Supplementary Material

Isolation and identification of antioxidant constituents from the flowers of *Salvia miltiorrhiza*

Xue Jiang ^{1,2,3}, Jun Chi ^{1,2,3}, Qingmei Feng ^{1,2,3}, Hong Wu¹, Zhimin Wang^{2,3,4*} and Liping Dai^{1,2,3*}

¹Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; ²Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, China; ³Zhengzhou Engineering Research Center for Food-Medicine Homologous substances from Henan Province, Zhengzhou, Henan 450046, China; ⁴Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

*Corresponding author e-mail: zhmw123@163.com (Zhimin Wang), liping_dai@hactcm.edu.cn (Liping Dai); Phone: +86-18703651652

Abstract

A new salvianolic acid derivative, (7'E)-(7S, 8S)-salvianolic acid V (1), together with four previously described compounds (2-5) were obtained from the *n*-butanol fraction of *Salvia miltiorrhiza* flowers. Their structures were established by a series of spectroscopic methods, and the absolute configuration of 1 was determined by ECD calculation. Salvianolic acids (1) and phenolic acids (2-4) showed stronger DPPH free radical scavenging abilities and certain protective effects against H₂O₂-induced HSF cells oxidative damage, in which compound 1 (IC₅₀ 7.12 μ M) possessed more noticeable free radical scavenging activity than the positive control vitamin C (IC₅₀ 14.98 μ M).

Keywords: Salvia miltiorrhiza; salvianolic acid; antioxidant activity

List of content

- **1. General Experimental Procedures**
- 2. Plant Material
- 3. Extraction and isolation
- 4. ECD calculation of compound 1
- 5. DPPH radical scavenging assay

6. Protective effects against H₂O₂-induced HSF cells oxidative damage

7. A Chem3D molecular modeling study of compound 1

Table S1. ¹H (500 MHz) and ¹³C NMR (125 MHz) spectrum data of compound 1 in MeOD (δ in ppm, *J* in Hz).

Table S2. ¹³C NMR (125 MHz) spectrum data of compounds 2-5 in MeOD (δ in ppm).

Table S3. ¹H NMR (500 MHz) spectrum data of compounds 2-5 in MeOD (δ in ppm, J in Hz).

Table S4. ¹H (500 MHz) and ¹³C NMR (125 MHz) spectrum data of compound 1 and salvianolic acid V in MeOD (δ in ppm, J in Hz).

Table S5. The antioxidant activity of the isolated compounds by DPPH assay.

 Table S6. The optimized lowest energy 3D conformers and energy analysis of compound 1.

 Table S7-16. Cartesian coordinates for the low-energy optimized conformers of 1A-1J.

Figure S2. Key ¹H-¹H COSY, HMBC and NOESY correlations of compound 1.

Figure S3. Internuclear distances of H-7 and H-2'/H-7' in isomers 1a (*E*-configuration of $\Delta^{7',8'}$) and 1b (*Z*-configuration of $\Delta^{7',8'}$).

Figure S4. Experimental and calculated ECD spectra for compound 1.

Figure S5. Protective effects of compounds **1-5** treated on H₂O₂-induced oxidative damaged HSF cells.

Figure S6. HR-ESI-MS spectrum of compound 1 in MeOH.

Figure S7. IR spectrum of compound 1 in MeOH.

Figure S8. UV spectrum of compound 1 in MeOH.

Figure S9. ¹H NMR (500 MHz) spectrum of compound 1 in MeOD.

Figure S10. ¹³C NMR (125 MHz) spectrum of compound 1 in MeOD.

Figure S11. ¹H-¹H COSY spectrum of compound 1 in MeOD.

Figure S12. HSQC spectrum of compound 1 in MeOD.

Figure S13. HMBC spectrum of compound 1 in MeOD.

Figure S14. NOESY spectrum of compound 1 in MeOD.

1. General Experimental Procedures

UV spectrum was recorded on a Thermo Scientific Evolution 201 spectro-photometer. Optical rotation was measured using a Rudolph AP-IV polarimeter. IR spectrum was measured on a Thermo Nicolet iS5 spectrometer. The NMR spectra were obtained using a Bruker Avance III 500-NMR spectrometer. HR-ESI-MS data was obtained using a Thermo UPLC-LTQ orbitrap XL spectrometer. ECD spectrum was recorded on a Chirascan photospectrometer. Silica gel (100-200 and 200-300 mesh, Shanghai Shengya Chemical Co., Ltd., Shanghai, China), MCI gel CHP20P (75-150 μ m, Mitsubishi Chemical Corp., Tokyo, Japan), ODS-C₁₈ (50 μ M, YMC, Kyoto, Japan), semi-prep HPLC (SEP LC-52, Beijing Saipuruisi Technology Co., Ltd., Beijing) with a NanoChrom C18 column (5 μ M, 250 mm × 10 mm) were employed for chromatographic separations.

2. Plant Material

The flowers of *Salvia miltiorrhiza* were collected from Nanyang of Henan Province, China, in May 2017 and identified by Prof. Liping Dai of Henan University of Chinese Medicine. The voucher specimen (NO.20170107) was deposited at the Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province.

