Supporting Information

Isodesmic C-H Borylation: Perspectives and Proof of Concept of Transfer Borylation Catalysis

Étienne Rochette*, Vincent Desrosiers, Yashar Soltani and Frédéric-Georges Fontaine* Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec (Québec), Canada, G1V 0A6

* Corresponding author, Email : <u>frederic.fontaine@chm.ulaval.ca;</u> Etienne.rochette.2@ulaval.ca

Contents

General experimental 2
Materials2
Synthesis of aryl catecholboronic esters
General procedure A
Substrate synthesis and characterization
General procedure B
Details and substrate characterization 6
Substrate scope details
General procedure C 14
NMR and GC-MS data16
Isolation of the borylated Products:
General procedure D:
Hydroboration of 8i
Computational details
Kinetics:
Kinetic Simulation:
Crystallographic Data of 8i
NMR Spectra of the new products:
References

General experimental

Unless specified otherwise, manipulations were carried out on the bench using no particular precautions. Solvents and reagents were used as bought without drying or further purification.

NMR spectra were recorded on an Agilent Technologies NMR spectrometer at 500 MHz (¹H), 125.758 MHz (¹³C), 160.46 MHz (¹¹B) and on a Varian Inova NMR AS400 spectrometer, at 400.0 MHz (¹H), 100.580 MHz (¹³C). ¹H NMR and ¹³C{¹H} NMR chemical shifts are referenced to residual protons or carbons in deuterated solvent. ¹¹B{¹H} was calibrated using an external reference of BF₃.Et₂O. Multiplicities are reported as singlet (s), doublet (d), triplet (t), quadruplet (q), multiplet (m). Chemical shifts are reported in ppm. Coupling constants are reported in Hz. GC-MS characterization was carried out using a Thermo Scientific trace GC ultra, coupled with an ITQ 900 mass spectrometer using electronic impact (EI) ionization. Mass Spectrometery analyses were carried out on an Agilent Technologies 6210 LC Time of Flight Mass Spectrometer. Microwave reactions were carried out in an Anton Paar Monowave 300.

Materials

2-Mercaptopyridine, 3-(trifluoromethyl)pyridine-2-thiol, mercaptopyrazine, catecholborane, pyrocatechol, benzylpyrrole, 1-(2-cyanoethyl)pyrrole, 2-methoxythiophene, 2-methylthiophene, 3-methylthiophene, benzofuran, benzothiophene, 2-tert-butylfuran, 1-bromo-2-pentyne, allyl bromide, benzyl bromide, methyl iodide and neopentylglycol were purchased from Sigma Aldrich. 5-(Trifluoromethyl)pyridine-2-thiol, 1-methylindole, 7-methylindole, 5-bromoindole, 6chloroindole, 6-fluoroindole, 5-cyanoindole, 5-methoxyindole, methyl indole-5-carboxylate, Nmethylpyrrole, 3,4-ethylenedioxythiophene, pentafluorobenzene, N,N-dimethylaniline, 2,6lutidine, tert-butyldimethylsilyl chloride, 4-cyanobenzyl bromide, pinacol, 4-tolylBoronic acid, 4anisyl boronic acid, and trimethylamine were purchased from Oakwood Chemical. 2-Mercapto-4-(trifluoromethyl)pyrimidine and 2-furanylboronic acid were purchased from Matrix Scientific. Mercaptopyrimidine was purchased from Alfa Aesar. Phenylboronic acid was purchsed from Fluka and Pinacolborane was graciously gifted by BASF. C_6D_6 was purchased from Cambridge Isotope Laboratories and CDCl₃ from Fisher Scientific. Quarternary carbon atoms adjacent to boron atoms could not be resolved in ¹³C NMR spectra as reported previously.

Synthesis of aryl catecholboronic esters

General procedure A

In a typical synthesis, 3 g of the boronic acid was dissolved in *ca*. 150 ml of toluene along with 1 equiv. of pyrocatechol. The reaction flask was then directly placed on the rotary evaporator with the heating bath at 50 °C and the solution evaporated at *ca*. 65 mbar. The grayish solid was then further dried on the rotary evaporator at *ca*. 25 mbar. The resulting solid was then dissolved in *ca*. 150 ml of hexane, filtered and stored at -30 °C overnight, during which the title compound crystallized. The supernatant was removed and the solid dried under vacuum.

