
Knowledge and Information Systems (2021) 63:1597–1625
https://doi.org/10.1007/s10115-021-01579-z

REGULAR PAPER

Learning from evolving data streams through ensembles of
random patches

Heitor Murilo Gomes1 · Jesse Read2 · Albert Bifet1 · Robert J. Durrant3

Received: 28 January 2020 / Revised: 4 May 2021 / Accepted: 10 May 2021 / Published online: 9 June 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Ensemble methods represent an effective way to solve supervised learning problems. Such
methods are prevalent for learning from evolving data streams. One of the main reasons
for such popularity is the possibility of incorporating concept drift detection and recovery
strategies in conjunction with the ensemble algorithm. On top of that, successful ensemble
strategies, such as bagging and random forest, can be easily adapted to a streaming setting.
In this work, we analyse a novel ensemble method designed specially to cope with evolving
data streams, namely the streaming random patches (SRP) algorithm. SRP combines random
subspaces and online bagging to achieve competitive predictive performance in compari-
son with other methods. We significantly extend previous theoretical insights and empirical
results illustrating different aspects of SRP. In particular, we explain how the widely adopted
incremental Hoeffding trees are not, in fact, unstable learners, unlike their batch counterparts,
and how this fact significantly influences ensemble methods design and performance. We
compare SRP against state-of-the-art ensemble variants for streaming data in a multitude of
datasets. The results show how SRP produces a high predictive performance for both real
and synthetic datasets. We also show how ensembles of random subspaces can be an efficient
and accurate option to SRP and leveraging bagging as we increase the number of base learn-
ers. Besides, we analyse the diversity over time and the average tree depth, which provides
insights on the differences between local subspace randomization (as in random forest) and
global subspace randomization (as in random subspaces). Finally, we analyse the behaviour
of SRP when using Naive Bayes as its base learner instead of Hoeffding trees.

B Heitor Murilo Gomes
heitor.gomes@waikato.ac.nz

Jesse Read
jesse.read@polytechnique.edu

Albert Bifet
albert.bifet@waikato.ac.nz

Robert J. Durrant
bobd@waikato.ac.nz

1 AI Institute, University of Waikato, Hamilton, New Zealand

2 LIX, École Polytechnique, Palaiseau, France

3 Department of Statistics, University of Waikato, Hamilton, New Zealand

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01579-z&domain=pdf
http://orcid.org/0000-0002-5276-637X

1598 H. M. Gomes et al.

Keywords Data stream classification · Ensemble learning · Random subspaces · Random
patches · Bagging

1 Introduction

Applications ofmachine learningmethods to data streams have grown in importance in recent
years due to the tremendous amount of real-time data generated by networks, mobile phones
and the wide variety of available sensors. Building predictive models from data streams are
central to many applications [13]. The underlying assumption of data stream learning is
that the algorithms must process large amounts of data in a fast-paced way. In a supervised
learning scenario, such characteristic brings forward two crucial challenges:

– Computational efficiency The algorithm must use a limited budget of computational
resources to be able to process examples at least as fast as new examples are available;

– Evolving dataThe continuous flow of data stems from a concept that is subject to changes
over time, i.e. concept drift [49]. Concept drifts can be characterized as changes in the
underlying data distribution such that a fittedmodelwill notmaintain its level of predictive
performance and thus should be updated or even reset.

To tackle issues arising from evolving data, many strategies have been proposed, particu-
larly those based on ensembles [24], which cope with concept drifts by selectively resetting
component learners [5,11,21,30]. Concerning computational efficiency, ensembles of learn-
ers require more computational resources than a single learner; however, many are easy to
parallelize [21].

In the traditional batch learning setting, several ensemble methodologies are widely used,
such as Random Subspaces [26], Pasting [8], Bagging [7], Random Forest [9], SubBag [43]
and Random Patches [40]. The main differences among these algorithms remain on how they
induce diversity into the ensemble. Random subspace methods train each base learner on a
separate randomly selected subset of features. Pasting and Bagging train base learners on
samples of instances drawwith andwithout reposition, respectively, from the original dataset.
Random Forest extends Bagging and randomly selects subsets of features to be considered
for splits in its base learners (decision trees). SubBag and Random Patches combine Bagging
and Random Subspaces and Pasting and Random Subspaces, respectively; thus, through very
similar means, they train base learners on random subsets of features and samples. Other
ensembles that are popular on batch learning, such as AdaBoosting [17], are less attractive
for data streams, partially because the original batch learning implementations introduces
dependencies among the base learners, which are difficult to simulate appropriately in a
streaming setting [19].

We propose strategies to cope with classification problems on evolving data streams using
an ensemble strategy that combines random subspaces and Bagging. We name this ensemble
StreamingRandomPatches (SRP) as it is inspired by the RandomSubspacesmethod [26] and
Online Bagging [42] and thus resembles the Random Patches [40] algorithm. SRP incorpo-
rates an active drift detection strategy, similar to other ensembles methods, e.g. Leveraging
Bagging [5] and Adaptive Random Forest (ARF) [21]. The drift detection and recovery
strategy used follows the approach used in ARF. ARF consistently overcomes other state-of-
the-art ensembles for evolving data streams, partially due to this strategy [21]; on top of that,
by using the same procedure in SRP, we can compare it to ARF in terms of the ensemble
strategy without the interference from the approach to detect and recover from concept drifts.

123

Learning from evolving data streams through ensembles… 1599

Similar algorithms based on the Random Subspaces method [26] or combinations of
resampling and random subspaces [40,43] have been previously explored on batch learning
for high-dimensional datasets [32] and also for evolving data stream classification [5,21,27,
44]. Nevertheless, to the best of our knowledge, none of these previous works thoroughly
investigated the impact of online Bagging and random subspaces, concomitantly, for evolving
data streams. Similarly, previous works have not outlined the similarities and differences
between a global and a local randomization strategy for the subset of features for streaming
data. We use the same definition of global and local randomization as in [40], i.e. in the
random subspaces method, the subspace of features is selected globally once for the whole
base learner, while in the random forest algorithm the subspaces are selected locally for each
leaf of the base tree [40].We discuss the impact of both strategies in our experiments (Sect. 6)
while comparing ARF and SRP. Panov and Džeroski, and Louppe and Geurts conducted a
similar investigation for the batch setting in [43] and [40], respectively.

Paper contributions and roadmapTo address these questions,we thoroughly discuss our algo-
rithm implementation and include an extensive set of experiments. Our main contributions
can be summarized as follows:

1. Streaming Random Patches (SRP): We introduce an ensemble-based method, namely
SRP, that achieves high accuracy by training base models on random subsets of features
and instances.1

2. Theoretical Analysis: We present theoretical insights that shed light on Hoeffding trees
stability and how ensembles of stable learners are also stable. We pay special attention
to the impact of stability and diversity in the SRP algorithm, how random patches can
induce more diversity into the ensemble and why Hoeffding trees within SRP grow faster
than standard Hoeffding trees (trained on all features and instances).

3. Empirical Analysis: We compare SRP against state-of-the-art ensemble variants for
streaming data in a multitude of datasets. The experiments include an overview of pre-
dictive performance and resource usage. We present experiments using Naive Bayes as
the base learner for SRP and a multitude of ensembles. Besides, we analyse the diversity
over time and the average tree depth, which provides some insights on the differences
between local and global subspace randomization.

4. Sensitivity Analysis: We present and discuss a sensitivity analysis of the random sub-
spaces size and the hyperparameter λ that controls the Poisson distribution, which in turn
affects the instance resampling method.

In comparison with the paper that introduced Streaming Random Patches (SRP) [23],
in this work we present an extended theoretical analysis; include an analysis of the impact
of the random subspaces size and the resampling technique; and analyse how SRP and
other ensembles perform when using Naive Bayes as the base learner. Recently, another
work analysed the application of random patches for regression [22] in a streaming setting.
This later work explored several empirical approaches to train base learners, combine their
predictions and address concept drift.

The rest of this paper is organized as follows. In Sect. 2, we introduce the problem of
learning classification models from evolving data streams. In Sect. 3, we present the SRP
algorithm and theoretical insights. In Sect. 5, related works are discussed and compared to
our approach. In Sect. 6, we present the experiments conducted to analyse SRP in terms

1 The implementation and instructions are available at https://github.com/hmgomes/StreamingRandom
Patches.

123

https://github.com/hmgomes/StreamingRandomPatches
https://github.com/hmgomes/StreamingRandomPatches

1600 H. M. Gomes et al.

of accuracy, computational resources, diversity and decision trees depth. Finally, Sect. 7
concludes this work and presents directions for future works.

2 Problem setting

Let X = {x−∞, . . . , x−1, x0} be an open-ended sequence of observations collected over time,
containing input examples in which xk ∈ R

n and n ≥ 1. Similarly, let y be an open-ended
sequence of corresponding class labels, such that every example in X has a corresponding
entry in y. Moreover, yk has a finite set of possible values, i.e. yk ∈ {l1, . . . , lL } for L ≥ 2,
such that a classification task is defined. Furthermore, we assume a problem setting where
new input examples x are presented every u time units to the learning model for prediction,
such that xtk represents a vector of features available at time t . The true class label yt+1

k ,
corresponding to instance xtk , is available before the next instance xt+1 appears, and thus,
it can be used for training immediately after it has been used for prediction. We emphasize
that this experimental setting can be naturally extended to the delayed and weakly supervised
settings considering a non-negligible time delay between observing x and its class label y,
including an infinite delay (i.e. the label is never observed). However, the conclusions drawn
from experimenting in such settings are similar to those in the “immediate” setting, as shown
in [21]. Therefore, for simplicity, we omit such results in this paper.

An important characteristic of data stream classification is whether the data distribution
is stationary or evolving. In this work, we assume evolving data distributions. Thus, we
expect the occurrence of concept drifts2 that might influence decision boundaries. Note that
if a concept drift is accurately detected (without false negatives) and dealt with (by fully or
partially resetting models as appropriate), an iid assumption can be made (on a per-concept
basis), since each concept can be treated as a separate iid stream; thus, a series of iid streams
to be dealt with. Nevertheless, the typical nature of a data stream as being fast and dynamic
encourages the in-depth study that we present in this work.

