index Terms—Image super-resolution, lightweight, progressive
feature extraction, expectation-maximization attention.

I. INTRODUCTION

S INGLE image super-resolution is intended to convert
a given low-resolution (LR) image with coarse details

to a corresponding high-resolution (HR) image with better
visual quality and refined details. Because SISR can make
the processed image have richer details, it is widely used
in many applications, such as small object detection [1],
surveillance and security [2], medical imaging [3], forensics
[4] and astronomical images [5]. SISR is essentially an ill-
posed problem, which means that for an LR image, there are
countless corresponding HR images instead of a single HR
image. Despite the difficulties, SISR is receiving increasing
attention from researchers due to its huge academic and
industrial value.

Early research on super-resolution mainly focused on tradi-
tional methods. For example, the interpolation-based method
[6] is the simplest and most efficient method. However,
due to the high dependence of this method on adjacent
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(a) Bicubic (b) LapSRN [7]

(c) CARN [8] (d) SRFBN-S [9]

(e) CFSRCNN [10] (f) EMASRN (ours)

Fig. 1. Lightweight SISR results of different methods. The lines of most
methods are seriously merged. Each line generated by our method is more
independent and can reflect the details of the original image more accurately.

pixels, the processed images have poor performance. Later,
to improve the performance of super-resolution, researchers
proposed reconstruction-based methods [11], [12]. However,
these reconstruction-based methods not only rely heavily on
the image prior but also time-consuming.

In recent years, convolutional neural networks (CNNs)
have made remarkable achievements in the field of computer
vision. Due to the powerful feature extraction ability and high
representational capacity of CNNs, CNN-based methods [13]–
[18] have surpassed traditional methods by a large margin.
Through the large number of parameters and complex network
structure, CNN-based methods can learn the mapping between
LR and HR images from a large number of training sets.
Due to the huge academic and commercial value, recently, an
increasing number of CNN-based SISR methods have been
proposed. Although these methods continue to make break-
throughs in performance, their parameters and complexity
are increasing. This pattern makes the performance growth
of existing models depend greatly on an increase in the
number of parameters and the elaboration of convolutional
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neural networks. Furthermore, these complex models require
tremendous computing resources and memory, which makes it
difficult to apply them to real-world applications. For example,
inasmuch as mobile devices such as mobile phones have
limited computing power and operating memory, complex
models are almost impossible to run on them. To solve this
problem, many lightweight super-resolution methods have also
been proposed [7]–[10]. Some lightweight SISR examples are
presented in Fig. 1. These methods reduce the parameters
by designing a shallow network structure or by recursive
connection but cannot make full use of the expressive power of
convolutional neural networks. Although their parameters are
reduced compared with the previous methods, this reduction
is achieved at the cost of a significant performance sacrifice.
Moreover, the parameters of the existing lightweight models
are still too large for real applications.

To address the above issues, we propose a lightweight
single image super-resolution network EMASRN for better
balancing performance against applicability. Each pixel in the
image has a certain correlation with other pixels instead of
being independent with each other. We propose an HR-size
expectation-maximization attention mechanism to capture the
long-range dependencies of HR-size feature maps. Compared
with other self-attention mechanisms, our method captures the
long-range dependencies indirectly by calculating the relation-
ship between all of the pixels in the image and the basis,
which makes it possible to perform on the HR-size feature
maps. In addition, we propose a progressive multi-scale feature
extraction block to extract the feature information of different
sizes. Ablation studies are performed to test the effectiveness
of the proposed blocks for SR performance improvement. Our
EMASRN achieves a good balance between the number of
parameters and the performance. Comparison to the existing
lightweight SISR methods also shows that our EMASRN
achieves state-of-the-art performance.

The major contributions of our work can be summarized as
follows:

• We propose an HR-size expectation-maximization atten-
tion mechanism to directly capture the long-range depen-
dencies of HR-size images by calculating the relationship
between all pixels in the image and the basis. To the best
of our knowledge, this paper is the first application of the
expectation-maximization attention mechanism in image
super-resolution.

• We propose a progressive multi-scale feature extraction
block (PMSFE) to extract the feature information of
different scales. PMSFE shares the feature information of
adjacent scales in a progressive way in the early stage,
which can make the fusion of different features more
efficient.

• Comparison with the state-of-the-art methods shows that
our method not only reduces the parameters by almost
one-third but also demonstrates superiority in terms of
both quantitative value and visual quality.

The rest of this paper is organized as follows. In Section
II, we briefly review the related work. In Section III, we
introduce the related preliminaries. In Section IV, we describe

the proposed network in detail. In Section V, the experimental
results are presented. Finally, we conclude this paper in
Section VI.