2-FurylBCat (1)

Chemical Formula: C₁₀H₇BO₃ Molecular Weight: 185.97

Following the general procedure A starting from 3 g (26.8 mmol) of 2-furanyl boronic acid and using 1 equiv. (2.95 g, 26.8 mmol) of catechol, 3.86 g (77 % yield) of the title compound was obtained as a white fluffy powder. The compound was used without further purification. Slow degradation of the product was observed at room temperature, so the next product batches were kept at -30 °C under a nitrogen as precaution.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 1.6, 0.6 Hz, 1H), 7.41 (dd, J = 3.4, 0.5 Hz, 1H), 7.32 (dd, J = 5.9, 3.3 Hz, 2H), 7.14 (dd, J = 5.9, 3.3 Hz, 2H), 6.58 (dd, J = 3.4, 1.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.66 (s), 147.99 (s), 125.37 (s), 123.01 (s), 112.68 (s), 110.98 (s) ¹¹B NMR (160 MHz, CDCl₃) δ 28.3 (s)

PhenylBCat (4)

Chemical Formula: C₁₂H₉BO₂ Molecular Weight: 196.01

Following the general procedure A starting from 3 g (24.6 mmol) of phenyl boronic acid and using 1 equiv. (2.71 g, 24.6 mmol) of catechol, 3.21 g (67 % yield) of the title compound was obtained as a white fluffy powder. The compound was used without further purification. The compound was stable and was kept on the bench for 2 months without degradation.

¹H NMR (500 MHz, CDCl₃) δ 8.13 (dd, J = 8.1, 1.4 Hz, 2H), 7.67 – 7.50 (m, 3H), 7.35 (dd, J = 5.8, 3.3 Hz, 2H), 7.16 (dd, J = 5.9, 3.3 Hz, 2H) ¹³C NMR (126 MHz, CDCl₃) δ 148.52 (s), 135.01 (s), 132.40 (s), 128.27 (s), 122.80 (s), 112.59 (s) ¹¹B NMR (160 MHz, CDCl₃) δ 32.2 (s)

4-TolyIBCat (6)

Following the general procedure A starting from 3 g (22.7 mmol) of phenyl boronic acid and using 1 equiv. (2.43 g, 22.7 mmol) of catechol, 3.01 g (65 % yield) of the title compound was obtained as a white fluffy crystals. The compound was used without further purification. The compound was stable and was kept on the bench for 2 months without degradation.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.9 Hz, 2H), 7.34 – 7.30 (m, 4H), 7.13 (dd, J = 5.9, 3.3 Hz, 2H), 2.44 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 148.55 (s), 142.81 (s), 135.05 (s), 129.10 (s), 122.69 (s), 112.50 (s), 21.93 (s). ¹¹B NMR (160 MHz, CDCl₃) δ 32.2 (s)

4-AnisylBCat (7)

Chemical Formula: C₁₃H₁₁BO₃ Molecular Weight: 226.04

Following the general procedure A starting from 3 g (19.7 mmol) of phenyl boronic acid and using 1 equiv. (2.17 g, 19.7 mmol) of catechol, 3.53 g (79 % yield) of the title compound was obtained as a white fluffy crystals. The compound was used without further purification. The compound was stable and was kept on the bench for 2 months without degradation.

¹H NMR (500 MHz, CDCl₃) 8.04 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 5.9, 3.3 Hz, 2H), 7.12 (dd, J = 5.9, 3.3 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 163.00 (s), 148.59 (s), 136.85 (s), 122.60 (s), 113.91 (s), 112.40 (s), 55.19 (s) ¹¹B NMR (160 MHz, CDCl₃) δ 32.2 (s)

Substrate synthesis and characterization

General procedure B

Indole were protected following a modified procedure from Miranda *et al.*¹ To a DMSO solution of the indole (1 g/20 ml) was added NaOH (2 equiv.) and the protecting reagent: allyl bromide, 1-bromo-2-pentyne, methyl iodide or 4-cyanobenzyl bromide (1-2 equiv.). The reaction was stirred at room temperature until completion as determined by TLC (typically less than 1 h for the reaction with methyl iodide and few hours in the other cases). Water was then added (*ca.* 100ml) followed by EtOAc, and the organic phase was washed twice with ca. 50-100 ml of water. The organic phase was then dried with anhydrous Na₂SO₄, filtered on a short silica pad and the volatiles evaporated under reduced pressure. The products were usually used without further purification, but where the protecting reagents were not volatile, they were further purified using silica gel chromatography with hexanes/EtOAc as eluent.