3 Streaming random patches

Streaming Random Patches (SRP) can be viewed as an adaptation of batch learning
ensemble methods that combined random samples of instances and random subspaces of
features [40,43]. Following the terminology introduced in [40], in the rest of this work,
we refer to random subsets of both features and instances as random patches. Figure 1
presents an example of subsamplingboth instances and features, simultaneously, fromstream-
ing data, where only the shaded intersections of the matrix belong to the subsample, i.e.
{v1,1, v2,1, v5,1, v1,3, v2,3, v5,3}.

Our motivation for exploiting an ensemble of base models trained on random patches
is based mainly on the high predictive performance of ensembles for data stream learning
that added randomization to the base models by either training them on random samples of
instances [5], random subsets of features [27] or both [21]. We investigate whether selecting
the subset of features globally once and before constructing each base model overcomes
locally selecting subsets of features at each node while constructing base trees as in Random
Forest. In [40], authors show empirical evidence that Random Patches combined with tree-
basedmodels achieved similar accuracy to other randomization strategies, including Random
Forest [9], while using less memory.

2 A formal definition of concept drift can be found in [48].

123

Learning from evolving data streams through ensembles… 1601

(a) (b)

Fig. 1 Representation of a data stream as an unbounded table where the rows are infinite, but the columns are
constrained by d input features [23]. The dark shaded region is an example of a 3× 2-dimensional subsample
in a, corresponding to the cells where selected columns and rows overlap. These cells compose the random
patch in b

The original Random Patches algorithm [40] is defined in terms of all possible subsets of
features and instances, such that R(ps, p f , D) denotes all random patches of size ps Ns ×
p f N f that can be drawn from the training set D, where Ns and N f represent the number of
instances and features, respectively, in D. The hyperparameters ps ∈ [0, 1] and p f ∈ [0, 1]
represent, respectively, the number of samples and features in each patch r ∈ R(ps , p f , D).
In SRP, the set of all possible streaming random patches Rs(λ, p f , S) is infinite in the sample
dimension as the input training data is represented by a data stream S. We control the number
of samples in the streaming patch using the Poisson parameter λ (Sect. 3.1).

3.1 Random subsets of instances

In the batch setting,Bagging builds L basemodels, training eachmodel with a bootstrap sam-
ple from the original training dataset of size N . Each bootstrap contains each original training
example K times, where the probability Pr(K = k) follows a binomial distribution which,
for large N , tends to a Poisson(λ = 1) distribution. Using this fact, Oza and Russell [42]
proposedOnline Bagging, an online method that instead of sampling with replacement gives
each example a weight according to Poisson(λ = 1).

Leveraging Bagging [5] and Adaptive Random Forest [21] train their base models accord-
ing to a Poisson(λ = 6) distribution, which on average augment the weight of each training
instance and diminish the probability of not using an instance for training, i.e. the prob-
ability of Pr[Poisson(λ = 6)=0]≈ 0.25%, while Pr[Poisson(λ = 1)=0]≈ 36.8%. Using
Poisson(λ = 6) tends to improve the predictive performance of the ensemble as the basemod-
els are trained more often, but this benefit comes at the expense of computational resources.

Minku et al. [41] used λ as a proxy for diversity, i.e. the lower λ, the more diversity would
be added into the ensemble. As pointed by Stapenhurst [47], for iid data the base models
will eventually converge, even faster if given larger values of λ. One important question to
be addressed then is: why Poisson(6) works if only a small portion of data is not presented to
each learner? In the long run, the base models start to converge. We empirically explore this
characteristic in Sect. 6 where diversity is presented overtime for the AGRAWAL generator,
once a concept becomes stable the average Kappa Statistic starts to increase (i.e. the outputs
of the base models start to converge) if the only means of decorrelating the base models is

123

1602 H. M. Gomes et al.

resampling with reposition simulated with Poisson(6). This aspect motivates the addition of
other techniques to induce diversity (Sect. 3.2).

3.2 Random subsets of features

Random Subspaces are susceptible to hyper-parameters k (size of subspace) and M (number
of learners). For a feature space of d features, there are 2d −1 different non-empty subsets of
features. Thus, it is unfeasible to train one learner for even moderate values of d , especially
for streaming data where processing time andmemory are restricted [2]. Ho noted in [26] that
highly accurate ensembles could be obtained far before all possible combinations of subspaces
are explored. Later, Kuncheva et al. [32] provided a thorough analysis of the random subspace
method for the functional magnetic resonance imaging (fRMI) data problem, which resulted
in insights for selecting values of k and M that generated usable learners, i.e. contains at
least one ‘relevant’ feature in its subset of features.

In our problem setting, one reason to train base models on random subspaces of features
on top of training them on different subsets of instances is to add even further diversity to the
models. Even if they converge because of iid data (Sect. 3.1) by training them on separate
subspaces of features, we have higher chances of producing models that maintain some level
of diversity.

There is a risk that the subspaces comprise only irrelevant features. We introduce two
mechanisms to aid this situation: (i) resetting subspaces once a model is reset in response to
a concept drift; (ii) assigning weights to the votes of base models based on their predictive
performance. In (i), we assume that a new randomly generated subset of features will include
relevant features, while in (ii), we expect that base models containing only irrelevant features
produce poor predictive performance, and the other base models dominate their votes.

3.3 Drift detection and recovery

The ultimate goal of drift detection in our context is to allow automatic recovery from a state
where the model performance is degrading. To achieve this goal, we need an accurate drift
detector and a proper action that will be triggered as a response to the drift signal. Currently,
themost successful supervised learningmethods follow a simple yet effective approach:when
a concept drift is detected, the underlying model is reset [5,21]. If the detection algorithm
misses or takes too long to detect a change, then it will let the model degrade. On the other
hand, if it yields too many false positives, it will continuously trigger model resets and
consequently prevent the algorithm from building an accurate model.

We use the same strategy to detect and recover from concept drifts as introduced in the
Adaptive Random Forest (ARF) [21] algorithm. In this strategy, the correct/incorrect predic-
tions of each base model are monitored by a detection algorithm. When the drift detection
algorithm flags a warning, a new base model starts training in the ‘background’, where ‘back-
ground’ means that it does not influence the ensemble decision with its predictions. If the
warning escalates to concept drift, then the background model replaces the associated base
model.

The strategy accommodates different drift detection algorithms to be used; however, to
facilitate discussion, we focus the experiments and analysis using SRP with the ADaptive
WINdow (ADWIN) algorithm [3]. ADWIN is a change detector and estimator that solves in
a well-specified way the problem of tracking the average of a stream of bits or real-valued
numbers. ADWIN keeps a variable-length window of recently seen items, with the property

123

Learning from evolving data streams through ensembles… 1603

that the window has the maximal length statistically consistent with the hypothesis “there
has been no change in the average value inside the window”. Precisely, an older fragment
of the window is dropped if and only if there is enough evidence that its average value
differs from that of the rest of the window. This has two consequences: one, that change
reliably declared whenever the window shrinks, and two, that at any time the average over
the existing window can be reliably taken as an estimation of the current average in the stream
(barring a very small or very recent change that is still not statistically visible). A formal and
quantitative statement of these two points (a theorem) appears in [3]. ADWIN is a parameter-
and assumption-free in the sense that it automatically detects and adapts to the current rate
of change. Its only parameter is the confidence bound δ, indicating how confident we want
to be in the algorithm’s output, inherent to all algorithms dealing with random processes.

There are no guarantees that a detection algorithm based on the correct and incorrect
predictions will be accurate, but it will at least be able to detect changes in the underlying
data that genuinely affected the decision boundary (real drifts), while neglecting those that
did not (virtual drifts) [18]. One disadvantage of this strategy is that it requires access to
labelled data, which is not an issue given our problem setting (Sect. 2), but for problems that
include verification latency or weakly labelled streams, then other drift detection strategies
must be explored [50].

The pseudocode for SRP is depicted in Alg. 1. The training instances are used to evaluate
the classification performance of each base model, before being used for training, and this
estimation is used as the learner weight during voting (line 9, Alg. 1). For non-stationary data
streams, we should consider that the relevant features, i.e. those that can effectively be used
to predict the class label, may change over time. Therefore, when a background learner is
created, a new random subspace is generated for it (line 12, Alg. 1). Background models are
trained during the period between the warning that triggered their creation and the concept
drift signal that causes them to replace the previous base model, and thus, models to be added
to the ensemble always start with a model that is not an entirely new base model (line 15,
Alg. 1).

4 Theoretical insights

It is known that reducing the prediction error of any model comes down to a trade-off over
bias and variance, where the latter (variance) is analogous with a model’s tendency to overfit
[25].

Bagging iswell known in themachine learning literature for its effect on reducing variance,
both in regression and classification [7,16], which allows it to perform competitively in a
wide range of scenarios, including data streams [5,42].

The degree of reduction in error of an ensemble vs. a single strong classifier is related to
how uncorrelated (or negatively correlated) prediction errors are among ensemble members
[7,36], as well as the accuracy of the individual classifiers. Intuitively: if all members are of
the ensemble are the same, their predictions (and thus, their errors) will also be the same,
and the effect of ensemble is useless and there will be no reduction to variance. Entirely
uncorrelated or negatively correlated prediction errors are rarely achievable in practice (and
especially in the case of relatively low prediction errors corresponding to accurate models),
yet this goal can be achieved to some extent by encouraging diversity among the learning
models [31]. This itself implies a need to use unstable learners, that is, ones that make
different errors on similar sets of training instances. The standard (batch, unpruned) decision

123

1604 H. M. Gomes et al.

Algorithm 1 Streaming Random Patches [23]. Symbols: k: maximum features per subset; λ:
Poisson distribution parameter;M : total number ofmodels (M = |L|); δw:warning threshold;
δd : drift threshold; S: Data stream; B: Set of backgroundmodels;W (l): model l weight; P(·):
Model predictive performance estimation function; d(·): drift detection method.
1: function TrainSRP(k, n, δw, δd)
2: L ← CreateBaseModels(n,m) � Assign random subspaces of size k to each base model
3: W ← I ni tWeights(n)

4: B ← ∅
5: while HasNext(S) do
6: (x, y) ← next(S)

7: for all l ∈ L do
8: ŷ ← predict(l, x)
9: W (l) ← P(W (l), ŷ, y)
10: Train(m, l, x, y)
11: if d(δw, l, x, y) then � Warning detected?
12: B(l) ← CreateBkgModel(m)

13: end if
14: if d(δd , l, x, y) then � Drift detected?
15: l ← B(l) � Replace l by bkg learner
16: end if
17: end for
18: for all b ∈ B do � Train each bkg learner
19: Train(m, b, x, y)
20: end for
21: end while
22: end function

tree is a prime example of an unstable learner: small changes to a training sample can result
in remarkably different models and thus diversity among predictions. Indeed, one readily
observes that decision trees are used throughout the literature.