II. RELATED WORK

A. CNN Based Single Image Super-Resolution

With the rapid development of deep learning in recent years,
many CNN-based methods have become the mainstream of
SISR. Dong et al. [13] were the first to use convolutional
neural networks in image super-resolution tasks, and they
proposed the single-image super-resolution algorithm SRCNN.
Later, with the help of residual learning [19], Kim et al.
[20] proposed the 20-layer depth model VDSR, which can
converge faster during the training process and achieve better
results than SRCNN. Lai et al. [7] proposed LapSRN, which
incorporates the idea of a laplacian pyramid. This model takes
the original low-resolution image as input and then uses a
progressive method to generate high-resolution images. Yu
et al. [21] proposed WDSR which demonstrated that models
with wider features before ReLU activation have significantly
better performance. Yu et al. [22] applied state-of-the-art SR
techniques to reconstruct CT images and introduced a coarse-
to-fine and residual learning idea which is also utilized in our
work. Subsequently, Lim et al. [23] designed EDSR by reduc-
ing unnecessary modules in the convolutional neural network
and won the championship of the NTIRE2017 SR Challenge
[24]. Li et al. [25] used the multi-scale residual network for
single image super-resolution and proposed MSRN. In the
same year, Haris et al. [26] proposed DBPN, which uses
the iterative upsampling and downsampling method. DBPN
uses an error feedback mechanism, which allows the model to
achieve good performance in large-scale super-resolution tasks
and won the championship of the NTIRE2018 SR Challenge
[27]. Hu et al. [28] proposed CSFM to capture more infor-
mative features and maintain long-term information for image
SR. Qiu et al. [29] processed the low-frequency information
and high-frequency information of the input image separately
and proposed EBRN. More recently, Zuo et al. [30] proposed
a data-driven approach based on the deep convolutional neural
network with global and local residual learning for depth
map SR. Mei et al. [31] proposed a Cross-Scale Non-Local
attention module to find the cross-scale feature correlations
within the LR images. Wu et al. [32] designed MGAN to
exploit the advantages of multi-scale and attention mechanisms
in SR tasks.

Although these methods have achieved excellent perfor-
mance, they have complex model structure with a large number
of parameters, thus making them difficult to be used in real
situations.

B. CNN Based Lightweight Single Image Super-Resolution

The applications of the SISR model to practical situations
have been studied for a long time. Hui et al. [33] proposed
an information distillation network IDN. In the proposed
IDN, a feature extraction block first extracts features from
the LR image. Then, multiple information distillation blocks
are stacked to progressively distill residual information. Next,
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a reconstruction block aggregates the obtained HR residual
representations to generate the residual image. Finally, an
element-wise addition operation is implemented on the resid-
ual image and the upsampled LR image to obtain the HR
image. Although IDN has reduced parameters compared with
the previous method, this reduction is achieved at the cost of
a significant performance sacrifice. Later, Ahn et al. [8] de-
signed an architecture that implements a cascading mechanism
upon a residual network and proposed CARN. The middle
parts of CARN were designed based on ResNet. In addition to
the ResNet architecture, CARN uses a cascading mechanism at
both the local and global levels to incorporate the features from
multiple layers. Although CARN has a better performance
than IDN, its model is larger, which renders it difficult to
apply in practice. Xie et al. [34] utilized the residual extracted
from the input to predict its counterpart in the corresponding
output. Li et al. [35] designed adaptive filters to remove the
redundant low-frequency information so that the amount of
memory consumption and computational cost can be reduced.
Tian et al. [10] proposed CFSRCNN which cascaded several
types of modular blocks to prevent possible training instability
and performance degradation. CFSRCNN utilizes a stack of
feature extraction blocks to learn the long-path and short-
path features and fuses them by expending the effect of the
shallower layers to the deeper layers. Although CFSRCNN
has slightly fewer parameters than CARN, CFSRCNN has a
reduction in PSNR, which also proves that it is difficult to
achieve a good balance between parameters and performance.

Compared to these lightweight SISR methods, our model
further reduces the number of model parameters signifi-
cantly via a well-designed architecture. The proposed method
achieves a better reconstruction performance with lower com-
plexity, which is confirmed by our experimental results.

C. Attention Mechanism
The attention mechanism is widely used in high level

computer vision tasks, such as object detection [36], image
classification [37] and image segmentation [38]. The self-
attention mechanism originally attracted widespread attention
in the field of natural language processing [39]. Wang et
al. [40] adopted the self-attention mechanism for computer
vision tasks for the first time and proposed Non-local. Dai
et al. [41] utilized a non-locally enhanced residual group
structure to capture long-range spatial contextual information
and proposed SAN, which obtained state-of-the-art result at
that time. However, Non-local block needs to calculate the
correlations between all of the pixels in the image, which leads
to huge time complexity and space complexity of the method
and consumes more computing resources. Li et al. [42]
reformulated the self-attention mechanism in the manner of an
expectation-maximization iteration and proposed expectation-
maximization attention networks for semantic segmentation.
The proposed Expectation-Maximization Attention (EMA)
module is robust to the variance of input and friendly in terms
of memory and computation.

Inspired by EMA, we design a lightweight single image
super-resolution network EMASRN which can directly cap-
ture long-range relations on HR-size images. To the best

of our knowledge, this paper is the first to introduce the
expectation-maximization attention mechanism into image
super-resolution.