Details and substrate characterization

1-allyl-1H-indole

Chemical Formula: C₁₁H₁₁N Molecular Weight: 157.22

Following the general procedure B starting from 1 g (8.5 mmol) of 1H-indole and using 2 equiv. (2.05 g, 17 mmol) of allyl bromide, 1.24 g (92 % yield) of the title compound was obtained as a red-brown oil. The compound was used without further purification. NMR data similar as in literature.¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.65 (m, 1H), 7.35 (ddd, *J* = 8.2, 1.6, 0.8 Hz, 1H), 7.24 (ddd, *J* = 8.3, 7.1, 1.2 Hz, 1H), 7.16 – 7.12 (m, 2H), 6.55 (dd, *J* = 3.1, 0.8 Hz, 1H), 6.02 (ddt, *J* = 17.1, 10.3, 5.4 Hz, 1H), 5.22 (ddd, *J* = 10.3, 2.8, 1.5 Hz, 1H), 5.11 (ddd, *J* = 17.1, 3.0, 1.7 Hz, 1H), 4.75 (dt, *J* = 5.4, 1.7 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.07 (s), 133.48 (s), 128.64 (s), 127.82 (s), 121.50 (s), 120.95 (s), 119.40 (s), 117.23 (s), 109.58 (s), 101.38 (s), 48.83 (s). **HRMS** (ES⁺) m/z calculated for [C₁₁H₁₂N]: 158.0964, found: 158.0970.

Following the general procedure B starting from 500 mg (4.3 mmol) of 1H-indole and 1.5 equiv. (940 mg, 6.4 mmol) of 1-bromo-2-pentyne. After purification by silica gel chromatography, 657 mg (84 % yield) of the title compound was obtained as a red-brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 7.63 (m, 1H), 7.43 (dd, *J* = 8.2, 0.8 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.15 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 6.54 (dd, *J* = 3.2, 0.8 Hz, 1H), 4.86 (t, *J* = 2.3 Hz, 2H), 2.23 (qt, *J* = 7.5, 2.3 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.76 (s), 128.83 (s), 127.29 (s), 121.61 (s), 120.98 (s), 119.61 (s), 109.46 (s), 101.47 (s), 87.25 (s), 73.30 (s), 36.24 (s), 13.71 (s), 12.40 (s). **HRMS** (ES⁺) m/z calculated for [C₁₃H₁₄N]: 184.1121, found: 184.1131.

4-((1H-indol-1-yl)methyl)benzonitrile

Chemical Formula: C₁₆H₁₂N₂ Molecular Weight: 232.29 Following the general procedure B starting from 1 g (8.5 mmol) of 1H-indole and using 0.9 equiv. (1.51 g, 7.7 mmol) of 4-cyanobenzyl bromide, 1.5 g (83 % yield) of the title compound was obtained as a red-brown oil. The compound was used without further purification. NMR data similar as in literature.²

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (dt, *J* = 7.4, 1.2 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.20 - 7.12 (m, 6H), 6.61 (d, *J* = 3.1 Hz, 1H), 5.38 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.07 (s), 136.05 (s), 132.61 (s), 128.79 (s), 128.14 (s), 127.12 (s), 122.11 (s), 121.23 (s), 119.95 (s), 118.58 (s), 111.50 (s), 109.39 (s), 102.49 (s), 49.63 (s). **HRMS** (ES⁺) m/z calculated for [C₁₆H₁₃N₂]: 233.1073, found: 233.1094.

1,7-dimethyl-1H-indole

Me Me

Chemical Formula: C₁₀H₁₁N Molecular Weight: 145.21

Following the general procedure B starting from 1 g (7.6 mmol) of 7-methyl-1H-indole and using 2 equiv. (2.17 g, 15.2 mmol) of methyl iodide, 1.10 g (99 % yield) of the title compound was obtained as a slightly orange solid. The compound was used without further purification. NMR data similar as in literature.³

¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.06 – 7.00 (m, 1H), 7.00 – 6.94 (m, 2H), 6.49 (d, *J* = 3.1 Hz, 1H), 4.09 (s, 3H), 2.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.43 (s), 130.42 (s), 129.65 (s), 124.16 (s), 121.22 (s), 119.59 (s), 119.12 (s), 100.92 (s), 36.82 (s), 19.80 (s). HRMS (ES⁺) m/z calculated for [C₁₀H₁₂N]: 146.0964, found: 146.0974.