3. Extraction and isolation

The air-dried flowers of *S. miltiorrhiza* (4.5 kg) were refluxed with 70% EtOH (3×20 L×2 h). The crude extracts (350 g) were suspended in water and partitioned with petroleum ether (57.7 g), EtOAc (125.7 g), and *n*-BuOH (108.2 g), successively. The *n*-BuOH fraction was chromatographed on silica gel column (100-200 mesh, 1.5 kg, 40 cm × 10 cm i.d) using the gradient DCM-MeOH (100:5 ~ 0:100, v/v) as eluent to yield 3 fractions (Fr. a ~ c). Fr. b (40.2 g) was purified by MCI column eluted with MeOH-0.1% formic acid water from 10: 90 to 40: 60, to yield subfractions (Fr. b1 ~ b7). The Fr. b5 (1.9 g) was subjected to ODS column (MeOH-0.1% formic acid water, 5:95 ~ 40:60) to afford Fr. b5-1 ~ b5-5. The Fr. b5-3 (160.2 mg) was separated by semi-prep HPLC with ACN-0.1% formic acid water (10:90, 3 mL/min), to yield compounds **1** (15.9 mg), **3** (7.6 mg) and **4** (9.2 mg). The Fr. b5-1 (31.5 mg) was purified by semi-prep HPLC (MeOH-0.1% formic acid water, 10:90) to yield compound **2** (3.6 mg). Fr. a (16.5 g) was separated using a silica gel column (200-300 mesh, 30 cm × 5 cm i.d, DCM-MeOH, 50:1 ~ 5:1) to obtain compound **5** (4.2 mg).

(7'E)-(7S, 8S)-Salvianolic acid V (1): Yellow amorphous powder; $[\alpha]_D^{25}$ +135.638 (*c* 0.02, MeOH); IR (KBr) v_{max}: 3345.77, 2952.08, 1718.40, 1456.92, 1032.51 cm⁻¹; ECD (MeOH): λ ($\Delta\epsilon$) 207 (-2.19), 219 (0.49), 234 (-1.13), 253 (1.02), 276 (0.24), 300 (1.46). UV

(MeOH) λ_{max} (log ϵ): 203 (4.39), 337 (3.84) nm; HR-ESI-MS at *m/z* 359.07599 [M+H]⁺ (calcd for C₁₈H₁₅O₈, 359.07614); ¹H and ¹³C NMR (500 MHz, MeOD) data (Table S1).

Syringic acid (2): White amorphous powder; ¹H NMR (500 MHz, MeOD) δ_{H} : 7.34 (2H, s, H-2, 6), 3.90 (6H, s, 3, 5-OCH₃). ¹³C NMR (125 MHz, MeOD) δ_{C} : 170.0 (COOH), 148.84 (C-3, 5), 141.7 (C-4), 122.0 (C-1), 108.3 (C-2, 6), 56.8 (3, 5-OCH₃).

Protocatechuic acid (**3**): White amorphous powder; ¹H NMR (500 MHz, MeOD) $\delta_{\rm H}$: 7.43 (1H, overlapped, H-6), 7.41 (1H, d, J = 2.1 Hz, H-2), 6.79 (1H, d, J = 8.1 Hz, H-5). ¹³C NMR (125 MHz, MeOD) $\delta_{\rm C}$: 170.5 (C-7), 151.4 (C-4), 146.0 (C-3), 123.8 (C-6), 123.4 (C-1), 117.7 (C-5), 115.7 (C-2).

3,4-Dihydroxybenzaldehyde (4): White amorphous powder; ¹H NMR (500 MHz, MeOD) δ_{H} : 9.66 (s, -CHO), 7.28 (1H, overlapped, H-6), 7.27 (1H, d, J = 2.0 Hz, H-2), 6.88 (1H, d, J = 7.9 Hz, H-5). ¹³C NMR (125 MHz, MeOD) δ_{C} : 193.1 (C-7), 153.7 (C-4), 147.2 (C-3), 130.8 (C-1), 126.4 (C-6), 116.2 (C-5), 115.4 (C-2).

Esculetin (5): White solid; ¹H NMR (500 MHz, MeOD) δ_{H} : 7.78 (1H, d, J = 9.4 Hz, H-4), 6.94 (1H, s, H-8), 6.75 (1H, s, H-5), 6.18 (1H, d, J = 9.4 Hz, H-3). ¹³C-NMR (125 MHz, MeOD) δ_{C} : 164.3 (C-2), 152.1 (C-7), 150.5 (C-9), 146.1 (C-4), 144.6 (C-6), 113.0 (C-5), 112.8 (C-10), 112.4 (C-3), 103.6 (C-8).

4. ECD calculation of compound 1

A Chirascan CD spectropolarimeter was used to obtain the spectrum of compound **1**. The energy-minimized conformers of compound **1** were carried out by means of the Spartan's 14 software using Merck Molecular Force Field (MMFF). The conformers with Boltzmann population of over 2% were chosen for ECD calculations. The predominant conformers of compound **1** were subjected to the theoretical calculation of ECD spectra at the RB3LYP/6- 31G (d, p) level using the time dependent density functional theory (TDDFT) method. The ECD curve of compound **1** was drawn via SpecDic software and OriginPro 8.

5. DPPH radical scavenging assay

The DPPH free radical scavenging activity of compounds 1-5 were measured following Zhang et al. In brief, DPPH-ethanol solution (100 μ L, 0.2 mM) was added to 100 μ L of the isolates with different concentrations (1-100 μ M) in ethanol solution. The mixture was shaken vigorously and the absorbance was measured at 517 nm after 30 min in the dark at room temperature. Vitamin C was used as a positive control. The DPPH scavenging effect was calculated as follows:

Scavenging rate (%) =
$$[(A_{control} - A_{sample}) / A_{control}] \times 100$$

Where A_{control} is the absorbance of the ethanol solution of DPPH and A_{sample} is the absorbance of the sample or standard. The final DPPH radical scavenging activities of samples in terms of the IC₅₀ concentrations were calculated.