4.1 Hoeffding trees are stable learners

In the context of data streams, Hoeffding trees [15] are the popular choice of decision
tree, since they are incremental. However, crucially, Hoeffding trees—unlike their batch
counterparts—are in fact stable learners. As far as we are aware, we are among the first to
focus on this fact in the context of ensembles.

Splitting is supported statistically under the Hoeffding bound. This guarantees to a certain
(user-specified) confidence level that under a sufficiently large number of examples a Hoeffd-
ing tree built incrementally will be equivalent to a batch-built tree. Until such a number of
examples is seen, however, Hoeffding trees will not grow and this implies stability.

Formally, we may describe the stability of an algorithm as, for example, hypothesis sta-
bility. In the following, we adapt the discussion of [6,33,34] to the streaming setting.

Suppose that AS denotes that an algorithm A (e.g. C4.5, or Hoeffding tree inducer) induces
decision function f (e.g. a decision tree) over data stream segment S of pairs (xk, yk) (the
segment is of length |S| = N). Let also S\i represent S without the i-th example. Then,
hypothesis stability can be expressed in terms of the generalization error as:

E(x,y)
[|�(AS, (x, y)) − �(AS\i , (x, y))

∣∣] < β (1)

under evaluation function/metric �. Here β should be understood to be a function of N ,
i.e. for a fixed sample size N there exists some absolute constant β ≥ 0 for which (1)

123

Learning from evolving data streams through ensembles… 1605

holds. Stability captures the intuition that if we remove a single instance from the stream, the
absolute difference in error of another model trained on this new segment should be less than
β when compared to the error of the same model built on the original stream (thus ‘stable’ to
small changes in the training data). More precisely, on average a small change in the training
set can only bring a small change in the generalization error of the learned decision function.

Intuitively, one sees that if both the expected loss on S is small and β is also small,
then one should expect good generalization from the algorithm A—indeed, provided that
β ∈ O(N−1) such generalization error bounds are known [6].

We cannot compute the expression in (1) exactly unless we know the true generating
distribution (‘concept’ in stream terminology) fromwhich (xk, yk) pairs are drawn. However,
Kutin and Niyogi [33,34] showed that if a similar condition holds for empirical estimates
of the sample and leave-one-out (or cross-validation) errors, then empirical stability and
β ∈ O(N−1) imply PAC learnability.3 Thus, by replacing the expectation with an average
over leave-one-out samples froma real streamwecan theoretically and empirically investigate
and compare the ‘β-stability’ among learning algorithms with regard to such a stream.

4.2 Ensembles of stable learners are stable

First, we note that, provided all base learners take inputs from the same data-generating
distribution, then β-stability of the individual ensemble members implies β-stability of
the ensemble. Let the ensemble size be M and fix the sample size as N j = N ,∀ j ∈
{1, 2, . . . , M}. Let �

(
ATj , (x, y)

)
denote the loss of algorithm A given training sample Tj .

By β-stability of the individual classifiers we have, for each of the ensemble members over
any iid sample of the same size, N :

E(x,y)

[
|� (

ASj , (x, y)
) − �

(
A
S\i
j
, (x, y)

)
|
]

≤ β,∀ j ∈ {1, 2, . . . , M}

where β = β(N) is a constant. Let w j ≥ 0 be any set of non-negative convex weights such
that

∑M
j=1 w j = 1. Then,

E(x,y)

⎡

⎣

∣∣∣∣∣∣

M∑

j=1

w j

(
�
(
ASj , (x, y)

) − �

(
A
S\i
j
, (x, y)

))
∣∣∣∣∣∣

⎤

⎦

≤
M∑

j=1

w jE(x,y)

[
|� (

ASj , (x, y)
) − �

(
A
S\i
j
, (x, y)

)
|
]

≤
M∑

i=1

w jβ = β (2)

In particular, we see that minimizing any weighted average loss for an ensemble of stable
learners will typically make the ensemblemore stable than the individual ensemblemembers.
This is a problem in termsof baggedHoeffding tree ensembles: Stability implies the individual
trees in the ensemble have a similar loss to one another, and if the ensemble members are both
sufficiently accurate and stable, then—by a simple application of the pigeonhole principle—
they must make many similar errors. Thus, as the sample size increases the errors of the
ensemble members become less diverse, rendering the ensemble no more useful than a single
classifier. In terms of a bias–variance trade-off, the variance in the loss goes down at the cost
of bias due to Hoeffding tree stability [29]. However, because of stability, this variance is
already small and so ensembling many such bagged trees cannot reduce it very much. In

3 The inference is one way: Algorithmic stability is sufficient, but not necessary, for learning.

123

1606 H. M. Gomes et al.

the absence of concept drift, this would not matter too much, but in practice it makes such
ensembles (potentially) rather fragile in the presence of concept drift, in the same way that
single classifiers are.

4.3 SRP Hoeffding trees are less stable than bagged trees

Suppose that we train our ensemble using (regularized) empirical or structural risk mini-
mization, and we introduce diversity among ensemble members by using Random Subspace
(RS) to subsample the features without replacement. Without affecting the nature of our
conclusions, we can assume that for all ensemble members the RS projection dimension is
some fixed integer k. Suppose also that in the ambient feature space all hyperparameters are
selected by searching in some fixed set �,4 and for the RS ensemble members by searching
in �′ ⊆ �. Denote by P(x) the projection of x ∈ R

d onto a random subspace P(X) ∈ R
k .

Note that, in the ambient space, the algorithm takes inputs from D(x,y) × �, while for the
RS ensemble it takes inputs from D(P(x),y) × �′ ⊆ D(x,y) × �. Thus, for the RS ensemble
members we minimize the loss over a subset of the inputs to the algorithm A compared to in
the ambient space. If A is stable with (common) stability coefficient for the ambient space,
β, then for the j-th (stable) RS ensemble member we now have:

E(x,y)

[
|� (

ASj , (P(x), y)
) − �

(
A
S\i
j
, (P(x), y)

)
|
]

≤ β j

where the β j now depend on which k-dimensional random subspace of the ambient space we
are now working in. Importantly, however, β j ≥ β,∀ j ∈ {1, 2, . . . , M} since we minimized
the loss in each case over a subset of the ambient space inputs to A. Note that although
stability of A still implies, we have the analogous situation to (2), namely that the SRP
ensemble overall is more stable than its constituent classifiers it is still typically less stable
than the bagged ensemble. Thus, by using Random Subspaces or Random Patches we can
indeed increase diversity in an ensemble of stable learners relative to stability of an ensemble
working in the ambient space.

4.4 SRP trees grow faster than Hoeffding trees

Repeatedly rebuilding models on relatively small samples of instances is unavoidable in a
streamwhich may experience drift, implying that trees must be fully or partially regrown. By
small, we mean “insufficiently large w.r.t. the Hoeffding bound”. These episodes add up over
the life of a stream to a non-negligible loss of accuracy. As any well-regularized algorithm, a
Hoeffding tree does not adhere strongly to the principal of empirical risk minimization, but
rather it is forced to accept many errors as a trade-off for long-term similarity to a batch-built
tree. In general, we will split at a node in a Hoeffding tree when the average difference,
�Ḡ = ¯G(Xa) − ¯G(Xb), in the splitting criterion statistic G (e.g. information gain, Gini
impurity, etc.) between the best attribute to split on (Xa) and the next-best attribute to split
on (Xb) exceeds:

�Ḡ ≥
√

R2 log 1/δ

2N
=: ε (3)

4 � could comprise values of multiple types, for example, here the integer ensemble size M and real-valued
weights w j could be hyperparameters.

123

Learning from evolving data streams through ensembles… 1607

after N measurements of G for some user-defined fixed margin of error ε and confidence
level 1 − δ. The range of the splitting criterion R in (3) is typically independent of the
dimensionality of the observed examples. Note that we can view the vanilla batch-built
(unstable) tree as a special case of Hoeffding tree where ε = 0, i.e. where we always split
on the top-ranked feature. Here we wish to argue that SRP trees are ‘closer’ to a batch-built
tree than a Hoeffding tree. In particular that SRP trees grow faster than Hoeffding trees.

Because the splitting dynamics of streaming tree ensembles are complex and difficult to
capture explicitly, we will give a heuristic argument that suggests why, compared to bagged
Hoeffding tree ensembles, the SRP Hoeffding tree ensembles will tend to grow deeper trees
more quickly. To see this, consider the splitting criterion for the SRP tree:

�Ḡ P := ¯G(P(X)a′) − ¯G(P(X)b′) ≥ ε (4)

where a′, b′ are, respectively, the best and next-best attributes to split on from some random
subspace projection P(X). Then, (4) is the RS equivalent of (3) and we compare the size
of the left-hand side in the two. Clearly if a′ = a, i.e. if Xa ∈ P(X), then, all other things
being equal, �Ḡ P ≥ �Ḡ with equality if and only if b′ = b, i.e. if Xb ∈ P(X) also, so in
this case as more examples arrive the SRP Hoeffding tree will split at least as quickly as the
bagged Hoeffding tree, and typically earlier because it will attain the lower bound in (3) or
(4) faster whenever b′ = b. Otherwise, Xa /∈ P(X), so a′ = a and b = b′ either, in which
case the same direct argument is not possible. However, at some point as the stream evolves
we will eventually have a′ = a for some bagged Hoeffding tree, and meanwhile, any SRP
Hoeffding tree with a′ as its latest most informative attribute will have either already split on
that attribute, or else by a similar argument to above will split at least as soon as that bagged
Hoeffding tree splits.