5-bromo-1-methyl-1H-indole

Following the general procedure B starting from 1 g (5.1 mmol) of 5-bromo-1H-indole and using 2 equiv. (1.45 g, 10.2 mmol) of methyl iodide, 1.04 g (97 % yield) of the title compound was obtained as a yellow oil. The compound was used without further purification. NMR data similar as in literature.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 1.9 Hz, 1H), 7.32 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.05 (d, *J* = 3.1 Hz, 1H), 6.44 (dd, *J* = 3.1, 0.8 Hz, 1H), 3.76 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 135.35 (s), 130.11 (s), 130.00 (s), 124.28 (s), 123.26 (s), 112.65 (s), 110.70 (s), 100.52 (s), 33.00 (s). **HRMS** (ES⁺) m/z calculated for [C₉H₉BrN]: 209.9913, found: 209.9929.

6-chloro-1-methyl-1H-indole

Me Chemical Formula: C₉H₈CIN Molecular Weight: 165.62

Following the general procedure B starting from 1 g (6.6 mmol) of 6-chloro-1H-indole and using 2 equiv. (1.87 g, 13.2 mmol) of methyl iodide, 1.03 g (94 % yield) of the title compound was obtained as an orange-brown oil. The compound was used without further purification.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.4, 0.4 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.09 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.04 (d, *J* = 3.1 Hz, 1H), 6.47 (dt, *J* = 3.3, 1.6 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.08 (s), 129.52 (s), 127.50 (s), 126.96 (s), 121.67 (s), 119.95 (s), 109.26 (s), 101.14 (s), 32.90 (s). HRMS (ES⁺) m/z calculated for [C₉H₉CIN]: 166.0418, found: 166.0410.

6-fluoro-1-methyl-1H-indole

Me Chemical Formula: C9H8FN Molecular Weight: 149.17

Following the general procedure B starting from 1 g (7.4 mmol) of 6-fluoro-1H-indole and using 2 equiv. (2.1 g, 14.8 mmol) of methyl iodide, 1.10 g (99 % yield) of the title compound was obtained as an orange oil. The compound was used without further purification. NMR data similar as in literature.⁴

¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.6, 5.4 Hz, 1H), 7.04 (d, *J* = 3.2 Hz, 1H), 7.01 (dd, *J* = 9.9, 2.3 Hz, 1H), 6.90 (ddd, *J* = 9.6, 8.6, 2.3 Hz, 1H), 6.48 (dd, *J* = 3.2, 0.8 Hz, 1H), 3.75 (s, 3H). ¹⁹F NMR (376 MHz, c) δ -121.25 (td, *J* = 9.7, 5.4 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 159.78 (d, *J* = 237.1 Hz), 136.69 (d, *J* = 12.1 Hz), 129.20 (d, *J* = 3.6 Hz), 124.85 (s), 121.52 (d, *J* = 10.2 Hz), 108.00 (d, *J* = 24.7 Hz), 101.09 (s), 95.57 (d, *J* = 26.2 Hz), 32.91 (s). HRMS (ES⁺) m/z calculated for [C₉H₉FN]: 150.0714, found: 150.0647.

5-methoxy-1-methyl-1H-indole

Me MeC

Chemical Formula: C₁₀H₁₁NO Molecular Weight: 161.20 Following the general procedure B starting from 1 g (6.8 mmol) of 5-methoxy-1H-indole and using 2 equiv. (1.9 g, 13.6 mmol) of methyl iodide, 1.03 g (94 % yield) of the title compound was obtained as a golden solid. The compound was used without further purification. NMR data similar as in literature.⁵

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.9 Hz, 1H), 7.11 (d, *J* = 2.4 Hz, 1H), 7.03 (t, *J* = 3.6 Hz, 1H), 6.91 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.42 (dd, *J* = 3.0, 0.7 Hz, 1H), 3.87 (s, 3H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.95 (s), 132.09 (s), 129.30 (s), 128.74 (s), 111.84 (s), 109.91 (s), 102.45 (s), 100.35 (s), 55.89 (s), 32.99 (s). HRMS (ES⁺) m/z calculated for [C₁₀H₁₂NO]: 162.0913, found: 162.0925.