6. Protective effects against H₂O₂-induced HSF cells oxidative damage

HSF cells (1.0×10^4 cells/well) were seeded in 96-well plates incubation period at 37 °C for 24h. 10, 50 and 100 μ M of isolated compounds were added to designated wells. After 24 h, the cell viabilities were measured by MTT assay. The antioxidant activities of all the isolated compounds were determined through assessing the cell survival rate on the oxidative damage of HSF cells induced by H₂O₂. HSF cells (1.0×10^4 cells/well) were pre-incubated for 24 h with various concentrations of compounds (10, 50 and $100 \,\mu$ M), respectively. Then, 500 μ M H₂O₂ was added into model and treatment groups and incubated for 3 h. Finally, cell viability was assessed by MTT method.

7. A Chem3D molecular modeling study of compound 1

1a/1a' and **1b/1b'** respectively represented the different conformations of two isomers of compound **1** (*E* or *Z*-configuration of $\Delta^{7,8'}$) rotating around C-1'–C-7' bond. In the energy minimized conformation of **1a**, the internuclear distances between H-7 and H-2' could reach the range within 3.0 Å, while the distances between H-7 and H-7' were nearly 4.0 Å. Similarly, the internuclear distances between H-7 and H-6' in **1a'** also reach the range within 3.0 Å, while the distances between H-7 and H-6' in **1a'** also reach the range within 3.0 Å, while the distances between H-7 and H-7' were nearly 4.0 Å. Conversely, the distances between H-7 and H-2' in **1b** or H-6' in **1b'** were greater than 4.0 Å and the distances between H-7 and H-7' were within 3.0 Å, which could not match the strong correlations of H-7 and H-2'/H-6' observed in the ROESY spectrum. As the strong cross-peaks of H-7 and H-2'/H-6' were observed in the NOESY spectrum, **1a** was selected with favorable structure. Therefore, the configuration of $\Delta^{7',8'}$ was assigned as *E*.

Figure S1. Internuclear distances of H-7 and H-2'/H-6'/H-7' in isomers 1a/1a' (*E*-configuration of $\Delta^{7',8'}$) and 1b/1b' (*Z*-configuration of $\Delta^{7',8'}$).

Position	$\delta_{ m H}$	$\delta_{ m C}$
1		133.8
2	6.78 (1H, d, 2.1)	115.1
3		145.7
4		146.9
5	6.75 (1H, d, 8.2)	116.8
6	6.68 (1H, dd, 8.2, 2.1)	119.5
7	4.52 (1H, s)	50.3
8	4.65 (1H, s)	85.8
9		167.2
1′		127.2
2'	6.91 (1H, d, 2.2)	118.6
3'		146.4
4'		149.3
5'	6.69 (1H, d, 8.2)	116.3
6'	6.83 (1H, dd, 8.2, 2.2)	125.4
7′	7.55 (1H, d, 1.7)	140.4
8'		124.2
9′		175.5

Table S1. ¹H (500 MHz) and ¹³C NMR (125 MHz) data of compound **1** in MeOD (δ in ppm, J in Hz).

Position	Compound 2	Compound 3	Compound 4	Compound 5
1	122.0	123.4	130.8	
2	108.3	115.7	115.4	164.3
3	148.8	146.0	147.2	112.4
4	141.7	151.4	153.7	146.1
5	148.8	117.7	116.2	113.0
6	108.3	123.8	126.4	144.6
7				152.1
8				103.6
9				150.5
10				112.8
СООН	170.0	170.5		
OCH ₃	56.8			
СНО	56.8		193.1	

Table S2. ¹³C NMR (125 MHz) data of compounds 2-5 in MeOD (δ in ppm).

Table S3. ¹H NMR (500 MHz) data of compounds **2-5** in MeOD (δ in ppm, J in Hz).

Position	Compound 2	Compound 3	Compound 4	Compound 5
2	7.34 (1H, s)	7.41 (1H, d, 2.1)	7.27 (1H, d, 2.0)	
3				6.18 (1H, d, 9.4)
4				7.78 (1H, d, 9.4)
5		6.79 (1H, d, 8.1)	6.88 (1H, d, 7.9)	6.75 (1H, s)
6	7.34 (1H, s)	7.43 (1H, m)	7.28 (1H, m)	
8				6.94 (1H, s)
OCH ₃	3.90 (6H, s)			
СНО			9.66 (s)	

	Compound 1		Salvianolic acid V		
Position	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	
1		133.8		124.6	
2	6.78 (1H, d, 2.1)	115.1	6.72 (1H, d, 2.0)	115.3	
3		145.7		145.6	
4		146.9		146.4	
5	6.75 (1H, d, 8.2)	116.8	6.84 (1H, d, 8.0)	115.6	
6	6.68 (1H, dd, 8.1, 2.0)	119.5	6.84 (1H, d, 2.5)	120.1	
7	4.52 (1H, s)	50.3	4.33 (1H, dd, 4.5, 1.5)	52.9	
8	4.65 (1H, s)	85.8	4.93 (1H, d, 4.5)	80.9	
9		167.2		168.8	
1'		127.2		127.3	
2'	6.91 (1H, d, 2.1)	118.6	7.92 (1H, d, 2.0)	118.9	
3'		146.4		145.3	
4'		149.3		148.7	
5'	6.69 (1H, d, 8.2)	116.3	6.81 (1H, d, 8.5)	116.5	
6'	6.83 (1H, dd, 8.2, 2.2)	125.4	7.25 (1H, dd, 8.5, 2.0)	126.6	
7'	7.55 (1H, d, 1.7)	140.4	6.74 (1H, m)	143.6	
8′		124.2		134.4	
9'		175.5		171.2	

Table S4. ¹H (500 MHz) and ¹³C NMR (125 MHz) data of compound 1 and salvianolic acid V in

MeOD (δ in ppm, J in Hz).