Thus, overall most of the times that some bagged Hoeffding tree splits on an attribute Xa ,
some SRP Hoeffding tree with the same attribute Xa ∈ P(X) has already split on the same
attribute. This implies that over time—given the same data stream as input—SRP Hoeffding
trees in an ensemble will grow faster than bagged Hoeffding trees.

This provides a suitable explanation as to why our proposed SRP method performs well:
by effectively reducing the feature space of individual trees, Hoeffding trees are operating
on a ‘sub-concept’ and are stable w.r.t. that concept but unstable w.r.t. the complete concept,
meaning that the variance reduction in an ensemble still has a beneficial effect.

Furthermore, Random Subspaces are so beneficial in the data stream setting is because
we can look at decision trees as adaptive nearest neighbours [37] and Random Subspaces as
transformations that preserve the Euclidean geometry [35]. Decision trees split the overall
space into several regions, one for each one of their leaves. The prediction of the instances
in each one of the leaves is based on the majority vote of the instances in that leaf. We can
consider the instances in that leaf as the neighbours of the instances to predict. Furthermore,
Random Subspaces are linear transformations that project instances to a lower-dimensional
subspace, while approximately uniformly preserving their Euclidean geometry, a very useful
property when applied to nearest neighbour approaches. This is due to the fact that one
can prove data-dependent Johnson–Lindenstrauss-type guarantees that Random Subspace
approximately preserves the Euclidean geometry of a dataset with high probability, as shown
in Lemma 1 [35].

Lemma 1 Let X = {x−(N−1), . . . , x−1, x0} be a sequence of observations collected over
time, containing input examples in which xi ∈ R

n for every i ∈ {−(N − 1), . . . , 1, 0},
n ≥ 1 and satisfying ||x2i ||∞ ≤ c

n ||xi ||22 where c ∈ R+ is a constant 1 ≤ c ≤ n. Let

ε, δ ∈ (0, 1], and let k ≥ c2

2ε2
ln N2

δ
be an integer. Let RS be a random subspace projection

123

1608 H. M. Gomes et al.

from R
n �→ R

k . Then, with probability at least 1− δ over the random draws of RS we have,
for every i, j ∈ {−(N − 1), . . . , 1, 0}:

(1 − ε)||xi − x j ||22 ≤ n

k
||RS(xi − x j)||22 ≤ (1 + ε)||xi − x j ||22

Note that, similar to the more common approach of using a k × n Gaussian (or Sub-
Gaussian) matrix to carry out a random projection (RP), the required subspace dimension for
Johnson–Lindenstrauss-type geometry guarantees usingRandomSubspace for the projection
remains logarithmic in the number of examples being projected namely k = O(log N) here,
just the same as for RP, but compared to Gaussian (or Sub-Gaussian) RP there is a somewhat
larger constant term (by a factor of c2/2 (resp: c2/8)). This can be viewed as a ‘sparsity
penalty’ that must be paid to avoid the (dense) matrix multiplication of RP by using Random
Subspace instead.

Finally, another explanation of the success of Random Patches is dropout [46]. Dropout is
a technique used in Deep Learning to improve the accuracy of Neural Networks, randomly
turning off (i.e. dropping out) neurons at training time. Since Random Patches subsamples
attributes for each base model, it essentially dropping out other attributes, in an efficient
random way. At test time, all attributes are considered via the ensemble’s voting scheme
(supposing a sufficient number of base classifiers), in analogy to all neurons being turned on
for testing in neural networks that have been trained under dropout.

Thus, overall, our proposal creates an artificially smaller feature space; thus, encouraging
faster growth, and furthermore, even when tree growth is conservative, can encourage dis-
agreement (avoid correlation) among the leaf classifiers even if they would be stable models
if run outside the context of such an ensemble. Empirical results are given in Sect. 6, which
offer further support to these arguments.

5 Related work

Methods for diversity creation, in the general sense, are surveyed in, e.g. [10]. Severalmethods
have specifically been envisioned with regard to ensembles, such as the idea of negative
correlation [39] (an equivalent term for diversity). Therefore, correlation modeling is an
important tool. But this approach does not specifically account for the case of learning from
data streams. Creating a vast collection of models, and selecting a non-correlated set from
them a-posteriori, is wasteful in the context of data streams, where the learning strategy needs
to be as efficient as possible and where concept drift is to be expected causing a restart to
the selection process. It is therefore more promising to focus on methods which can quickly
create models which are likely to be diverse (and efficient).

There is extensive literature on ensemble methods for data stream classification. This
preference is counterintuitive given the need for algorithms that use computational resources
judiciously. The justification for this preference is attributable to the flexibility and high
predictive performance that ensemble models provide [19]. The seminal work of Kolter and
Maloof [30] introduced the Dynamic Weighted Majority (DWM) ensemble method which
featured heuristics to cope with evolving data streams, such as removing base models if their
weight dropped below a given threshold, and adding new ones according to the global perfor-
mance of the ensemble. DWM introduces a hyperparameter to control the period (window)
between base models addition, removal and weight updates. Similar to DWM, the Online
Accuracy Updated Ensemble (OAUE) [11] algorithm relies on a window hyperparameter to
determine which instances will be used to train a new base model (candidate) and if it should

123

Learning from evolving data streams through ensembles… 1609

replace the base model that achieved the least classification performance in the latest window
of instances. OAUE does not use an active drift detection approach; thus, it relies on gradual
resets of the ensemble through candidates to adapt to concept drifts. Also, it introduces a
weighting mechanism that contributes to the ensemble adaptation to concept drifts, since the
weighting function is designed to assign higher impact to predictions on recently presented
instances. Note that DWM and OAUE use incremental base learners; however, they still
require the definition of a window to orchestrate their adaptation techniques to evolving data.

Many ensemble methods for data stream learning exploit strategies developed initially
for batch learning. Online bagging [42] trains base models on samples drawn from the data
stream simulating sampling with reposition as in the classical Bagging algorithm [7]. Chen et
al. introduce a generalization of SmoothBoost [45], namely Online Smooth-Boost (OB) [12],
an algorithm that generates only smooth distributions that, and do not assign toomuchweight
to single examples. OB is guaranteed to achieve an arbitrarily small error rate given that the
number of weak learners and examples are sufficiently large.

Ensembles designed to cope with evolving data streams combine decorrelating base mod-
els (e.g. bagging) and voting (e.g. weighted majority vote [38]) with active drift recovery
strategies based on change detection algorithms. The Leveraging Bagging (LB) [5] algorithm
combines an adapted version of Online Bagging [42] with the ADaptive WINdow (ADWIN)
drift detection algorithm, such that base models are selectively reset whenever their corre-
sponding ADWIN instance flags a drift. Heuristic Updatable Weighted Random Subspaces
(HUWRS) [27] train batch learners (C4.5 decision trees) on random subspaces of features,
following the Random Subspace Method (RSM) introduced by Ho [26]. HUWRS detects
virtual and real concept drift by computing the Hellinger distance between the binned feature
values of every basemodel and the latest window of instances feature distributionwhen labels
are not available and by computing Hellinger distances between the feature distribution per
class over the latest window of instances, otherwise. The weighting of the base models in
HUWRS relies on the severity of the change in the distribution of the features associated with
its random subspace. The Adaptive Random Forest (ARF) [21] and the Dynamic Streaming
Random Forest (DSRF) [1] both aim to adapt the classic Random Forest [9] algorithm to
streaming data. Both ARF and DSRF use the incremental decision tree algorithm Hoeffding
tree [15]; however, they differ on how the base trees are trained. ARF simulates resampling
as in Leveraging Bagging, while DSRF train trees sequentially on different subsets of data.
Moreover, ARF uses a drift detection and recovery strategy based on detecting warnings and
drifts per base tree, such that after a warning is triggered another tree is created and trained
without affecting the ensemble predictions (background tree). If the warning escalates to a
drift detection, then the base tree is replaced by the background tree.

The combination of random subspaces and instance sampling for data streamswas recently
explored in [22,23]. In [23], the authors presented theoretical insights related to ensembles
of Hoeffding trees and several empirical experiments showing the advantage of combin-
ing online bagging and random subspaces with an active drift detection strategy. In [22],
the authors focused on applying random subspaces and online bagging for regression. The
analysis was vastly empirical, and the conclusion was that local feature randomization [20]
produced better results in terms of predictive performance when compared to global fea-
ture randomization schemes [23]. Given the differences in nature of the task (regression vs
classification), the results from [22] cannot be extended to the current work as we focus on
classification. Also, we significantly extend the analysis presented in [23] by analytically
explaining the impact of stable learners (such as Hoeffding trees) in a streaming setting.

Finally,we briefly introduced the concepts of active and reactive strategies for concept drift
recovery and the vast literature in ensemble learning for supervised learning in an evolving

123

1610 H. M. Gomes et al.

data stream setting. We refer the reader to [18] and [48] for further information on concept
drift and to [19] for a detailed overview and taxonomy of existing ensemble learning applied
to streaming data.

6 Experiments

We evaluate the SRP implementation against state-of-the-art classification algorithms, both
concerning predictive performance and computational resources usage. To analyse the diver-
sity among base models in the presented methods, we present plots depicting the average
pairwise kappa over time. Also, to analyse how fast (and deep) the base trees are grown by
each ensemble strategywe include plots of the average tree depth over time.We assess predic-
tive performance through accuracy results using a test-then-train evaluation strategy, where
every instance is used first for testing and then for training. The algorithms used in the com-
parisons are Hoeffding Trees (HT), Naive Bayes (NB), Leveraging Bagging (LB), Adaptive
Random Forest (ARF), Online Accuracy Updated Ensemble (OAUE), Dynamic Weighted
Majority (DWM) and Online Smooth Boosting (OB). HT and NB serve the purpose of base-
lines since they are single classifiers often used in data stream classification. LB and ARF are
ensemble methods that consistently outperform other ensemble classifiers as shown in [21]
in a similar benchmark than the one used in this work. OB represents a boosting adaptation
to online learning, while DWM and OAUE are ensemble methods explicitly developed for
data stream classification that rely on different heuristics to address concept drift.