Methyl 1-methyl-1H-indole-5-carboxylate

Me MeOOC

Chemical Formula: C₁₁H₁₁NO₂ Molecular Weight: 189.21 Following the general procedure B starting from 1 g (5.7 mmol) of methyl 1H-indole-5-carboxylate and using 2 equiv. (1.6 g, 11.4 mmol) of methyl iodide, 1.04 g (96 % yield) of the title compound was obtained as a slightly orange solid. The compound was used without further purification.

¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 1.6 Hz, 1H), 7.93 (dt, *J* = 8.9, 2.6 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 7.10 (d, *J* = 3.2 Hz, 1H), 6.59 (dd, *J* = 3.1, 0.8 Hz, 1H), 3.93 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.29 (s), 139.07 (s), 130.22 (s), 127.94 (s), 123.91 (s), 122.88 (s), 121.30 (s), 102.60 (s), 51.83 (s), 33.01 (s). **HRMS** (ES⁺) m/z calculated for [C₁₁H₁₂NO₂]: 190.0863, found: 190.0875.

1-methyl-1H-indole-5-carbonitrile

Chemical Formula: C₁₀H₈N₂ Molecular Weight: 156.19

Following the general procedure B starting from 1 g (7.0 mmol) of 1H-indole-5-carbonitrile and using 2 equiv. (2.0 g, 14.0 mmol) of methyl iodide, 933 mg (85 % yield) of the title compound was obtained as an orange solid. The compound was used without further purification. NMR data similar as in literature.⁶

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 0.8 Hz, 1H), 7.42 (dd, J = 8.5, 1.5 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 3.2 Hz, 1H), 6.56 (d, J = 3.4 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.11 (s), 131.16 (s), 128.11 (s), 126.43 (s), 124.38 (s), 120.92 (s), 110.07 (s), 102.24 (s), 102.10 (s), 33.08 (s). **HRMS** (ES⁺) m/z calculated for [C₁₁H₉N₂]: 157.0760, found: 157.0776.

1-(prop-2-yn-1-yl)-1H-indole

Chemical Formula: C₁₁H₉N Molecular Weight: 155.20

1-(prop-2-yn-1-yl)-1*H*-indole was synthesized according to literature procedures.¹⁵ Sodium hydride (288.0 mg, 12.0 mmol, 1.2 equiv.) was added to a solution of 1*H*-indole (1.17 g,10 mmol,1 equiv.) in DMF (10 ml) at 0° C. The suspension is slowly warmed to room temperature and stirred for an hour. The solution is now cooled to 0° C again and propargyl bromide (1.67 ml,15 mmol,1.5 equiv., 80% in toluene). The mixture allowed to warm to room temperature and stirred over-night. Now water is added to quench the reaction and DCM (3 x 25 ml) is used for extraction. The combined organic layers were dried over MgSO₄, all volatiles were removed under vacuum and the residue was purified via column chromatography (SiO₂). NMR data similar as in literature.¹⁵

¹H NMR (400 MHz, Benzene-*d*₆) δ 7.68 – 7.65 (m, 1H), 7.25 – 7.17 (m, 2H), 7.15 – 7.14 (m, 1H), 6.77 (d, *J* = 3.2 Hz, 1H), 6.47 (dd, *J* = 3.2, 0.9 Hz, 1H), 4.03 (d, *J* = 2.5 Hz, 2H), 1.79 (s, 1H). ¹³C NMR (101 MHz, Benzene-*d*₆) δ 136.35, 129.64, 127.18, 122.15, 121.53, 120.32, 109.76, 102.46, 78.09, 73.48, 35.35.

Substrate scope details

General procedure C

In a standard test run, a solution of 2.5 mg (25 mol%) of 2-mercaptopyridine, 84 mg (5 equiv.) of 2-FuryIBCat and 3.2 mg (*ca.* mol 30%) of mesitylene (internal standard) per 0.5 ml of C₆D₆ was prepared. Then, 0.5 ml of the solution was added to 1 equiv. of the substrate, and a small aliquot was taken and analyzed by GC-MS as a reference point. The solution was transferred to a J-Young tube and analyzed by ¹H NMR as a reference point. The mixture was then heated at 110 °C for 24 h and analyzed by ¹H NMR. In the following section the initial and final spectra are presented. In all cases the conversion was calculated using the most characteristic signals of the substrates and products. Details for each substrate are given directly on each spectrum. After, 10 equiv. of pinacol and 3.3 equiv. of NEt₃ in 1 ml of toluene was added to the reaction, the tube was shaken and left to react for 1 h before it was analyzed by GC-MS. GC-MS data are also presented in the following section. It is to note that during the transesterification to pinacol some protodeborylation may occur. Thus the starting materials signals are observed in all GC-traces. Signals of pinacol converted residual borlyating agent and mesitylene (internal standard) are also present at 5.90 and 4.44 min respectively. All manipulations were performed outside the glovebox in a not air-conditioned laboratory with temperatures between 15-25 °C.