Table S5. The antioxidant activity of the isolated compounds by DPPH assay

Compounds	IC ₅₀ (µM)	
1	7.12 ± 1.22	
2	24.15 ± 2.29	
3	33.47 ± 5.36	
4	38.06 ± 5.14	
5	> 100	
Vitamin C	14.98 ± 2.43	

NO	3D conformers	rel. E (kcal/mol)	Boltzmann Dist (%)
1A	A.A.	0.00	26.30
1B	在安	0.32	15.30
1C	ft th	0.49	11.60
1D	At the	0.49	11.60
1E	A Contraction of the second se	0.77	7.20
1F	安安	0.80	6.80
1G	安安	0.88	6.00
1H	A.A.	1.09	4.20
11	文子	1.22	3.30
1J	大夫	1.48	2.20

 Table S6. The optimized lowest energy 3D conformers and energy analysis of compound 1.

Table S7.	Cartesian	coordinates	for the	low-energy or	otimized	conformers	of 1A.
		•••••	101 0110			••••••••••	

Center	Atomic	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Туре	Х	Y	Ζ
1	8	0	3.564342	0.396249	-0.697349
2	6	0	2.895374	0.524066	0.567894
3	6	0	1.449951	0.084263	0.360737
4	6	0	1.573388	-0.743431	-0.877034
5	6	0	0.729411	-1.639859	-1.411103
6	6	0	2.871624	-0.449684	-1.509464
7	6	0	-0.577313	-1.933089	-0.823186
8	6	0	0.473929	1.242756	0.198227
9	8	0	3.277321	-0.872074	-2.573953
10	6	0	0.69767	2.29485	-0.711469
11	6	0	-0.242632	3.316852	-0.866476
12	6	0	-1.410496	3.285419	-0.121487
13	6	0	-1.65199	2.253634	0.778111
14	6	0	-0.71701	1.239352	0.951037
15	6	0	-1.707578	-1.231139	-1.265799
16	6	0	-2.932118	-1.457423	-0.648755
17	6	0	-3.039021	-2.383309	0.385602
18	6	0	-1.930962	-3.094227	0.822239
19	6	0	-0.693223	-2.866914	0.216754
20	6	0	3.611612	-0.352114	1.590863
21	8	0	3.129057	-0.703532	2.656772
22	8	0	4.867496	-0.695297	1.214209
23	8	0	-4.061331	-0.776074	-1.009777
24	8	0	-4.245121	-2.591577	0.989836
25	8	0	-2.333761	4.276895	-0.286259
26	8	0	-2.835444	2.269129	1.462116
27	1	0	2.993756	1.560676	0.909282
28	1	0	1.115612	-0.537077	1.20009
29	1	0	0.970312	-2.169779	-2.330877
30	1	0	1.597969	2.332321	-1.321708
31	1	0	-0.068723	4.126726	-1.569254
32	1	0	-0.916228	0.430236	1.650163
33	1	0	-1.614056	-0.499803	-2.063572
34	1	0	-2.027994	-3.815103	1.62871
35	1	0	0.177146	-3.417947	0.567044
36	1	0	5.098629	-0.334703	0.329604
37	1	0	-3.820747	-0.128626	-1.696505
38	1	0	-4.871583	-2.029142	0.491351
39	1	0	-3.043651	4.060143	0.35122
40	1	0	-2.894604	1.452304	1.989545

Conformer 1A Standard orientation

 Table S8. Cartesian coordinates for the low-energy optimized conformers of 1B.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	-3.452444	0.090555	0.723103	
2	6	0	-2.844706	0.172397	-0.576402	
3	6	0	-1.369792	-0.180274	-0.415346	
4	6	0	-1.373349	-0.877537	0.905097	
5	6	0	-0.432349	-1.634998	1.489227	
6	6	0	-2.665561	-0.630219	1.567563	
7	6	0	0.87444	-1.874979	0.87849	
8	6	0	-0.462136	1.040668	-0.453907	
9	8	0	-2.997938	-0.996188	2.677641	
10	6	0	0.565143	1.101522	-1.41725	
11	6	0	1.437471	2.192971	-1.47763	
12	6	0	1.282664	3.232414	-0.572361	
13	6	0	0.271261	3.185558	0.381711	
14	6	0	-0.600676	2.106484	0.450389	
15	6	0	1.947258	-1.027784	1.189445	
16	6	0	3.172666	-1.225884	0.564455	
17	6	0	3.335776	-2.260328	-0.353291	
18	6	0	2.283659	-3.109769	-0.662812	
19	6	0	1.046092	-2.915807	-0.045308	
20	6	0	-3.558127	-0.799583	-1.509946	
21	8	0	-3.112152	-1.181363	-2.581426	
22	8	0	-4.769639	-1.193287	-1.046384	
23	8	0	4.248513	-0.418428	0.813026	
24	8	0	4.542813	-2.444979	-0.963674	
25	8	0	2.103982	4.324834	-0.576829	
26	8	0	0.12594	4.210684	1.27183	
27	1	0	-3.015183	1.179899	-0.9726	
28	1	0	-1.050164	-0.877922	-1.198936	
29	1	0	-0.590615	-2.081639	2.469184	
30	1	0	0.704592	0.284762	-2.12569	
31	1	0	2.222693	2.203778	-2.227128	
32	1	0	-1.371796	2.111142	1.2163	
33	1	0	1.808189	-0.215145	1.896633	
34	1	0	2.424231	-3.913378	-1.379488	
35	1	0	0.220097	-3.578789	-0.29357	
36	1	0	-4.973401	-0.794226	-0.171357	
37	1	0	3.975646	0.253919	1.462105	
38	1	0	5.120667	-1.756935	-0.577546	
39	1	0	2.72867	4.230758	-1.317206	
40	1	0	0.825367	4.850041	1.028261	

Conformer 1B Standard orientation

Table S9	. Cartesian	coordinates	for the	low-energy o	ptimized	conformers	of 1C.