To analyse how SRP compares to “simple” variants of itself, we present two variations
in the experiments, namely the Streaming Random Subspaces (SRS) and a Bagging-like
strategy (BAG). SRS trains the base models on random subspaces of features as in SRP
and all instances without simulating bootstraps, while BAG only simulates bagging using all
features. We also investigate the impact of k in SRP ranging from 10 up to 100% (same as
the variant BAG) and the hyperparameter λ, which impacts the bagging simulation.

Regarding hyperparameters, we use HT as the base learner for all the ensemble methods.
The default subspace size is k = 60% for SRS, SRP andARF, except for experiments with the
high dimensionality dataset SPAM and M = 100 where k = 10% (Table 5), or experiments
where k is analysed. For the majority of the experiments, the HT grace period was set to
GP = 50, the split confidence c = 0.01,5 and the decision strategy used at leaves was
Naive Bayes Adaptive, i.e. either Naive Bayes or Majority vote are used at a leaf depending
on which one is more accurate [28]. This HT configuration tends to generate splits earlier
at the expense of processing time, and it was also used in [21]. ADWIN is used as a drift
detector for all ensembles that rely on active drift detection (i.e. ARF, LB, SRP, SRS and
BAG). The δ parameter, which controls the confidence in the change detected, was defined
as δ = 1 × 10−4 for warning detection and δ = 1 × 10−5 for drift detection in ARF, SRP,
SRS and BAG. In LB, δ was set according to its default value [5], i.e. δ = 0.002.

All the experiments were executed in the Massive Online Analysis (MOA) framework [4]
version 2017.10 build. Details about the hardware configuration are shown below:

– CPU: 40 cores, Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
– Operational System: Ubuntu 16.04.5 LTS
– Java Virtual Machine (JVM) version: JDK 1.8.0
– Maximum memory allocation pool for JVM (Xmx): 100GB

5 GP and c were originally identified as nmin and δ by Domingos and Hulten [15]; however, we choose to
keep their acronyms as in the Massive Online Analysis (MOA) framework to facilitate reproducibility.

123

Learning from evolving data streams through ensembles… 1611

Table 1 Datasets [Drifts: (A) Abrupt, (G) Gradual, (M) Incremental (moderate) and (F) Incremental (fast)]

Dataset # Instances # Features Type Drifts # Classes

LED(A) 1,000,000 24 Synthetic A 10

LED(G) 1,000,000 24 Synthetic G 10

AGR(A) 1,000,000 9 Synthetic A 2

AGR(G) 1,000,000 9 Synthetic G 2

RBF(M) 1,000,000 10 Synthetic M 5

RBF(F) 1,000,000 10 Synthetic F 5

AIRLINES 539,383 7 Real – 2

ELEC 45,312 8 Real – 2

COVTYPE 581,012 54 Real – 7

KDD99 4,898,431 41 Real – 23

ADS 3279 1559 Real – 2

NOMAO 34,465 119 Real – 2

SPAM 9324 39,917 Real – 2

For AGR and LED variations drifts are introduced every 250,000 instances

– Initial memory allocation pool for JVM (Xms): 50MB

The datasets used in the experiments include 6 synthetic data streams and 7 real datasets.
The synthetic datasets simulate abrupt, gradual and incremental drifts, while the real datasets
have been thoroughly used in the literature to assess data stream classifiers. Table 1 presents
an overview of the datasets. Besides presenting the average ranking (Avg Rank) for each
algorithm, we also highlight the average ranking for the synthetic datasets (Avg Rank Synt.)
and the average ranking for real-world datasets (Avg Rank Real). The reason to report these
rankings separately is that some techniques may perform better on synthetic data, while not
so well in overall, and it is important to highlight and discuss that. Good performance on the
synthetic datasets may indicate an effective drift recovery strategy; however, synthetic data
stream concepts tend to be simple or biased toward a specific learning algorithm; therefore,
an algorithm that produces good results only on synthetic data may offer less credibility.

Further instructions on how to execute the experiments are available in https://github.com/
hmgomes/StreamingRandomPatches. SRP is now also available in the MOA framework [4].

In the following sections, we present five sets of experiments. In Sect. 6.1, we start with
an analysis of the subspace size and the λ hyperparameter (controls the resampling method).
Next, in Sect. 6.2, we compare SRP against other algorithms from the literature. In Sect. 6.3,
we present an analysis of the tree depth and diversity for some of the ensemble methods.
Section 6.4 includes an investigation of the computational resources used by the methods
presented in Sect. 6.2. Finally, Sect. 6.5 includes experiments using Naive Bayes as the base
model for some of the ensemble methods.

6.1 Subspace size and resampling

Tables 2 and 36 present results for SRP using Poisson(λ = 6) and Poisson(λ = 1), respec-
tively, varying the subspace size from 10 up to 100% (which corresponds to BAG). These

6 Results for AGR(A) and AGR(G) for k = 50% and k = 60% produce the same results as k = 0.6×9 = 5.4
and k = 0.5 × 9 = 4.5 rounded to the nearest integer is 5 in both cases.

123

https://github.com/hmgomes/StreamingRandomPatches
https://github.com/hmgomes/StreamingRandomPatches

1612 H. M. Gomes et al.

Ta
bl
e
2

Te
st
-t
he
n-
tr
ai
n
ac
cu
ra
cy

(%
)
fo
r
SR

P:
k
fr
om

10
%

up
to

B
A
G
(1
00

%
),
Po

is
so
n(

λ
=

6)
an
d
M

=
10

D
at
a
se
t

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

B
A
G

L
E
D
(A

)
65

.5
21

65
.6
55

70
.0
57

73
.2
44

73
.0
96

73
.5
1

73
.9
79

73
.9
8

74
.0
56

74
.0
46

L
E
D
(G

)
55

.1
08

62
.1
96

69
.4
52

72
.4
44

72
.0
67

72
.7
54

72
.9
72

73
.1
55

73
.1
6

73
.1
81

A
G
R
(A

)
82

.5
04

82
.5
04

89
.5
58

91
.3
21

90
.4
3

90
.4
3

92
.8
45

92
.6
8

90
.2
03

85
.9
61

A
G
R
(G

)
78

.5
03

78
.5
03

83
.1
64

89
.6
6

89
.5
6

89
.5
6

89
.2
93

88
.9
78

86
.0
8

80
.1
65

R
B
F(
M
)

61
.5
45

61
.5
45

72
.4
03

78
.3
06

81
.4
84

83
.5
41

84
.6
3

85
.5
06

85
.8
62

86
.3
35

R
B
F(
F)

45
.4
85

45
.4
85

54
.6
67

60
.6
79

64
.3
38

66
.6
26

68
.1
15

69
.0
41

69
.7
08

69
.7
46

A
IR

L
IN

E
S

66
.2
33

66
.2
33

66
.2
33

67
.0
3

67
.2
21

67
.2
21

66
.1
95

64
.3
38

64
.3
38

61
.7
61

E
L
E
C

84
.3
2

84
.3
2

84
.3
2

87
.7
78

88
.7
12

89
.7
44

89
.8
92

89
.8
92

90
.4
33

90
.2
37

C
O
V
T
Y
PE

87
.8
05

92
.2
13

93
.1
93

93
.9
76

94
.0
99

94
.1
47

94
.2
43

94
.0
42

93
.9
84

93
.7
97

K
D
D
99

99
.9
77

99
.9
81

99
.9
83

99
.9
83

99
.9
82

99
.9
79

99
.9
78

99
.9
77

99
.9
73

99
.9
65

A
D
S

98
.5
67

98
.6
58

98
.5
97

98
.5
67

98
.5
36

98
.4
14

98
.2
92

97
.9
57

97
.8
35

97
.6
52

N
O
M
A
O

96
.9
16

97
.1
3

97
.0
81

96
.9
36

97
.0
14

96
.9
01

96
.8
75

96
.7
91

96
.7
71

96
.6
89

SP
A
M

96
.7
29

96
.8
79

96
.7
18

95
.8
6

95
.9
57

95
.5
06

95
.1
42

94
.6
05

93
.8
65

93
.3
4

A
vg

ra
nk

7.
65

4
6.
61

5
5.
92

3
4.
57

7
4.
5

4.
5

4.
57

7
5.
15

4
5.
34

6
6.
15

4

A
vg

ra
nk

sy
nt
.