NMR and GC-MS data

The conversion was determined using the N-methyl signal that shifts from 2.89 in the starting material to 2.78 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.64 to 8.48 ppm was also observed. The product signals are coherent with the literature.⁷

S17

The conversion was determined using the $N-CH_2$ (benzylic) signal that shifts from 4.62 in the starting material to 4.56 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.65 to 8.49 ppm and the appearance of a characteristic singlet from the C2 proton at 7.50 ppm were also observed.

08/09/18 10:21:50

The conversion was determined using the N-Methyl and 7C-Methyl signals that shift respectively from 3.12 and 2.31 ppm in the starting material to 3.00 and 2.22 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.50 to 8.36 ppm and the appearance of a characteristic singlet from the C2 proton at 7.21 ppm were also observed. The product signals are coherent with the literature.⁷

08/07/18 13:14:05

The conversion was determined using the N-Methyl signal that shifts from 2.72 in the starting material to 2.65 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.69 to 8.59 ppm was also observed. The product signals are coherent with the literature.⁷

08/07/18 13:35:05

The conversion was determined using the N-Methyl signal that shifts from 2.68 in the starting material to 2.60 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.29 to 8.15 ppm was also observed. The product signals are coherent with the literature.⁷

08/07/18 14:02:44

The conversion was determined using the N-Methyl signal that shifts from 2.71 in the starting material to 2.63 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.33 to 8.18 ppm was also observed. The product signals are coherent with the literature.⁷

The conversion was determined using the N-Methyl and methoxy signals that shift respectively from 2.89 and 3.48 ppm in the starting material to 2.78 and 3.55 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.23 to 7.91z ppm was also observed.

08/09/18 09:54:24

The conversion was determined using the N-Methyl signal that shifts from 2.66 in the starting material to 2.65 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.50 to 8.47 ppm was also observed.

08/09/18 14:04:14

The conversion was determined using the $N-CH_2$ (benzylic) signal that shifts from 4.41 in the starting material to 4.39 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.61 to 8.46 ppm was also observed.

The product was not volatile enough to be analyzed by GC-MS and was thus analyzed using regular mass spectrometry with ESI ionization.

After 24h at 110°C

The conversion was determined using the $N-CH_2$ (allylic) signal that shifts from 3.98 in the starting material to 3.91 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.64 to 8.48 ppm was also observed.

08/09/18 10:49:30

Initial spectrum

The conversion was determined using the N-CH₂ signal that shifts from 4.21 in the starting material to 4.14 ppm in the product. A significant shift of the signal associated to the C4 proton from 7.61 to 8.46 ppm and the appearance of a characteristic singlet from the C2 proton at 7.61 ppm were also observed.
08/09/18 11:17:16

The conversion was determined using the N-Methyl signal that shifts from 2.82 in the starting material to 3.36, 3.26 and 2.68 ppm in the products (C2, C3 and bis borylated compounds).

08/09/18 12:12:55

S40

The conversion was determined using the N-CH₂ (benzylic) signal that shifts from 4.40 in the starting material to 5.13, 5.07 and 4.28 ppm in the products (C2, C3 and bis borylated compounds).

08/02/18 13:58:08

The conversion was determined using the TBDMS *tert*-butyl signal that shifts from 0.69 in the starting material to 0.64 ppm for the mono-borylated product and 0.62 for the bis-borylated product respectively.

08/09/18 13:08:34

The conversion was determined using the $N-CH_2$ signal that shifts from 2.95 in the starting material to 3.63 and 2.87 ppm in the products (C2 and C3 borylated compounds). New signals associated with the other CH_2 are also observed, but with some overlap.

08/09/18 12:40:43

The conversion was determined using the O-CH₂ signals that shift from a singlet at 3.37 ppm in the starting material to multiplets from 3.30 to 3.55 ppm in the product.

The conversion was determined using the methoxy signals that shifts from a singlet at 3.24 in the starting material to multiplets to 3.18 ppm in the product. Change of the aromatic signals from 6.42, 6.14 and 5.89 ppm to 7.55 and 5.97 ppm was also observed.