Center	Atomic	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Туре	Х	Y	Z
1	8	0	-3.52091	-0.173726	0.467955
2	6	0	-2.766156	-0.126603	-0.754099
3	6	0	-1.293837	-0.078646	-0.361512
4	6	0	-1.34954	-0.742017	0.975735
5	6	0	-0.396616	-1.376648	1.675143
6	6	0	-2.736619	-0.661057	1.472139
7	6	0	0.982196	-1.493345	1.200819
8	6	0	-0.702824	1.32401	-0.289499
9	8	0	-3.140052	-0.980112	2.57259
10	6	0	-1.396457	2.413482	0.272561
11	6	0	-0.805693	3.678387	0.343255
12	6	0	0.483099	3.855645	-0.133091
13	6	0	1.190984	2.79068	-0.677257
14	6	0	0.607246	1.531731	-0.76587
15	6	0	1.312881	-2.406917	0.189725
16	6	0	2.618175	-2.447257	-0.286916
17	6	0	3.587131	-1.594375	0.236456
18	6	0	3.275647	-0.698186	1.247602
19	6	0	1.967749	-0.648903	1.733546
20	6	0	-3.091386	-1.374423	-1.572047
21	8	0	-2.375977	-1.833857	-2.449673
22	8	0	-4.280027	-1.934012	-1.238814
23	8	0	2.99839	-3.302875	-1.283546
24	8	0	4.861178	-1.62966	-0.251856
25	8	0	1.059815	5.09002	-0.053798
26	8	0	2.467778	3.025753	-1.10587
27	1	0	-3.092693	0.740022	-1.339385
28	1	0	-0.697059	-0.663723	-1.070353
29	1	0	-0.606085	-1.81357	2.650051
30	1	0	-2.401375	2.300765	0.673918
31	1	0	-1.34359	4.516863	0.776333
32	1	0	1.169146	0.704054	-1.191867
33	1	0	0.551698	-3.064132	-0.220604
34	1	0	4.040072	-0.041229	1.651834
35	1	0	1.719352	0.065962	2.515923
36	1	0	-4.719801	-1.455417	-0.501283
37	1	0	2.230994	-3.84826	-1.531763
38	1	0	4.852946	-2.349774	-0.914217
39	1	0	1.950676	4.969128	-0.439501
40	1	0	2.868273	2.173727	-1.355118

Conformer 1C Standard orientation

Table S10.	Cartesian	coordinates	for the	low-energy	optimized	l conformers	of 1D .
				01			

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Ζ	
1	8	0	-2.587544	-2.114215	0.504727	
2	6	0	-1.990403	-1.719756	-0.741755	
3	6	0	-0.821073	-0.802005	-0.402362	
4	6	0	-0.498123	-1.273691	0.976969	
5	6	0	0.637056	-1.187231	1.686238	
6	6	0	-1.67803	-1.979881	1.512029	
7	6	0	1.84023	-0.52717	1.180323	
8	6	0	-1.15969	0.681883	-0.45021	
9	8	0	-1.829229	-2.399912	2.641938	
10	6	0	-0.241952	1.57351	-1.043087	
11	6	0	-0.49435	2.948461	-1.094436	
12	6	0	-1.671819	3.439895	-0.550886	
13	6	0	-2.58452	2.572644	0.039927	
14	6	0	-2.340784	1.206115	0.100412	
15	6	0	2.648568	-1.156174	0.222577	
16	6	0	3.763186	-0.486563	-0.26945	
17	6	0	4.07676	0.791497	0.186951	
18	6	0	3.290362	1.419272	1.141006	
19	6	0	2.167584	0.75665	1.640741	
20	6	0	-1.527564	-2.977633	-1.472907	
21	8	0	-0.674398	-2.997954	-2.347493	
22	8	0	-2.173894	-4.097384	-1.065079	
23	8	0	4.582625	-1.042102	-1.213102	
24	8	0	5.169227	1.44293	-0.308762	
25	8	0	-1.978025	4.771769	-0.568489	
26	8	0	-3.741529	3.061899	0.575544	
27	1	0	-2.755245	-1.244142	-1.365602	
28	1	0	0.013828	-0.98482	-1.08819	
29	1	0	0.704711	-1.592925	2.694355	
30	1	0	0.6923	1.202599	-1.464514	
31	1	0	0.236951	3.605814	-1.554155	
32	1	0	-3.079714	0.57477	0.586274	
33	1	0	2.398791	-2.152133	-0.131183	
34	1	0	3.545864	2.414812	1.490777	
35	1	0	1.543515	1.253744	2.380847	
36	1	0	-2.813064	-3.90908	-0.341986	
37	1	0	4.246158	-1.929938	-1.427999	
38	1	0	5.569201	0.809122	-0.937471	
39	1	0	-1.243499	5.245146	-0.996428	
40	1	0	-3.690306	4.027858	0.428532	