III. PRELIMINARIES

Before introducing our proposed method, we first intro-
duce the definition of image super-resolution and review the
expectation-maximization algorithm.

A. Definitions of Super-Resolution

The task of super-resolution aims at recovering the LR
images into corresponding HR images and gives these images
richer texture details and complete contour features. Generally,
the LR image IL can be modeled as the output of the following
degradation:

IL = D (IH ; θδ) , (1)

where D(·) represents the corresponding degradation mapping
function, IH is the HR image, and θδ stands for the parameters
of the degradation process, such as the size of blur kernel and
noise level. In practice, only LR images are provided, and
the degradation process or the degradation parameters are un-
known. Researchers are required to recover an approximation
ÎH of the ground-truth image IH as:

ÎH = U (IL; θγ) , (2)

where U(·) stands for the super-resolution model and θγ
denotes the parameters of U(·). The degradation mapping
function is unknown and can be quite complex which makes
SISR essentially an ill-posed problem. In most situations [8],
[10], [25], the bicubic interpolation function is used as the
degradation mapping. In this case, the degradation process can
be formulated as:

D (IH ; θδ) = (IH) ↓s , (3)

where ↓s represents the downsampling operation with the
scaling factor s.

Finally, the objective function of supervised super-resolution
tasks can be formulated as follows:

θ̂γ = argmin
θγ

L
(
ÎH , IH

)
, (4)

where L(·) represents the loss function between ÎH and IH .
θ̂γ denotes the parameter of the model when the loss value is
minimized.

B. Expectation-Maximization Algorithm

The expectation maximization (EM) algorithm aims to
find the maximum likelihood solution for models with la-
tent variables. The observed dataset from K models can
be denoted as X = {x1, x2, . . . , xn, . . . , xN}. The latent
variable corresponding to the n th observed data xn is Zn =
{zn1, zn2, . . . , znK}. We call {X,Z} the complete data and
the likelihood function can be denoted as ln p(X,Z | θ), where
θ represents the total parameters of the model. The ultimate
goal of the EM algorithm is to maximize the likelihood
function and obtain all of the parameters in the model by
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Fig. 2. An overview of our EMASRN network. EMASRN is composed of T generations as a whole. In above figure, we only show the first, tth and T th
generations, and the rest are represented by dashed lines. For each generation, the input is the same LR image, and the output is the SR image corresponding
to each generation. EMASRN fuses the high-level feature obtained by the previous generation with the initial feature of the current generation. ItSR represents
the output of the tth generation. The output of the T th generation ITSR is selected as the total output of the entire network.

two steps, i.e., the E step and the M step. In step E, the
posterior distribution of Z is obtained by using the current
model parameter θold. Then, the posterior distribution is used
to find the complete likelihood function:

Q
(
θ, θold

)
= E

[
log p(X,Z | θ) | X, θold

]
. (5)

In step M, the likelihood function is maximized to update the
model parameters:

θnew = argmax
θ
Q
(
θ, θold

)
, (6)

where θnew represents the updated parameters of the model.
Step E and Step M are executed alternately until the conver-
gence condition is met.

IV. PROPOSED METHOD

A. Network Architecture

As shown in Fig. 2, our EMASRN mainly consists
of five parts: initial feature extraction (IFE), deep projec-
tion block (DPB), progressive multi-scale feature extraction
(PMSFE), HR-size expectation-maximization attention block
(HREMAB) and reconstruction block (RB). DPB, PMSFE and
HREMAB constitute the deep feature extraction block (DFEB)
of our network. Our EMASRN is composed of T generations
in total. By using the feedback networks [43], EMASRN fuses
the high-level feature obtained by the (t−1)th generation with

the initial feature of the tth generation. In the tth generation,
the LR image is used as an input, and the output is the
corresponding super-resolution image (ItSR). The loss of each
generation is calculated by ItSR and HR and added in a certain
proportion as the total loss of the model. The final SR image
is obtained by the output of the T th generation.

For the tth generation, the input image is denoted as ILR.
For ILR, the initial feature extraction block is used to extract
the initial feature:

F t0 = HIFE (ILR) , (7)

where F t0 represents the shallow feature extracted from the
tth generation. HIFE(·) denotes the initial feature extraction
block. The initial feature extraction block consists of two
convolutional layers with a convolution kernel size of 3 × 3.
Then the extracted shallow feature is sent to the deep feature
extraction block:

F tDF = HDFEB

(
conv

[
F t0 , F

t−1
DF

])
= HDFEB

(
F t
)

, (8)

where HDFEB(·) stands for the deep feature extraction block,
F tDF represents the deep feature extracted by the tth gener-
ation, and F t−1DF denotes the deep feature extracted by the
(t − 1)th generation. Furthermore, F t is obtained by con-
catenating F t0 and F t−1DF according to the channel dimension.
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Finally, F tDF and ILR are sent to the reconstruction block
through the residual connection:

ItSR = HRB

(
F tDF , ILR

)
= I↑ + F tR

= HEMASRN (ILR) ,
(9)

where HRB(·) represents the reconstruction block. In the
reconstruction block, ILR is upsampled bilinearly and I↑ is
obtained, which has the same size as the HR image. At the
same time, a deconvolution and a convolution operation are
conducted on F tDF successively to obtain F tR which also has
the same size as the HR image. Finally, I↑ is added to F tR
via a residual connection, and the output image ItSR of the tth
generation is obtained. In general, HEMASRN (·) represents
the overall model we proposed, which converts ILR to ItSR.

