ja6b03282_si_001.pdf (3.36 MB)
Download fileKOtBu: A Privileged Reagent for Electron Transfer Reactions?
journal contribution
posted on 2016-05-16, 00:00 authored by Joshua
P. Barham, Graeme Coulthard, Katie J. Emery, Eswararao Doni, Florimond Cumine, Giuseppe Nocera, Matthew P. John, Leonard E. A. Berlouis, Thomas McGuire, Tell Tuttle, John A. MurphyMany recent studies have used KOtBu in organic
reactions that involve single electron transfer; in the literature,
the electron transfer is proposed to occur either directly from the
metal alkoxide or indirectly, following reaction of the alkoxide with
a solvent or additive. These reaction classes include coupling reactions
of halobenzenes and arenes, reductive cleavages of dithianes, and
SRN1 reactions. Direct electron transfer would imply that
alkali metal alkoxides are willing partners in these electron transfer
reactions, but the literature reports provide little or no experimental
evidence for this. This paper examines each of these classes of reaction
in turn, and contests the roles proposed for KOtBu;
instead, it provides new mechanistic information that in each case
supports the in situ formation of organic electron
donors. We go on to show that direct electron transfer from KOtBu can however occur in appropriate cases, where the electron
acceptor has a reduction potential near the oxidation potential of
KOtBu, and the example that we use is CBr4. In this case, computational results support electrochemical data
in backing a direct electron transfer reaction.