Conformer 1D Standard orientation

Table S11.	Cartesian	coordinates	for the	low-energy	optimiz	ed conform	ers of 1E.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	3.602691	0.11042	-0.622209	
2	6	0	2.878747	0.31901	0.600893	
3	6	0	1.41136	0.009148	0.322533	
4	6	0	1.507844	-0.789958	-0.935251	
5	6	0	0.587587	-1.536096	-1.566081	
6	6	0	2.867964	-0.646048	-1.482647	
7	6	0	-0.79353	-1.661772	-1.099283	
8	6	0	0.547271	1.253745	0.17042	
9	8	0	3.287803	-1.10604	-2.526122	
10	6	0	0.877347	2.294016	-0.720315	
11	6	0	0.044577	3.40774	-0.856774	
12	6	0	-1.120393	3.481454	-0.10997	
13	6	0	-1.465556	2.462793	0.771041	
14	6	0	-0.640704	1.353545	0.920413	
15	6	0	-1.107369	-2.412365	0.038258	
16	6	0	-2.424514	-2.461956	0.474387	
17	6	0	-3.432947	-1.785962	-0.208513	
18	6	0	-3.136441	-1.046234	-1.34544	
19	6	0	-1.81212	-0.986203	-1.790207	
20	6	0	3.455911	-0.597877	1.674196	
21	8	0	2.898196	-0.861133	2.728798	
22	8	0	4.680983	-1.084924	1.359296	
23	8	0	-2.726281	-3.180961	1.595413	
24	8	0	-4.705045	-1.875776	0.283714	
25	8	0	-1.934996	4.5677	-0.250171	
26	8	0	-2.63498	2.590534	1.468357	
27	1	0	3.05546	1.348083	0.933674	
28	1	0	0.994836	-0.608611	1.126847	
29	1	0	0.820434	-2.04691	-2.499035	
30	1	0	1.778849	2.250699	-1.328311	
31	1	0	0.299692	4.208293	-1.545065	
32	1	0	-0.920323	0.554927	1.603599	
33	1	0	-0.341393	-2.951453	0.588452	
34	1	0	-3.90477	-0.506962	-1.890094	
35	1	0	-1.575373	-0.392206	-2.671361	
36	1	0	4.983204	-0.775296	0.476814	
37	1	0	-3.697227	-3.10419	1.686113	
38	1	0	-5.298701	-1.399589	-0.323085	
39	1	0	-2.670125	4.403824	0.373805	
40	1	0	-2.741731	1.798947	2.025083	

Conformer 1E Standard orientation

Table S12.	Cartesian	coordinates	for the	low-energy	optim	nized	conformers	of 1F.
				02				

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	-3.219858	-1.031152	0.603701	
2	6	0	-2.604258	-0.869508	-0.685306	
3	6	0	-1.13989	-0.523294	-0.438404	
4	6	0	-0.941935	-1.126185	0.91312	
5	6	0	0.173659	-1.543732	1.52953	
6	6	0	-2.26581	-1.304404	1.538967	
7	6	0	1.500429	-1.444615	0.923773	
8	6	0	-0.84885	0.971756	-0.461122	
9	8	0	-2.496169	-1.659891	2.677705	
10	6	0	0.304791	1.433733	-1.126883	
11	6	0	0.634936	2.792854	-1.150409	
12	6	0	-0.194833	3.701077	-0.510034	
13	6	0	-1.338073	3.260407	0.147628	
14	6	0	-1.669723	1.911762	0.184242	
15	6	0	2.317824	-0.344779	1.202691	
16	6	0	3.561174	-0.253231	0.592391	
17	6	0	4.004076	-1.242276	-0.28308	
18	6	0	3.203119	-2.341607	-0.565043	
19	6	0	1.946487	-2.440333	0.0405	
20	6	0	-2.755798	-2.173806	-1.463316	
21	8	0	-2.078	-2.487149	-2.430432	
22	8	0	-3.748423	-2.965117	-0.986855	
23	8	0	4.354891	0.827321	0.85352	
24	8	0	5.23996	-1.084943	-0.84627	
25	8	0	0.073139	5.041275	-0.493612	
26	8	0	-2.151829	4.158918	0.776542	
27	1	0	-3.150124	-0.098508	-1.240488	
28	1	0	-0.501785	-1.011252	-1.184351	
29	1	0	0.138886	-1.980095	2.526301	
30	1	0	0.972125	0.729663	-1.62334	
31	1	0	1.537282	3.111314	-1.662568	
32	1	0	-2.563655	1.618898	0.72802	
33	1	0	1.990765	0.44184	1.877252	
34	1	0	3.528949	-3.122421	-1.244767	
35	1	0	1.316338	-3.299709	-0.181894	
36	1	0	-4.185956	-2.568941	-0.200456	
37	1	0	5.173414	0.659106	0.345251	
38	1	0	5.421625	-1.863214	-1.401387	
39	1	0	0.92542	5.182685	-0.941138	
40	1	0	-1.716944	5.023627	0.633701	

Conformer 1F Standard orientation

	Table S13.	Cartesian	coordinates	for the	low-energy	optimized	l conformers	of 1G .
--	------------	-----------	-------------	---------	------------	-----------	--------------	----------------