B. Deep Projection Block

Timofte et al. [44] pointed out that back-projection can
effectively improve the performance of super-resolution tasks.
There are also some methods [9], [26] that utilized iterative
upsampling and downsampling to perform back projection and
achieved state-of-the-art result at that time. Similarly, we use
the deep projection block to extract the deep feature with
continuous upsampling and downsampling.

As shown in Fig. 3, the deep projection block is composed
of three projection groups via dense connection. The upsam-
pling feature of the ith group can be expressed as:

U ti = B↑i
([
F t, Dt

1, . . . , D
t
i−1
])

, (10)

where U ti denotes the upsampling feature of the ith group and
B↑i (·) stands for the upsampling layer of the ith projection
group. F t is obtained by concatenating F t0 and F t−1DF according
to the channel dimension followed by a convolutional layer,
which is mentioned in the previous section. Dt

1 represents
the downsampling feature. With the exception of the first
projection group, each upsampling layer undergoes a convo-
lution operation with a convolution kernel size of 1× 1. The
corresponding downsampling feature of the ith group can be
computed as:

Dt
i = B↓i

([
U t1, U

t
2, . . . , U

t
i

])
, (11)

where Dt
i stands for the downsampling feature of the ith

group and B↓i (·) represents the downsampling layer of the ith
projection group. After obtaining the downsampling feature of
each group, these features are concatenated according to the
channel dimension:

F tDPB =
[
Dt

1, D
t
2, . . . , D

t
I

]
, (12)

where F tDPB denotes the feature extracted by the deep pro-
jection block in the tth generation.

C. Progressive Multi-Scale Feature Extraction

Convolution has a fixed size, and the features extracted by
convolution are often within the size range of the convolution
kernel. If only a certain fixed-size convolution kernel is used
for feature extraction, then the feature information obtained
will be local, and this local feature information will limit
the reconstruction ability of the network. Many methods have
proved that multi-scale features are beneficial for improving
the performance of computer vision tasks, such as optical
flow estimation [45], cardiac motion estimation [46] and style
transfer [47]. For example, Chen et al. [48] utilized dilated
convolution to perform multi-scale feature extraction, and
proposed the encoding-decoding image segmentation method
DeepLabV3+. However, this method concatenates the feature
maps of different scales directly, which makes it difficult to
merge this information. To solve this problem, we propose
a progressive multi-scale feature extraction block (PMSFE),
which concatenates the adjacent scale feature information
progressively in the early stage. Our PMSFE is shown in



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

Attention map

Reconstruct

1x1   

Conv 

M E

1x1   

Conv 

F
t

 

'

 
X

 

μ

Z

X

 

'

 

X

 

'

 

 
t

 

P
ix

el
S

h
u

ff
le

Downsample Relu
L DFF

Fig. 5. The structure of HR-size expectation-maximization attention, where µ represents the base and Z represents the contribution of the basis to the pixels.
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Fig. 4. For the input feature F t, conventional convolution with
a kernel size of 1 × 1 and dilated convolution with dilation
rates of 6, 12 and 18 are performed to extract the features of
different scales. Then, the adjacent scale feature is concate-
nated progressively to ensure the effectiveness of the fusion.
Batch normalization and rectified linear units are subsequently
performed to obtain F t1 , F t2 , F t3 and F t4 respectively. At the
same time, a pooling operation is performed on F t to obtain
F t5 . F t1 , F t2 , F t3 , F t4 and F t5 are concatenated according to the
channel dimension, and then a convolution layer is performed
to obtain the output of the progressive multi-scale feature
extraction block:

F tPMSFE = HPMSFE

(
conv

[
F t1 , F

t
2 , F

t
3 , F

t
4 , F

t
5

])
= HPMSFE

(
F t
)

,
(13)

where F tPMSFE stands for the multi-scale feature of tth gen-
eration and HPMSFE(·) denotes the operation of progressive
multi-scale feature extraction.

D. HR-Size Expectation-Maximization Attention

Each pixel in the image has a certain correlation with other
pixels instead of being independent of each other. However,
the convolution operation can only capture the relationship
between the pixels in the area of the convolution kernel and
cannot establish the relationship between any pixel in the
image and all other pixels. To solve this problem, Wang et
al. [40] utilized the self-attention mechanism for computer
vision tasks for the first time in 2018 and proposed a method
named Non-local. Although Non-local can capture the long-
range dependencies between the pixels of the feature map,
this method needs to calculate the relationship between all
of the pixels in the image, which entails an unacceptable
computational burden. On the one hand, the input LR images
usually have a relatively larger size, which needs to consume
huge computing resources, on the other hand, capturing the
long-range dependencies only on the LR size images cannot
greatly improve the performance of super-resolution tasks.