1

The conversion was determined using the C3-Methyl signal that shifts from 1.95 in the starting material to 2.47 ppm in the product.

08/02/18 13:04:40

1

S54

The conversion was determined using the C2-Methyl signal that shifts from 2.11 in the starting material to 2.06 ppm in the product.

08/09/18 14:59:53

The conversion was determined using the *tert*-butyl signal that shifts from 1.17 in the starting material to 1.19 ppm in the product.

08/02/18 13:31:22

1

The conversion was determined using the N-Methyl and methyl ester signals that shift from 2.76 and 3.58 in the starting material to 2.71 and 3.57 ppm in the product.

08/09/18 14:32:04

S60

The conversion was determined using the N-Methyl signal that shifts from 2.47 in the starting material to 2.38 ppm in the product.

08/09/18 15:27:39

The conversion was determined using the signal of the methylene group adjacent to the nitrogen that shifts from 4.05 in the starting material to 3.96 ppm in the product. HRMS Spectrum was taken of the isolated product. Product crystallised.

The conversion was determined using the N-Methyl signal that shifts from 2.74 in the starting material to 2.66 ppm in the product. HRMS Spectrum was taken of the isolated product.

The conversion was determined using the N-Methyl signal that shifts from 2.83 in the starting material to 2.74 ppm in the product. HRMS Spectrum was taken of the isolated product

Isolation of the borylated Products:

General procedure D:

In a microwave vial heterocyclic compound (1 equiv.) was mixed with 2-furyl-Bcat (5 equiv.) and Mercaptopyridine (25 mol%) in toluene (0.17 M). The vial was put in a microwave reactor and was heated to 180 °C for 2 hours. To the resulting mixture pinacol (10 equiv.) was added in a solution of triethylamine (3.33 equiv.) and toluene (1 M). The golden to brown solution was stirred for an hour at room temperature. Subsequently all volatiles were removed, and the resulting residue was purified *via* column chromatography (SiO₂).

1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8a)

Compound **8a** was synthesized according to general procedure C using 1-methyl-1*H*-indole (52.5 mg, 0.4 mmol). R_f -value: 0.23 (Pet. Ether: Et_2O 10:1). Yield: 70.6 mg, 0.274 mmol, 70%. The spectroscopic data agrees with literature established values.¹⁴

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.65 – 8.60 (m, 1H), 7.38 (s, 1H), 7.35 – 7.31 (m, 1H), 7.28 – 7.23 (m, 1H), 7.05 – 7.00 (m, 1H), 2.84 (s, 3H), 1.24 (s, 12H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.72. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 138.96, 138.41, 133.58, 123.52, 122.06, 120.71, 109.54, 82.73, 32.08, 25.15.

1,7-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8b)

Compound **8b** was synthesized according to general procedure D using 1,7-dimethyl-1*H*-indole (58.1 mg, 0.4 mmol). R_f -value: 0.20 (Pet. Ether: Et₂O 10:1). Yield: 79.0 mg, 0.291 mmol, 72%

¹H NMR (500 MHz, Benzene-*d*₆) δ 8.55 – 8.49 (m, 1H), 7.31 (s, 1H), 7.25 – 7.20 (m, 1H), 6.94 – 6.90 (m, 1H), 3.09 (s, 3H), 2.42 – 2.25 (m, 3H), 1.23 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.72. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 140.60, 137.13, 134.76, 124.82, 121.83, 121.17, 121.03, 82.67, 36.21, 25.24, 19.59. HRMS (ES⁺) m/z calculated for [C₁₆H₂₃BNO₂]: 272.1816, found: 272.1825

1,2-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8c)

Compound **8c** was synthesized according to general procedure D using 1,2-dimethyl-1*H*-indole (58.1 mg, 0.4 mmol). R_f -value: 0.47 (Pet. Ether: Et₂O 10:1). Yield: 42.4 mg, 0.312 mmol, 39%. The spectroscopic data agrees with literature established values.¹³

¹H NMR (500 MHz, Benzene-*d*₆) δ 8.70 – 8.65 (m, 1H), 7.40 – 7.34 (m, 1H), 7.32 – 7.25 (m, 1H), 7.08 – 7.00 (m, 1H), 2.79 (s, 3H), 2.47 (s, 3H), 1.23 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.69. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 138.60, 133.65, 122.92, 121.27, 120.67, 108.84, 82.35, 30.24, 28.69, 25.16, 12.72. HRMS (ES⁺) m/z calculated for [C₁₆H₂₃BNO₂]: 273.1851, found: 273.1843