9.
66

7
9.
33

3
7.
66

7
5

5.
5

4.
5

3.
5

3.
16

7
3.
16

7
3.
5

A
vg

ra
nk

re
al

5.
92

9
4.
28

6
4.
42

9
4.
21

4
3.
64

3
4.
5

5.
5

6.
85

7
7.
21

4
8.
42

9

T
he

be
st
re
su
lts

ar
e
hi
gh
lig

ht
ed

in
bo
ld

123

Learning from evolving data streams through ensembles… 1613

Ta
bl
e
3

Te
st
-t
he
n-
tr
ai
n
ac
cu
ra
cy

(%
)
fo
r
SR

P:
k
fr
om

10
%

up
to

B
A
G
(1
00

%
),
Po

is
so
n(

λ
=

1)
an
d
M

=
10

D
at
a
se
t

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

B
A
G

L
E
D
(A

)
49

.0
27

59
.1
87

70
.7
51

72
.7
36

71
.4
21

73
.4
87

74
.0
39

74
.0
08

73
.9
95

74
.0
33

L
E
D
(G

)
55

.3
3

66
.9
76

67
.1
02

70
.4
98

70
.8
52

72
.3
04

73
.0
02

73
.1
16

73
.1
5

73
.1
78

A
G
R
(A

)
75

.8
55

75
.8
55

83
.5
05

85
.3
95

91
.3
8

91
.3
8

90
.6
6

90
.2
45

88
.9
56

86
.8
64

A
G
R
(G

)
71

.6
23

71
.6
23

83
.2

84
.8
58

88
.0
84

88
.0
84

87
.5
29

84
.6
01

83
.6
05

82
.1
04

R
B
F(
M
)

50
.8
44

50
.8
44

60
.0
37

65
.9

69
.0
06

71
.2
67

72
.2
77

72
.7
98

73
.4
59

72
.4
79

R
B
F(
F)

36
.3
52

36
.3
52

40
.4
99

43
.2
05

44
.8
77

46
.1
87

47
.3
21

47
.8
2

48
.5
28

48
.6
31

A
IR

L
IN

E
S

66
.7
26

66
.7
26

66
.7
26

67
.2
29

67
.4
17

67
.4
17

66
.3
8

65
.0
86

65
.0
86

64
.0
62

E
L
E
C

79
.2
88

79
.2
88

79
.2
88

80
.1
86

84
.6
75

85
.6
2

85
.9
93

85
.9
93

87
.2
62

86
.8
58

C
O
V
T
Y
PE

80
.2
69

84
.6
29

86
.0
28

87
.7
41

87
.6
51

87
.8
82

87
.7
17

87
.4
94

86
.8
13

86
.7
43

K
D
D
99

99
.9
65

99
.9
72

99
.9
73

99
.9
77

99
.9
72

99
.9
72

99
.9
7

99
.9
66

99
.9
62

99
.9
53

A
D
S

97
.8
65

97
.8
65

97
.6
21

97
.7
74

97
.0
72

97
.2
55

96
.6
15

77
.6
46

95
.9
74

96
.0
96

N
O
M
A
O

95
.9
55

96
.1
67

96
.1
73

95
.9
29

95
.8
51

95
.7
26

95
.8
16

95
.4
71

95
.4
07

95
.5
35

SP
A
M

92
.9
54

92
.2
99

90
.8
3

91
.6
99

92
.2
99

91
.4
31

90
.7
01

91
.1
09

89
.9
18

87
.6
02

A
vg

ra
nk

7.
34

6
6.
92

3
6.
38

5
4.
76

9
4.
30

8
3.
96

2
4.
57

7
5.
30

8
5.
57

7
5.
84

6

A
vg

ra
nk

sy
nt
.

9.
66

7
9.
33

3
7.
83

3
6.
33

3
4.
66

7
3.
83

3
3.
16

7
3.
33

3
3.
33

3
3.
5

A
vg

ra
nk

re
al

5.
35

7
4.
85

7
5.
14

3
3.
42

9
4

4.
07

1
5.
78

6
7

7.
5

7.
85

7

T
he

be
st
re
su
lts

ar
e
hi
gh
lig

ht
ed

in
bo
ld

123

1614 H. M. Gomes et al.

experiments use an HT configuration with GP = 200 and c = 1 × 10−7, which may cause
the trees to take longer to split in comparison with the configuration for HT used in all other
experiments in this paper previously described.

In both Tables 2 and 3, we can observe that the best results for the high-dimensionality
datasets (ADS, NOMAO and SPAM) are obtained with the smaller values of k, from 10 up to
30%. Conversely, in most cases, the best results for the datasets with low-dimensionality are
obtained using 100% (BAG) of the features or closer to that. One exception is the AIRLINES
dataset, where best results are obtained when using 50% or 60% of the features (i.e. k = 4
in both cases). Comparing the results in Tables 2 (Poisson(λ = 6)) and 3 (Poisson(λ = 1)),
it is noticeable that in the former the accuracy is higher in general. However, Poisson(λ =
1) obtains reasonably high accuracy in most datasets (a notable exception is RBF(M) and
RBF(F)) and requires less computational resources in comparison with Poisson(λ = 6).

6.2 Streaming random patches versus others

The results presented in Table 4 show how SRP compares against other algorithms. Similarly,
Table 5 presents how SRP and other ensembles perform when configured to use M = 100
learners.7 We apply the methodology presented in [14] to compare results among several
datasets and algorithms for the experiments presented in Tables 4 and 5. We first attempt
to reject the hypothesis that all learners produce equivalent results using a Friedman test at
a significance level α = 0.05. The Friedman test indicated significant differences on both
results, and it was followed by a post-hoc Nemenyi test. Figures 2 and 3 present the results for
the post hocNemenyi test corresponding to the results reported in Tables 4 and 5, respectively.
We note that no significant difference has been found among SRP, BAG, ARF, LB, SRS and
OAUE, using M = 10, while using M = 100 there was no significant difference among
SRP, SRS, BAG, ARF and LB.

We can observe the influence of the k hyperparameter when we compare SRP and BAG
results, for example, in AIRLINES even though the number of features is only 7, using
k = 60% produced better results than BAG as shown in Tables 4 and 5, while intuitively it
seems that using all features for low dimensionality datasets is better. For the SPAM dataset,
SRP,ARF and SRSwere configuredwith k = 10% for theM = 100 experiments as k = 60%
failed to finish. LB and BAG could not finish. Both failed after around 60% execution as
100GB of maximum memory allocation pool was insufficient.

SRP with M = 10 performs well in the real datasets, but not as well in the synthetic
datasets as BAG and LB, which are very similar models (i.e. use all features and simulate
resampling). However, in the experiments usingM = 100 the algorithms that exploit random
subspaces (ARF, SRP, SRS) benefited the most from the addition of more learners, followed
by BAG and LB. This characteristic of ARF, SRP and SRS, can be attributed to them being
able to cover a more significant number of subspaces of features. OB and DWM improved
in comparison with their results using M = 10, while OAUE decreased its performance.
OAUE obtain results far below NB and HT for KDD99, ADS and NOMAO datasets while
performing well in the synthetic datasets with simulated concept drifts.

7 In DWM [30], we can only set the maximum number of base learners, since DWM dynamically changes
the ensemble size during execution.

123

Learning from evolving data streams through ensembles… 1615

Ta
bl
e
4

Te
st
-t
he
n-
tr
ai
n
ac
cu
ra
cy

(%
)
us
in
g
M

=
10

ba
se

m
od
el
s
[2
3]

D
at
a
se
t

N
B

H
T

L
B

O
A
U
E

D
W
M

O
B

A
R
F

SR
P

SR
S

B
A
G

L
E
D
(A

)
53

.9
64

69
.0
32

73
.9
18

74
.0
07

73
.7
42

69
.8
98

73
.9
45

73
.5
88

73
.5
33

73
.9
44

L
E
D
(G

)
54

.0
2

68
.6
49

73
.0
76

73
.1
67

72
.7
23

69
.5
62

73
.0
1

72
.4
16

72
.2
96

73
.1
51

A
G
R
(A

)
65

.7
39

81
.0
45

86
.9
54

90
.9
32

82
.9
7

84
.9
1

85
.6
46

91
.7
88

91
.5
58

85
.7
33

A
G
R
(G

)
65

.7
59

77
.3
74

80
.7
09

86
.3
39

79
.4
18

79
.7
3

79
.8
85

87
.7
62

88
.5
38

81
.3
47

R
B
F(
M
)

30
.9
94

45
.4
91

84
.7
14

78
.5
81

57
.8
1

69
.8
94

84
.4
9

83
.2
8

81
.6
85

85
.4
31

R
B
F(
F)

29
.1
36

32
.2
92

74
.1
02

50
.0
21

54
.8
61

42
.9
15

70
.7
15

70
.8
25

59
.0
61

74
.8
91

A
IR

L
IN

E
S

64
.5
5

65
.0
78

62
.3
19

66
.6
37

63
.8
8

65
.1
84

65
.7
86

66
.7
76

67
.0
85

61
.2
96

E
L
E
C

73
.3
62

79
.1
95

90
.1
57

88
.2
75

87
.7
56

85
.2
53

88
.7
18

88
.8
2

89
.4

89
.5
02

C
O
V
T
Y
PE

60
.5
21

80
.3
12

94
.8
61

90
.1
7

88
.2
86

90
.3
27

94
.6
91

95
.2
54

92
.7
64

95
.4
67

K
D
D
99

95
.6
03

99
.9
03

99
.9
74

2.
47

3
99

.9
51

99
.9
44

99
.9
75

99
.9
84

99
.9
79

99
.9
72

A
D
S

68
.1
61

85
.9
1

99
.6
65

15
.4
01

97
.4
99

86
.9
17

99
.7
26

99
.7
56

98
.4
45

99
.6
65

N
O
M
A
O

86
.8
65

92
.1
28

97
.0
35

58
.4
07

95
.4
62

94
.2
52

97
.0
55

97
.2
32

96
.4
51

97
.0
64

SP
A
M

74
.5
71

79
.0
43

94
.7
45

80
.8
99

89
.2
86

89
.4
89

96
.2
14

95
.9
67

92
.9
54

94
.7
45

A
vg

ra
nk

9.
54

8.
29

3.
5

7
7

6.
86

3.
57

2.
43

3.
71

3.
36

A
vg

ra
nk

sy
nt
.