Li et al. [42] proposed a new type of attention mechanism,
namely expectation-maximization attention, which computes
a more compact basis set by iteratively executing the EM

algorithm. Inspired by this, we design an HR-size expectation-
maximization attention block (HREMAB) that can directly
capture the long-range dependencies on the HR-size feature
map. As shown in Fig. 5, the input feature of this block is
F ′t ∈ RN×C , where N = H × W , H and W represent
the height and width of the feature map, respectively. To
directly capture the long-range dependencies on the feature
map that have the same size as the HR image, we upsample
the feature map following [49] and obtain X ∈ RN ′×C , where
N ′ = (rH)× (rW ), and r is the upsampling scale factor. We
select µ ∈ RK×C as the initial bases, and the latent variable
Z ∈ RN ′×K can be formulated as:

znk =
K (xn,µk)∑K
j=1K

(
xn,µj

) , (14)

where the latent variable znk represents the contribution of
the kth basis to the nth pixel, and K(·) represents the general
kernel function. For simplicity, we take the exponential inner
dot exp

(
aTb

)
as K(·). In practice, the above formula can be

implemented as a matrix multiplication plus one softmax layer.
Therefore, in the tth iteration, step E can be formulated as:

Z(t) = softmax

(
X
(
µ(t−1)

)T)
, (15)

where µ(t−1) represents the updated bases in the (t − 1)th
iteration. Subsequently, µ(t) is updated in the tth iteration of
step M:

µ
(t)
k =

∑N
n=1 z

(t)
nkxn∑N

n=1 z
(t)
nk

, (16)

where µ(t)
k represents the kth basis in the tth iteration. After

the E step and M step are executed alternately T times, bases
µ and latent variable Z are used to reconstruct feature map
X ′:

X ′ = Zµ . (17)

Compared with X , each pixel in X ′ is associated with all
other pixels, which makes the feature map more truly reflect
the image’s internal information. More importantly, in contrast
to the method that captures the long-range dependencies on
the LR size feature maps, our method directly captures the
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TABLE I
COMPARISON RESULTS ACHIEVED BY OUR METHOD AND ITS VARIANTS. ALL OF THE VARIANTS ARE USED TO TEST THE PSNR VALUE ON THE SET5

DATASET FOR ×4 SR.

1 2 3 4 5
DPB X X X X X

PMSFE X X X
HREMAB X X
LREMAB X

Params 472K 531K 504K 515K 546K
PSNR on Set5 (×4) 31.9209 31.9763 31.9731 31.9260 32.0178

TABLE II
COMPARATIVE RESULTS BY EMASRN FOR ×4 SR WITH DIFFERENT SETTINGS, WHERE “CONV” REPRESENTS THE ADDED CONVOLUTION LAYER TO

INCREASE THE NUMBER OF PARAMETERS.

Model Params
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

PSNR/SSIM
EMASRN with Non-local 515K 31.7845/0.8899 28.3531/0.7756 27.3697/0.7293 Out of Memory Out of Memory
EMASRN with Non-local+Conv 551K 31.5630/0.8867 28.2032/0.7717 27.3089/0.7269 Out of Memory Out of Memory
EMASRN with LREMAB 515K 31.9260/0.8912 28.4452/0.7778 27.4544/0.7312 25.7421/0.7735 30.0187/0.9022
EMASRN with LREMAB+Conv 551K 31.8500/0.8901 28.4192/0.7766 27.4302/0.7302 25.6891/0.7710 29.9732/0.9011
EMASRN with HREMAB 546K 32.0178/0.8922 28.4685/0.7784 27.4681/0.7319 25.7475/0.7740 30.0344/0.9022

long-range dependencies on the feature maps that have the
same size as HR images. This makes the correlation between
pixels in the feature map more consistent with the HR image.
After X ′ is obtained, downsampling is performed to obtain X ′L
which has the same size as the LR image. Then, a rectified
linear unit and convolution are performed on X ′L to obtain the
output:

F tDF = F ′t + conv (relu (X ′L)) , (18)

where F tDF represents the output of the HR-size expectation-
maximization attention block.

V. EXPERIMENTS

A. Datasets and Metrics

Following [23], [50], [51], we use the high-quality (2K
resolution) images from the DIV2K [52] dataset as our training
set. We adopt several standard benchmark datasets during
testing, including Set5, Set14, BSD100, Urban100, Manga109
and DIV2K (100 validation images in total), and each dataset
has different characteristics. For qualitative evaluation, we
convert the image to YCbCr channels and calculate the peak
signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM) on the Y channel as the evaluation metrics.