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	-3.529504	0.032484	0.537943	
2	6	0	-2.834832	0.039142	-0.720995	
3	6	0	-1.345598	-0.016202	-0.399082	
4	6	0	-1.389294	-0.72105	0.917845	
5	6	0	-0.486165	-1.505179	1.525618	
6	6	0	-2.731868	-0.521088	1.497187	
7	6	0	0.819961	-1.808682	0.942927	
8	6	0	-0.670388	1.348005	-0.299208	
9	8	0	-3.099024	-0.814735	2.617232	
10	6	0	-1.300871	2.474643	0.265117	
11	6	0	-0.630408	3.697742	0.364917	
12	6	0	0.679337	3.794095	-0.074979	
13	6	0	1.327614	2.689387	-0.612486	
14	6	0	0.658906	1.477561	-0.746201	
15	6	0	1.920278	-0.987389	1.208096	
16	6	0	3.132605	-1.259157	0.588661	
17	6	0	3.272094	-2.349776	-0.26644	
18	6	0	2.19109	-3.182275	-0.525332	
19	6	0	0.960253	-2.905635	0.078297	
20	6	0	-3.286025	-1.170637	-1.535888	
21	8	0	-2.663697	-1.645622	-2.473787	
22	8	0	-4.478082	-1.671671	-1.128536	
23	8	0	4.195046	-0.429421	0.808156	
24	8	0	4.496782	-2.554802	-0.837739	
25	8	0	1.33784	4.983618	0.041225	
26	8	0	2.636173	2.830853	-0.982138	
27	1	0	-3.129384	0.932998	-1.281915	
28	1	0	-0.815274	-0.60777	-1.1545	
29	1	0	-0.696559	-1.96956	2.487548	
30	1	0	-2.318418	2.425774	0.646677	
31	1	0	-1.121816	4.564201	0.798029	
32	1	0	1.171539	0.624874	-1.184423	
33	1	0	1.83443	-0.129973	1.870651	
34	1	0	2.277249	-4.03515	-1.191183	
35	1	0	0.108649	-3.549748	-0.134729	
36	1	0	-4.838491	-1.182638	-0.355737	
37	1	0	4.942693	-0.857375	0.343466	
38	1	0	4.450204	-3.365042	-1.375237	
39	1	0	2.229713	4.804421	-0.318595	
40	1	0	3.021047	1.938339	-1.057217	

Conformer 1G Standard orientation

Table S14.	Cartesian	coordinates	for the	low-energy	optimize	ed conformer	rs of 1H .

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	-3.332741	-0.819241	0.634002	
2	6	0	-2.699497	-0.602543	-0.63735	
3	6	0	-1.202246	-0.455246	-0.384555	
4	6	0	-1.069319	-1.061769	0.972865	
5	6	0	0.020885	-1.447568	1.653322	
6	6	0	-2.413389	-1.209991	1.55814	
7	6	0	1.382906	-1.291886	1.142662	
8	6	0	-0.729066	0.990106	-0.445365	
9	8	0	-2.684524	-1.61194	2.672576	
10	6	0	0.330523	1.330131	-1.310323	
11	6	0	0.802478	2.644022	-1.394981	
12	6	0	0.214093	3.625571	-0.610662	
13	6	0	-0.829702	3.302087	0.250146	
14	6	0	-1.305659	2.000557	0.342118	
15	6	0	1.862195	-2.099738	0.10645	
16	6	0	3.152803	-1.901974	-0.364985	
17	6	0	3.974714	-0.920565	0.184047	
18	6	0	3.51317	-0.116011	1.217614	
19	6	0	2.212884	-0.304466	1.696412	
20	6	0	-3.00695	-1.789349	-1.544174	
21	8	0	-2.405862	-2.043381	-2.576973	
22	8	0	-4.048438	-2.539459	-1.107375	
23	8	0	3.61525	-2.685292	-1.383562	
24	8	0	5.234274	-0.785164	-0.330027	
25	8	0	0.627664	4.927911	-0.648898	
26	8	0	-1.403546	4.272372	1.020812	
27	1	0	-3.155919	0.278859	-1.102064	
28	1	0	-0.631588	-1.041346	-1.114404	
29	1	0	-0.061954	-1.863465	2.656283	
30	1	0	0.805682	0.565094	-1.924565	
31	1	0	1.621178	2.871221	-2.070195	
32	1	0	-2.118743	1.794232	1.033071	
33	1	0	1.245525	-2.877213	-0.335379	
34	1	0	4.134884	0.65645	1.658114	
35	1	0	1.844534	0.332523	2.498774	
36	1	0	-4.417081	-2.195071	-0.263671	
37	1	0	4.533421	-2.38263	-1.531363	
38	1	0	5.69911	-0.102552	0.184155	
39	1	0	1.335202	5.000585	-1.312619	
40	1	0	-0.9158	5.088663	0.791145	

Conformer 1H Standard orientation

Table S15.	Cartesian	coordinates	for the	low-energy	optimized	conformers	of 1I .
				01			

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	8	0	3.521036	0.042089	-0.531986	
2	6	0	2.80414	0.16572	0.708237	
3	6	0	1.324645	-0.007611	0.383115	
4	6	0	1.410915	-0.811524	-0.873968	
5	6	0	0.536223	-1.653338	-1.446117	
6	6	0	2.762386	-0.635876	-1.439337	
7	6	0	-0.791839	-1.938626	-0.900867	
8	6	0	0.60174	1.322102	0.190922	
9	8	0	3.158926	-1.017245	-2.522463	
10	6	0	1.05197	2.310592	-0.708039	
11	6	0	0.342043	3.504318	-0.884838	
12	6	0	-0.828443	3.710772	-0.169263	
13	6	0	-1.284202	2.744008	0.719458	
14	6	0	-0.577512	1.565198	0.916529	
15	6	0	-1.807559	-0.974367	-0.938472	
16	6	0	-3.042035	-1.260546	-0.367097	
17	6	0	-3.285744	-2.510223	0.194875	
18	6	0	-2.298126	-3.483145	0.215963	
19	6	0	-1.044564	-3.194421	-0.329079	
20	6	0	3.306761	-0.898345	1.679244	
21	8	0	2.716075	-1.245869	2.690023	
22	8	0	4.509514	-1.415694	1.32726	
23	8	0	-4.045726	-0.332749	-0.320817	
24	8	0	-4.504912	-2.784623	0.743776	
25	8	0	-1.574441	4.846811	-0.310088	
26	8	0	-2.451011	2.939592	1.399977	
27	1	0	3.042228	1.140428	1.149151	
28	1	0	0.81634	-0.57645	1.170816	
29	1	0	0.79664	-2.200564	-2.351321	
30	1	0	1.957988	2.16644	-1.294063	
31	1	0	0.713158	4.244895	-1.58682	
32	1	0	-0.965766	0.831946	1.621328	
33	1	0	-1.628419	-0.010383	-1.404764	
34	1	0	-2.497962	-4.453104	0.661165	
35	1	0	-0.268107	-3.955911	-0.298122	
36	1	0	4.847074	-1.028927	0.489616	
37	1	0	-3.653903	0.542549	-0.495422	
38	1	0	-5.02153	-1.964129	0.614133	
39	1	0	-1.123113	5.433635	-0.941701	
40	1	0	-2.735092	3.842953	1.152962	