10
9

3.
33

3.
5

6.
67

7.
5

4.
17

3.
67

4.
5

2.
67

A
vg

ra
nk

re
al

9.
14

8.
14

4
7.
71

6.
86

6.
57

3.
14

1.
86

3.
71

3.
86

T
he

be
st
re
su
lts

ar
e
hi
gh
lig

ht
ed

in
bo
ld

123

1616 H. M. Gomes et al.

Table 5 Test-then-train accuracy (%) using M = 100 base models

Data set LB OAUE DWM OB ARF SRP SRS BAG

LED(A) 73.953 73.393 73.958 72.475 73.96 74.027 74.04 73.975

LED(G) 73.225 72.582 73.031 72.117 73.094 73.233 73.179 73.215

AGR(A) 88.717 90.164 88.299 90.374 87.929 92.869 92.807 86.663

AGR(G) 83.713 85.244 79.437 87.834 82.288 89.651 90.259 82.52

RBF(M) 84.338 84.262 60.977 74.514 86.958 86.039 84.821 86.671

RBF(F) 76.771 57.147 54.531 48.698 76.291 76.375 61.622 77.686

AIRLINES 62.82 65.229 64.025 64.556 66.417 68.564 68.303 62.093

ELEC 89.508 87.407 87.754 89.515 89.672 89.859 90.267 89.822

COVTYPE 95.104 92.857 88.519 92.695 94.967 95.348 93.461 95.288

KDD99 99.965 2.445 99.951 99.936 99.972 99.981 99.973 99.974

ADS 99.634 15.401 97.499 90.393 99.695 99.726 98.353 99.634

NOMAO 97.072 58.233 95.462 96.393 97.197 97.383 96.57 97.226

SPAM NA 80.781 89.361 86.519 97.319 97.437 95.924 NA

Avg rank 4.46 6.33 6.67 6.17 4 1.58 3.17 3.63

(synth data) 4.17 5.67 6.67 6.17 4.67 2 2.83 3.83

(real data) 4.75 7 6.67 6.17 3.33 1.17 3.5 3.42

Underlined results mean the performance increased in comparison with M = 10 version. BAG and LB did
not finish execution for SPAM dataset [23]
The best results are highlighted in bold

6.3 Average tree depth and diversity

To investigate how efficient SRP is in terms of inducing diversity into the ensemble, we plot
the average kappa over time for AGRg , LEDa and ELEC in Figs. 4, 5 and 6, respectively.
In Fig. 8, we can observe how average kappa for BAG and ARF converge after the same
concept has been in place. We notice that SRS and SRP obtain low values of average kappa
in comparison with ARF and BAG. However, when we take into account the accuracy results
in Table 4, we can see that not necessarily SRP or SRS outperform BAG in these datasets, i.e.
even if the difference is small, ARF and BAG outperform SRS and SRP in LED(A). These
results corroborate with the conclusions by Stapenhurst [47] that the ensemble diversity
influences in the recovery from a concept drift, still, it is not as crucial as the actual drift
detection and recovery strategy. In Table 4, SRS and SRP outperformARF and BAG, still, the
average kappa diversity in Fig. 4 is quite similar, and thus, no clear conclusions can be made
about why SRS and SRP perform better based solely on the average pairwise kappa. The
overall conclusion is that increasing diversity is not enough to improve accuracy. Therefore,
we complement our analysis of the ensembles diversity by presenting the average tree depth
in Figs. 7, 8 and 9. SRP consistently grows trees faster and deeper than ARF, SRS and BAG.
Splitting sooner can lead to overfitting the models or splits that could use a better feature (or
split point) if more instances were observed. As shown by the majority of the experiments in
Table 4 and 5, splitting sooner can be beneficial to SRP in terms of predictive performance.
However, it is not a clear conclusion as observed in Fig. 9 where the average tree depth for
SRS is quite low, yet its overall accuracy surpasses ARF and SRP in Table 4 and all other
algorithms in Table 5. On top of that, by observing Fig. 6 we observe that SRS starts with
high diversity (low average pairwise kappa) but then becomes the less diverse method in
comparison with the others.

123

Learning from evolving data streams through ensembles… 1617

Fig. 2 Nemenyi test (95% confidence level)—M = 10 base models [23]

Fig. 3 Nemenyi test (95% confidence level)—M = 100 base models on the right. The avg rank obtained in
the SPAM dataset was not considered for any learner since there are no results for LB and BAG [23]

Fig. 4 AGR(G)—Avg kappa over time (M = 10) [23]

6.4 Time andmemory usage analysis

The computational resources are estimated based on the CPU time and RAM hours (across
all the experiments). The results for M = 100 are presented in Figs. 10 and 11.8 We note that
SRP performs similar to LB, requires less resources than BAG, but demands more resources
than SRS and ARF. The SRS efficiency is attributable to the fact that it does not simulate
resampling. In SRP, BAG, ARF and LB, each learner is trained on each instance, on average,
λ times, where λ = 6 in our experiments. If we use Poisson(λ = 1), we also increase
the chances of obtaining zeros (i.e. not using the instance for training), which positively

8 The results in Figs. 10 and 11 exclude SPAM CPU Time and RAM hours for all algorithms, since BAG and
LB did not finish executing.

123

1618 H. M. Gomes et al.

Fig. 5 LED(A)—Avg kappa over time (M = 10) [23]

Fig. 6 ELEC—Avg kappa over time (M = 10)

Fig. 7 AGR(G)—Avg tree depth over time (M = 10) [23]

123

Learning from evolving data streams through ensembles… 1619

Fig. 8 LED(A)—Avg tree depth over time (M = 10) [23]

Fig. 9 ELEC—Avg tree depth over time (M = 10)

affects the memory and processing time (train on less instances), but negatively impacts the
classification performance as the base models are trained on less instances.

6.5 Naive Bayes as base learner

In this last set of experiments, we show how SRP, DWM, LB and OB behave when used
with a Naive Bayes (NB) base learner. Tables 6 and 7 present the results using 10 and
100 learners, respectively. DWM was initially tested with NB as its base learner [30], and
the results using NB were mostly successful as we can also observe in our experiments.
DWMN B outperformed other ensembles, including SRPN B, in Table 6. Even though NB is
a stable method and relying solely on resampling might not be sufficient to generate a diverse
ensemble, it is clearly that LBN B produce better results than a single NB. Both DWMN B and
LBN B yield good results with M = 10; however, they do not scale very well to M = 100.
Comparing the results from Tables 6 and 7, we can observe that SRPN B and OBN B both

123

1620 H. M. Gomes et al.

Fig. 10 CPU time (M = 100) [23]

Fig. 11 RAM hours usages (M = 100) [23]

improved their results for the majority of the datasets when using M = 100. We also observe
that similar to the results using a HT as the base learner (Sect. 6.2) SRPN B produces better
results for the real data.

7 Conclusions

In this work, we have taken an in-depth look at the performance of Random Subspaces, Bag-
ging and Random Patches ensemble methods and their application to streams. In particular,
following theoretical considerations and empirical investigations, we focus on the Streaming
Random Patches (SRP) method. SRP is a combination of Random Subspaces and Bagging
as each base model is trained on a random patch of data (i.e. a random subset of features
and instances). We show how SRP can be highly accurate on many benchmark streaming
scenarios and compare it against several ensemble methods for data stream classification,

123

Learning from evolving data streams through ensembles… 1621

Table 6 Test-then-train accuracy (%) using M = 10 where the base learner is Naive–Bayes (NB) for all
ensemble methods

Data set NB LBNB DWMNB OBNB SRPNB

LED(A) 53.964 73.747 73.747 56.25 73.514

LED(G) 54.02 73.201 72.739 56.25 72.041

AGR(A) 65.739 76.744 76.598 69.297 69.282

AGR(G) 65.759 75.342 74.422 69.302 70.675

RBF(M) 30.994 56.789 57.654 31.384 53.504

RBF(F) 29.136 53.131 54.779 29.329 47.153

AIRLINES 64.55 66.542 66.862 65.128 67.659

ELEC 73.362 78.875 79.725 74.06 79.16

COVTYPE 60.521 83.2 82.998 61.646 83.704

KDD99 95.603 99.922 99.896 96.092 99.969

ADS 68.161 25.313 79.78 26.898 39.372

NOMAO 86.865 93.132 92.955 87.332 93.515

SPAM 74.571 76.083 82.293 72.705 83.902

Avg rank 4.69 2.15 1.92 4 2.23

Avg rank synt. 5 1.33 1.67 3.83 3.17

Avg rank real 4.43 2.86 2.14 4.14 1.43

The best results are highlighted in bold

Table 7 Test-then-train accuracy
(%) using M = 100 where the
base learner is Naive Bayes (NB)
for all ensemble methods

Data set LBNB DWMNB OBNB SRPNB

LED(A) 63.4 73.957 65.262 74.04

LED(G) 73.202 73.055 65.235 73.12

AGR(A) 72.454 76.927 77.535 72.218

AGR(G) 75.382 74.879 77.243 69.659

RBF(M) 55.969 58.055 33.874 54.536

RBF(F) 47.091 54.404 30.724 47.845

AIRLINES 67.814 67.156 67.269 67.893

ELEC 75.382 79.657 76.057 79.398

COVTYPE 79.436 82.896 67.493 84.151

KDD99 99.779 99.896 98.411 99.924

ADS 23.117 79.78 24.55 32.754

NOMAO 87.468 92.955 88.388 93.417

SPAM 75.686 82.293 75.44 83.516

Avg rank 2.92 2 3.15 1.92

Avg rank synt. 2.5 2 2.83 2.67

Avg rank real 3.29 2 3.43 1.29

Underlined results means the performance increased in comparison with
M = 10 version
The best results are highlighted in bold

including bagging, boosting and random forest variations. We discussed the differences and
similarities, between SRP and the Adaptive Random Forest (ARF) algorithm. We showed
how SRP compared against a Streaming Random Subspaces (SRS) method and a Bagging

123

1622 H. M. Gomes et al.

method using the same drift detection and recovery strategies. We also present a sensitivity
analysis of the random subspace size for SRP and experiments using Naive Bayes as the base
learner.

We discussed and demonstrated how methods using random subspaces yield significant
advantages, such as diversity enhancement (even for stable methods), which is particularly
suited to Hoeffding trees (and Naive Bayes) based methods. On top of that, the experiments
indicate that SRP and SRS methods tend to improve accuracy from the addition of more
base models, thus taking more advantage of available computational resources compared to
other ensembles. In terms of computational resources used, SRP has similar performance to
Leveraging Bagging and ARF. We note that SRS obtained highly accurate results, especially
with M = 100, using a minimal amount of memory and processing time in comparison with
the other ensembles.

Furthermore, even though beyond the scope of this paper, a consideration of distributed
computation on ourmethod is particularly favoured, as the basemodels are independent. This
allows for the application of the method on a federated learning environment, where commu-
nication between nodes should be limited andwhere the views of the data are restricted. These
characteristics set out an exciting path for future investigation and real-world applications.