B. Implementation Details

To prepare the training data, we synthesize the LR images
by downsampling the training HR images using bicubic in-
terpolation. The training images are augmented by randomly
rotating 90◦, 180◦, 270◦ and horizontally flipping. In each min
batch, 16 LR color patches are provided as inputs. We train our
model for 1000 epochs and set T=4. Following [35], we choose
ADAM as our optimizer and L1 loss to optimize our model.
The learning rate is initialized as 0.0001 and then reduced to
half after every 200 epochs. We implement our networks with
the PyTorch framework and train them on NVIDIA 2080Ti
GPUs.
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Fig. 6. Comparisons of five different settings on the B100 dataset for ×4
SR, where “Conv” represents the added convolution layer that increases the
number of parameters.

C. Model Analysis

To quickly study the effectiveness of the deep projec-
tion block (DPB), progressive multi-scale feature extraction
(PMSFE) and HR-size expectation maximization attention
block (HREMAB), we set the total epoch to 500 and T=2 to
train the corresponding model. We remove the corresponding
blocks and train the model, and the results are shown in
Table I, Table II, Table III and Fig. 6.

1) Progressive Multi-scale Feature Extraction: A progres-
sive multi-scale feature extraction block (PMSFE) is proposed
to extract the feature information of different scales in the
image. In order to test the effectiveness of PMSFE, we added
PMSFE to model 1 and formed model 2. As we can see from
Table I, the performance of the model benefits from PMSFE.
If the PMSFE is added, the PSNR value is increased from
31.9209 to 31.9763. In addition, If PMSFE is removed from
model 5, the PSNR value decreases from 32.0178 to 31.9731.
This change occurs because that multi-scale feature extraction



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

TABLE III
TRADE-OFF BETWEEN T AND THE PERFORMANCE ON DIFFERENT DATASETS DURING TESTING FOR ×4 SR, WHERE T STANDS FOR THE NUMBER OF

FEEDBACK ITERATIONS.

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

T=4 32.17/0.8948 28.57/0.7809 27.55/0.7351 26.01/0.7838 30.41/0.9076
T=3 32.13/0.8944 28.55/0.7808 27.53/0.7348 25.95/0.7818 30.32/0.9067
T=2 32.00/0.8926 28.48/0.7799 27.48/0.7340 25.78/0.7765 30.06/0.9037
T=1 31.53/0.8852 28.22/0.7718 27.30/0.7256 25.34/0.7592 29.28/0.8919

TABLE IV
COMPARISON RESULTS BETWEEN OUR EMASRN AND THE STATE-OF-THE-ART METHODS. WE COMPARE THE PSNR AND SSIM ON THE SET5,

SET14, B100, URBAN100, MANGA109 AND DIV2K (100 VALIDATION IMAGES) DATASETS.

Model Scale Params
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
Urban100

PSNR/SSIM
Manga109

PSNR/SSIM
DIV2K

PSNR/SSIM
Bicubic 3 - 30.39/0.8682 27.55/0.7742 27.21/0.7349 24.46/0.7349 26.95/0.8556 28.22/0.8906

SRCNN [13] 3 57K 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107 29.64/0.9138
FSRCNN [53] 3 12K 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212 -

VDSR [20] 3 665K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310 30.09/0.9208
DRCN [54] 3 1,774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328 -
LapSRN [7] 3 502K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350 -
DRRN [55] 3 297K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390 -

MemNet [56] 3 677K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 - -
SelNet [57] 3 974K 34.27/0.9257 30.30/0.8399 28.97/0.8025 - - -
IDN [33] 3 553K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381 -

SRMDNF [50] 3 1,530K 34.12/0.9250 30.04/0.8370 28.97/0.8030 27.57/0.8400 33.01/0.9399 -
CARN [8] 3 1,592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427 32.33/0.8860

CARN-M [8] 3 412K 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 32.79/0.9383 31.99/0.8815
SRFBN-S [9] 3 349K 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404 32.11/0.8826

CFSRCNN [10] 3 1,495K 34.24/0.9256 30.27/0.8410 29.03/0.8035 28.04/0.8496 33.33/0.9423 -
FilterNet [35] 3 1,249K 34.08/0.9250 30.03/0.8370 28.95/0.8030 27.55/0.8380 - -

EMASRN 3 427K 34.36/0.9264 30.30/0.8411 29.05/0.8035 28.04/0.8493 33.43/0.9433 32.31/0.8859
EMASRN+ 3 427K 34.48/0.9275 30.38/0.8422 29.11/0.8046 28.17/0.8514 33.71/0.9450 32.39/0.8869

Bicubic 4 - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866 26.66/0.8521
SRCNN [13] 4 57K 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505 27.78/0.8753

FSRCNN [53] 4 12K 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517 -
VDSR [20] 4 665K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809 28.17/0.8841
DRCN [54] 4 1,774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816 -
LapSRN [7] 4 502K 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900 -
DRRN [55] 4 297K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960 -

MemNet [56] 4 677K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 - -
SelNet [57] 4 1,417K 32.00/0.8931 28.49/0.7783 27.44/0.7325 - - -
IDN [33] 4 553K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942 -