Conformer 11 Standard orientation

		Conformer 1J	Standard orier	ntation	
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	8	0	-3.383593	-0.37133	0.579432
2	6	0	-2.739102	-0.307404	-0.70388
3	6	0	-1.236367	-0.335424	-0.450172
4	6	0	-1.186575	-0.97509	0.898834
5	6	0	-0.180256	-1.595279	1.533285
6	6	0	-2.526459	-0.883475	1.506314
7	6	0	1.159367	-1.725096	0.960001
8	6	0	-0.609368	1.05408	-0.479952
9	8	0	-2.83695	-1.18525	2.641299
10	6	0	0.413569	1.31563	-1.4138
11	6	0	1.045366	2.559916	-1.458346
12	6	0	0.652881	3.549511	-0.573086
13	6	0	-0.362917	3.317265	0.348479
14	6	0	-0.999897	2.080686	0.402087
15	6	0	2.054599	-0.647005	1.002482
16	6	0	3.305094	-0.776955	0.409774
17	6	0	3.674374	-1.972917	-0.199781
18	6	0	2.802555	-3.050917	-0.236916
19	6	0	1.537972	-2.925867	0.342728
20	6	0	-3.196262	-1.493035	-1.547767
21	8	0	-2.623167	-1.887405	-2.551604
22	8	0	-4.335157	-2.067184	-1.088975
23	8	0	4.205752	0.252036	0.390599
24	8	0	4.90579	-2.091794	-0.776599
25	8	0	1.27837	4.761781	-0.60943
26	8	0	-0.697203	4.340173	1.192231
27	1	0	-3.078334	0.600934	-1.214769
28	1	0	-0.726094	-0.968805	-1.185796
29	1	0	-0.319484	-2.040194	2.517195
30	1	0	0.741517	0.542995	-2.109269
31	1	0	1.837445	2.751545	-2.176615
32	1	0	-1.785626	1.914289	1.132946
33	1	0	1.765135	0.28271	1.4832
34	1	0	3.101899	-3.97755	-0.717463
35	1	0	0.852848	-3.77006	0.303745
36	1	0	-4.667667	-1.631246	-0.27383
37	1	0	3.772242	1.043747	0.75603
38	1	0	5.333923	-1.225896	-0.62252
39	1	0	0.826256	5.295633	0.074131
40	1	0	-1.416235	4.041928	1.775683

 Table S16. Cartesian coordinates for the low-energy optimized conformers of 1J.

References

[1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J.
Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D.
J. Fox, Gaussian, Inc., Wallingford CT, 2019.

[2] Halgren, TA. 1999. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem. 20, 730–748.

Figure S2. Key ¹H-¹H COSY (bold lines), HMBC (arrows) and NOESY (double arrows) correlations of compound 1.

Figure S3. Internuclear distances of H-7 and H-2'/H-7' in isomers 1a (*E*-configuration of $\Delta^{7',8'}$) and 1b (*Z*-configuration of $\Delta^{7',8'}$).

Figure S4. Experimental and calculated ECD spectra for compound 1.

Figure S5. Protective effects of compounds 1-5 treated on H₂O₂-induced oxidative damaged HSF cells. (A) Effects of compounds 1-5 on HSF cells proliferation; (B) Protective effects of compounds 1-5 on oxidative damaged HSF cells. Vitamin C was used as the positive control. All values were means \pm SD (n = 3). * *P*<0.05, ** *P*<0.001, #*P*<0.05, compared with the H₂O₂ group.

Figure S6. HR-ESI-MS spectrum of compound 1 in MeOH.

Figure S7. IR spectrum compound of 1 in MeOH.

Thermo Scientific ~ VISIONpro SOFTWARE V4.41

Operator Name ((None Entered)	Date of Report	2021/1/6
Department Organization Information	(None Entered) (None Entered) (None Entered)	Time of Report	16:42:13下午

Scan Graph

Results Table	e - scan013,DSF	I-DA-19-3,Cycle01
nm	A	Peak Pick Method
203.00	1.317	Find 8 Peaks Above -3.0000 A
337.00	.376	Start Wavelength190.00 nm
		Stop wavelength400.00 nm
		Sort By Wavelength
Sensitivity	Medium	

Figure S8. UV spectrum of compound 1 in MeOH.

Figure S9. ¹H NMR (500 MHz) spectrum of compound 1 in MeOD.

Figure S10. ¹³C NMR (125 MHz) spectrum of compound 1 in MeOD.

Figure S11. ¹H-¹H COSY spectrum of compound 1 in MeOD.

Figure S12. HSQC spectrum of compound 1 in MeOD.

Figure S13. HMBC spectrum of compound 1 in MeOD.

Figure S14. NOESY spectrum of compound 1 in MeOD.