figshare
Browse

Lead-Halide Perovskite Solar Cells by CH3NH3I Dripping on PbI2–CH3NH3I–DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material

Download (229.85 kB)
journal contribution
posted on 2015-12-17, 07:31 authored by Seigo Ito, Soichiro Tanaka, Hitoshi Nishino
The sequential fabrication scheme of the CH3NH3PbI3 layer has been improved to fabricate planar-structure CH3NH3PbI3 perovskite solar cells using CuSCN hole-transporting material (HTM). In the PbI2 layer fabricated by the spin-coating method, at first, small amounts of CH3NH3I (MAI) and DMSO were incorporated as the first-drip precursor layer on a flat TiO2 layer. On the first-drip precursor layers, an MAI solution was applied by either soaking (MAI-soaking method) or dripping using successive spin coating (MAI-dripping). The morphology and crystal transformations were observed by SEM and XRD, respectively. Using the normal sequential MAI-soaking method, we were unable to fabricate planar CH3NH3PbI3 perovskite solar cells with CuSCN HTM. Using the MAI-dripping method, however, a significant photovoltaic effect has been observed to be planar 2/CH3NH3PbI3 perovskite/CuSCN> solar cells.

History