SRMDNF [50] 4 1,555K 31.96/0.8930 28.35/0.7770 27.49/0.7340 25.68/0.7730 30.12/0.9018 -
SRDenseNet [58] 4 2,015K 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 - -

CARN [8] 4 1,592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070 30.41/0.8363
CARN-M [8] 4 412K 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 29.80/0.8988 30.11/0.8305
SRFBN-S [9] 4 427K 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008 30.19/0.8316

CFSRCNN [10] 4 1,458K 32.06/0.8920 28.57/0.7801 27.52/0.7333 26.03/0.7824 30.32/0.9050 -
FilterNet [35] 4 1,249K 31.74/0.8900 28.27/0.7730 27.39/0.7290 25.53/0.7680 - -

EMASRN 4 546K 32.17/0.8948 28.57/0.7809 27.55/0.7351 26.01/0.7838 30.41/0.9076 30.37/0.8363
EMASRN+ 4 546K 32.31/0.8964 28.66/0.7828 27.61/0.7364 26.15/0.7868 30.69/0.9105 30.46/0.8379

can help the model fully mine various information in the
image, which is of great significance to the reconstruction of
the image.

2) HR-Size Expectation Maximization Attention Block: An
HR-size expectation maximization attention block (HREMAB)
is proposed to capture the long-range dependencies on the
feature map. Comparing model 3 with model 1 in Table I,
we find that the PSNR gain brought by HREMAB is almost
the same as that brought by PMSFE. Moreover, compared
with model 5, HREMAB is removed from model 2, which
makes the PSNR value decrease drastically from 32.0178 to
31.9763. This change also implies that effectively using the
correlation between pixels within the image can greatly assist
image reconstruction.

3) HR-Size Self-Attention vs Non-local: Non-local is the
first method to apply the self-attention mechanism in computer
vision tasks; however, it suffers because it involves huge
number of calculations and great complexity. To test the
performance of Non-local, we also replace HREMAB with
Non-local and conduct experiments. From Table II and Fig. 6
we can see that compared with HREMAB, the performance of
Non-local is reduced significantly. It is worth noting that due
to the large consumption of computing resources by Non-local,
it exceeds the maximum memory range on Urban100 and
Manga109. This also means that Non-local is too expensive
for image super-resolution tasks.

4) HR-Size Self-Attention vs LR-Size Self-Attention: The
self-attention mechanism can capture the correlation between
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Fig. 7. Visual comparisons of the state-of-the-art methods and our model on different benchmark test datasets for ×4 SR. The key contrast parts in the red
rectangle are magnified to display on the right.

the pixels in an image. However, for super-resolution tasks, the
inputs are usually LR-size images, but what we want to obtain
are HR images. If we capture long-range dependencies directly
through Non-local, the machine would run out of memory, as
shown in Table II. Moreover, if we capture the long-range
dependencies on the LR-size images, this process will still
limit the model’s ability to reconstruct HR images. To test
the superiority of the self-attention mechanism on HR-size
images, we replaced the original HREMAB in our model with
LREMAB, which performs a self-attention mechanism on LR-
size images. From the comparative results in Table II, we can
see that if we perform the self-attention mechanism on LR-
size images, the PSNR value will drop sharply on all of the
test sets compared to the HR-size images. To verify that the
gain introduced by HREMAB over LREMAB does not come
from the increase in parameters, we add convolution layers
to LREMAB to make its number of parameters reach 551K.

It can be seen from Table II that simply adding convolution
layers does not improve the performance, and it can even
make the performance worse. From Fig. 6, we draw the same
conclusion. These results further prove that capturing the long-
range dependence on the HR-size images will help image
reconstruction.

5) Effectiveness of T: During the training process, our
model uses a feedback network that allows us to flexibly
adjust the iteration of the feedback during the test. To study
the influence of the number of feedback iterations on the
experiment, we conduct corresponding experiments, and the
experimental results are shown in Table III. From Table III, we
can see that as the number of iterations grows, the performance
of the model is constantly improving. Specifically, when
setting T=3 and T=4, the performance of the model is not
very different. It is worth noting that when T is set to 2, the
performance of the model drops dramatically compared to the
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model in which T is set to 4. Therefore, we can find that the
feedback network promotes the performance of our model,
especially when the number of iterations is small. In practical
applications, we can also flexibly make the model reach a good
balance between performance and speed by adjusting T.

D. Comparison with State-of-the-Art Methods

To test the effectiveness of our model, we compare our
model with several state-of-the-art methods: SRCNN [13],
FSRCNN [53], VDSR [20], DRCN [54], LapSRN [7], DRRN
[55], MemNet [56], SelNet [57], IDN [33], SRMDNF [50],
SRDenseNet [58], CARN [8], SRFBN-S [9], CFSRCNN [10]
and FilterNet [35]. We also adopt the self-ensemble method
[44] to further improve our EMASRN, and we denote it as
EMASRN+. All of the tests are performed on Set5, Set14,
B100, Urban100, Manga109 and DIV2K.