References

1. AbdulsalamH,SkillicornDB,Martin P (2008)Classifying evolving data streamsusing dynamic streaming
random forests. In: International conference on database and expert systems applications. Springer, pp
643–651 (2008)

2. Bifet A, Frank E, Holmes G, Pfahringer B (2012) Ensembles of restricted Hoeffding trees. ACM TIST
3(2):30:1–30:20. https://doi.org/10.1145/2089094.2089106

3. Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: SIAM
4. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) Moa: massive online analysis. J Mach Learn Res

11:1601–1604
5. Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: PKDD, pp

135–150
6. Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn Res 2:499–526
7. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1023/A:

1018054314350
8. Breiman L (1999) Pasting small votes for classification in large databases and on-line. Mach Learn

36(1–2):85–103
9. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

10. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. J Inf
Fusion 6:5–20

11. Brzezinski D, Stefanowski J (2014) Combining block-based and online methods in learning ensembles
from concept drifting data streams. Inf Sci 265:50–67. https://doi.org/10.1016/j.ins.2013.12.011

12. Chen ST, Lin HT, Lu CJ (2012) An online boosting algorithm with theoretical justifications. In: Proceed-
ings of the international conference on machine learning (ICML)

13. Da Xu L, HeW, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform 10(4):2233–
2243

14. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
15. DomingosP,HultenG (2000)Mining high-speed data streams. In: Proceedings of the sixthACMSIGKDD

international conference on Knowledge discovery and data mining. ACM SIGKDD, pp 71–80
16. Domingos PM (2000) A unified bias-variance decomposition for zero-one and squared loss. AAAI

2000:564–569
17. Freund Y, Schapire RE et al (1996) Experiments with a new boosting algorithm. ICML 96:148–156
18. Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.

ACM Comput Surv 46(4):44:1–44:37. https://doi.org/10.1145/2523813
19. Gomes HM, Barddal JP, Enembreck F, Bifet A (2017) A survey on ensemble learning for data stream

classification. ACM Comput Surv 50(2):23:1–23:36. https://doi.org/10.1145/3054925

123

https://doi.org/10.1145/2089094.2089106
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3054925

Learning from evolving data streams through ensembles… 1623

20. Gomes HM, Barddal JP, Ferreira LEB, Bifet A (2018) Adaptive random forests for data stream regression.
In: ESANN

21. Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger B, Holmes G, Abdessalem T (2017)
Adaptive random forests for evolving data stream classification. Mach Learn 6:1–27. https://doi.org/10.
1007/s10994-017-5642-8

22. Gomes HM, Montiel J, Mastelini SM, Pfahringer B, Bifet A (2020) On ensemble techniques for data
stream regression. In: 2020 International joint conference on neural networks (IJCNN). IEEE, pp 1–8

23. Gomes HM, Read J, Bifet A (2019) Streaming random patches for evolving data stream classification.
In: IEEE international conference on data mining. IEEE

24. Gomes HM, Read J, Bifet A, Barddal JP, Gama J (2019) Machine learning for streaming data: state of
the art, challenges, and opportunities. ACM SIGKDD Explor Newsl 21(2):6–22

25. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics.
Springer, New York

26. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal
Mach Intell 20(8):832–844

27. Hoens TR, Chawla NV, Polikar R (2011) Heuristic updatable weighted random subspaces for non-
stationary environments. In: 2011 IEEE 11th international conference on data mining (ICDM). IEEE,
pp 241–250

28. HolmesG, Kirkby R, Pfahringer B (2005) Stress-testing Hoeffding trees. KnowlDiscovDatabases PKDD
2005:495–502. https://doi.org/10.1007/11564126_50

29. Ikonomovska E, Gama J, Džeroski S (2011) Learning model trees from evolving data streams. Data Min
Knowl Discov 23(1):128–168

30. Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J
Mach Learn Res 8:2755–2790

31. Kuncheva LI (2003) That elusive diversity in classifier ensembles. In: Iberian conference on pattern
recognition and image analysis. Springer, pp 1126–1138 (2003)

32. Kuncheva LI, Rodríguez JJ, Plumpton CO, Linden DE, Johnston SJ (2010) Random subspace ensembles
for FMRI classification. IEEE Trans Med Imaging 29(2):531–542

33. Kutin S, Niyogi P (2002) Almost-everywhere algorithmic stability and generalization error. In: Proceed-
ings of the eighteenth conference on uncertainty in artificial intelligence. Morgan Kaufmann, pp 275–282

34. Kutin S, Niyogi P (2002) Almost-everywhere algorithmic stability and generalization error. Tech. Rep.
TR-2002-03, University of Chicago

35. Lim N, Durrant RJ (2017) Linear dimensionality reduction in linear time: Johnson-lindenstrauss-type
guarantees for random subspace. arXiv:1705.06408

36. LimN, Durrant RJ (2020) A diversity-aware model for majority vote ensemble accuracy. In: International
conference on artificial intelligence and statistics. PMLR, pp 4078–4087

37. Lin Y, Jeon Y (2006) Random forests and adaptive nearest neighbors. J Am Stat Assoc 101(474):578–590
38. Littlestone N, Warmuth MK (1994) The weighted majority algorithm. Inf Comput 108(2):212–261
39. Liu Y, Yao X (1999) Ensemble learning via negative correlation. Neural Netw 12:1399–1404
40. Louppe G, Geurts P (2012) Ensembles on random patches. In: Joint European conference on machine

learning and knowledge discovery in databases. Springer, pp 346–361 (2012)
41. Minku LL, White AP, Yao X (2010) The impact of diversity on online ensemble learning in the presence

of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742
42. Oza N, Russell S (2001) Online bagging and boosting. In: Artificial intelligence and statistics 2001, pp

105–112. Morgan Kaufmann
43. Panov P, Džeroski S (2007) Combining bagging and random subspaces to create better ensembles. In:

International symposium on intelligent data analysis. Springer, pp 118–129 (2007)
44. Plumpton CO, Kuncheva LI, Oosterhof NN, Johnston SJ (2012) Naive random subspace ensemble with

linear classifiers for real-time classification of FMRI data. Pattern Recognit 45(6):2101–2108
45. Servedio RA (2003) Smooth boosting and learning with malicious noise. J Mach Learn Res 4:633–648
46. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to

prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
47. Stapenhurst RJ (2012) Diversity, margins and non-stationary learning. Ph.D. thesis, University of Manch-

ester, UK
48. Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F (2016) Characterizing concept drift. Data Min Knowl

Discov 30(4):964–994
49. Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn

23(1):69–101. https://doi.org/10.1023/A:1018046501280

123

https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/11564126_50
http://arxiv.org/abs/1705.06408
https://doi.org/10.1023/A:1018046501280

1624 H. M. Gomes et al.

50. Žliobaite I (2010) Change with delayed labeling: When is it detectable? In: 2010 IEEE international
conference on Data mining workshops (ICDMW). IEEE, pp 843–850 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Heitor Murilo Gomes is a Senior Research Fellow and the Head of
the MOA Laboratory at the University of Waikato. His main research
interest revolves around machine learning applied to streaming data,
especially delayed and partially labelled data, ensemble learning, dis-
tributed learning and unsupervised drift detection. He has served as a
programme committee member of several conferences. In particular, he
served as the Virtual Chair of the IEEE ICDM 2021 and the Co-Chair
of the ACM SAC Data Streams Track 2021. He contributes to several
open data stream mining projects, mainly the Massive Online Analysis
(MOA) framework.

Jesse Read is a Professor in the Computer Science Laboratory (LIX)
of Ecole Polytechnique in France since 2019, after joining as Assis-
tant Professor in 2016. He obtained his PhD from the University of
Waikato in 2010, followed by postdoctoral research in the Carlos III
University of Madrid, Aalto University in Helsinki, and Télécom Paris-
Tech (France). His research interests involve machine learning, and
particularly multi-label learning and models for data streams as well
as Monte Carlo methods, reinforcement learning, and applied data-
science projects. He served as programme Chair-Co-Chair of ECML-
PKDD 2021.

123

Learning from evolving data streams through ensembles… 1625

Albert Bifet is a Professor and the Director of the AI institute at the
University of Waikato and a Professor at the Institut Polytechnique
de Paris. Previously, he worked at Huawei Noah’s Ark Laboratory in
Hong Kong, Yahoo Labs in Barcelona, and UPC BarcelonaTech. He is
a co-author of a book on Machine Learning from Data Streams pub-
lished at MIT Press. He is one of the leaders of MOA, river and Apache
SAMOA software environments for implementing algorithms and run-
ning experiments for online learning from evolving data streams. He
served as Co-Chair of the Industrial track of IEEE MDM 2016, ECML
PKDD 2015, and as Co-Chair of KDD BigMine (2009-2012) and ACM
SAC Data Streams Track (2009-2021).

Robert J. Durrant PhD, is the Senior Lecturer in Department of Maths
and Stats, U. Waikato. His main research interests include dimension-
ality reduction, learning from small samples of high-dimensional data
and classifier ensemble learning. He reviews widely for machine learn-
ing and statistical journals, and his work on theory and applications of
random projections to classification and heuristic optimization has gar-
nered three conference ‘best paper’ awards.

123

	Learning from evolving data streams through ensembles of random patches
	Abstract
	1 Introduction
	2 Problem setting
	3 Streaming random patches
	3.1 Random subsets of instances
	3.2 Random subsets of features
	3.3 Drift detection and recovery

	4 Theoretical insights
	4.1 Hoeffding trees are stable learners
	4.2 Ensembles of stable learners are stable
	4.3 SRP Hoeffding trees are less stable than bagged trees
	4.4 SRP trees grow faster than Hoeffding trees

	5 Related work
	6 Experiments
	6.1 Subspace size and resampling
	6.2 Streaming random patches versus others
	6.3 Average tree depth and diversity
	6.4 Time and memory usage analysis
	6.5 Naive Bayes as base learner

	7 Conclusions
	References