The average peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) values of the six datasets are shown
in Table IV. Compared with the other methods, our method
achieves the best results on all of the datasets with various
scaling factors. Even without a self-ensemble, our method
still performs favorably against the state-of-the-art results on
most datasets. For example, compared with CARN-M, which
is similar to the parameters of our method, our EMASRN
achieves a notable gain of 0.25dB on PSNR for ×4 upscaling
on Set5. Although our method is inferior to CARN on a
small part of the dataset, the overall effects of the two are
very similar. SRFBN-S has slightly fewer parameters than
our model, but its performance is far inferior to our method.
When compared with CFSRCNN, our method performs better
than it on almost all datasets for scaling factors ×3 and ×4.
It is very difficult to increase the performance of the model
when the number of parameters is limited, but the number of
parameters of CARN and CFSRCNN are almost three times
the corresponding number of our method. In other words, our
model achieves the same or even better results than the state-
of-the-art methods despite having fewer parameters. This result
also indicates that our model has more powerful reconstruction
capabilities.

We also show the zoomed results of various methods in
Fig. 7. We can find that there is a large gap between the image
produced by most methods and the HR image. However the
image processed by our method is the closest to the original
image. For example, for “img 044”, we find that most methods
cannot accurately recover the details of the grid in the image.
Although SRFBN-S performs slightly better than our method,
the reconstruction of the small grid at the bottom of the
image is still very blurry. CFSRCNN even produces redundant
textures, such as an inexplicable white horizontal line at the
top right of the image. Each grid generated by our method is
very clear and easy to identify with good visual effects.

As shown in “img 059”, compared with the original image,
the lines of most methods are seriously merged. For example,
VDSR only separates the bottom line, and the other lines are
merged together. Although CFSRCNN separates more lines,
the lines are very blurred and even distorted in some areas.
Each line generated by our method is more independent and
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clearer, and can reflect the details of the original image more
accurately.

It can be seen from “148026” that compared with the origi-
nal image, the lines of most methods are unclear. For example,
the lines processed by VDSR are obviously jagged. Although
CARN can produce slightly sharper lines, it generates many
false textures. CFSRCNN produced some lines that did not
exist in the original image. Again, we find that each line
generated by our method is more independent and clearer, and
can reflect the details of the original image more accurately.

E. Parameters and Execution Time

In this section, we study the trade-off of PSNR vs. pa-
rameters, and PSNR vs. execution time. In our work, we
follow the setting in [33], [35] to use Set5 dataset to evaluate
the parameters and execution time of our algorithm. The
Set5 dataset contains five images with different resolutions,
i.e., 512×512, 288×288, 256×256, 280×280 and 228×344
respectively. This dataset covers a wide range of resolutions
to compare the efficiency with state-of-the-art methods objec-
tively. The experimental results are shown in Fig. 8 and Fig. 9.
It can be seen from Fig. 8 that CFSRCNN is the closest to
the performance of our method, but the number of parameters
is approximately three times that of our method. SRFBN-
S is close to the number of parameters of our method, but
its performance is poor compared to our method. Therefore,
compared with these methods, our EMASRN achieves a good
balance between the parameters and performance.



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

Next, we study the trade-off between the execution time
and performance of different methods. As shown in Fig. 9,
MSRN has a similar performance compared with our method,
but it has a long execution time. Although our method requires
slightly more time than CFSRCNN, our method achieves bet-
ter performance, which allows us to disregard a slightly longer
execution time. Furthermore, when we set T=3, our method
not only achieves the same execution time as CFSRCNN but
also has a better performance. This result shows that we can
flexibly achieve better performance or less execution time by
adjusting the total generation T.

In summary, compared with other methods, our method can
greatly reduce the parameters of the model while ensuring
performance. Furthermore, our model has a fast execution
speed, and we can also obtain a good balance between the
performance and execution time by adjusting T.

VI. CONCLUSION

In this paper, we propose a lightweight single image super-
resolution network with an expectation-maximization attention
mechanism. Our EMASRN first extracts the deep features
of low-resolution images though a depth projection block.
At the same time, a progressive multi-scale feature extrac-
tion block is employed to extract the feature information of
different scales. Then, we propose an HR-size expectation-
maximization attention block that can directly capture the
long-range dependencies of HR-size feature maps. Finally, we
use the feedback network to feed back the high-level features
of each generation to the next-generation’s shallow network.
Extensive experimental results show that our EMASRN not
only has a small number of parameters but can also recon-
struct images with higher quality. Comparisons with existing
lightweight SISR methods have also demonstrated the state-
of-the-art performance of our EMASRN.

In our future work, we will apply the expectation-
maximization attention mechanism to improve the perfor-
mance of stereo image super-resolution and video super-
resolution which require more efficient network architecture
than the classical SISR applications. In addition, we will
apply the proposed network architecture into other low-level
computer vision tasks, such as image denoising and image
deblurring.
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