5-methoxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8d)

Compound **8d** was synthesized according to general procedure D using 5-methoxy-1-methyl-1*H*-indole (64.5 mg, 0.4 mmol). R_f-value: 0.10 (Pet. Ether: Et₂O 10:1). Yield: 75.5 mg, 0.263 mmol, 67%. The spectroscopic data agrees with literature established values.¹³ ¹H NMR (500 MHz, Benzene- d_6) δ 8.05 (d, *J* = 2.3 Hz, 1H), 7.39 (s, 1H), 7.12 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.89 (dd, *J* = 8.8, 0.6 Hz, 1H), 3.62 (s, 4H), 2.84 (s, 3H), 1.25 (s, 14H). ¹³C NMR (126 MHz, Benzene- d_6) δ 155.73, 139.50, 133.67, 128.60, 112.63, 110.27, 105.12, 82.71, 55.49, 32.30, 25.15. ¹¹B NMR (160 MHz, Benzene- d_6) δ 30.89.

1-benzyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8f)

Compound **8f** was synthesized according to general procedure D using 1-benzyl-1*H*-indole (82.9 mg, 0.4 mmol). R_f -value: 0.33 (Pet. Ether: Et₂O 10:1). Yield: 91.6 mg, 0.275 mmol, 78%. The spectroscopic data agrees with literature established values.¹⁴

¹H NMR (500 MHz, Benzene- d_6) δ 8.68 – 8.63 (m, 1H), 7.58 (s, 1H), 7.39 – 7.26 (m, 1H), 7.17 – 7.16 (m, 2H), 7.08 (dt, *J* = 8.2, 1.0 Hz, 1H), 6.96 – 6.86 (m, 2H), 6.74 – 6.69 (m, 2H), 4.60 (s, 2H), 1.23 (s, 12H). ¹¹B NMR (160 MHz, Benzene- d_6) δ 30.53. ¹³C NMR (126 MHz, Benzene- d_6) δ 138.53, 137.53, 133.76, 128.82, 128.59, 127.58, 126.94, 123.65, 122.39, 120.96, 110.22, 82.82, 50.02, 25.14.

4-((3-(benzo[d][1,3,2]dioxaborol-2-yl)-1H-indol-1-yl)methyl)benzonitrile (8g)

Compound **8g** was synthesized according to general procedure D using 4-((1*H*-indol-1-yl)methyl)benzonitrile (92.9 mg, 0.4 mmol). Conversion was determined before the pinacolation. Yield: 87% (determined via ¹H NMR spectroscopy)
1-allyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8h)

Chemical Formula: C₁₇H₂₂BNO₂ Molecular Weight: 283.18

Compound **8h** was synthesized according to general procedure D using 1-allyl-1*H*-indole (62.9 mg, 0.4 mmol). R_f-value: 0.3 (Pet. Ether: Et₂O 10:1). Yield: 91.4 mg, 0.323 mmol, 81%.

¹H NMR (500 MHz, Benzene-*d*₆) δ 8.66 – 8.62 (m, 1H), 7.54 (s, 1H), 7.35 – 7.29 (m, 1H), 7.26 – 7.22 (m, 1H), 7.13 – 7.10 (m, 1H), 5.42 (ddt, *J* = 17.1, 10.3, 5.4 Hz, 1H), 4.81 – 4.56 (m, 2H), 3.96 (dt, *J* = 5.3, 1.7 Hz, 2H), 1.23 (s, 12H). ¹³C NMR (126 MHz, Benzene-*d*₆) δ 147.15, 137.71, 132.90, 128.21, 123.25, 121.79, 120.47, 116.59, 109.66, 82.40, 48.22, 24.76. ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.70. HRMS (ES⁺) m/z calculated for [C₁₅H₂₀BFNO₂]: 284.1820, found: 284.1806

1-(prop-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8i)

Compound **8i** was synthesized according to general procedure D using 1-(prop-2-yn-1-yl)-1*H*-indole (62.1 mg, 0.4 mmol). R_f-value: 0.37 (Pet. Ether: Et₂O 10:1). Yield: 60.8 mg, 0.216 mmol, 54%

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.07 – 8.04 (m, 1H), 7.69 (s, 1H), 7.40 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.21 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 4.88 (d, *J* = 2.6 Hz, 2H), 2.41 (t, *J* = 2.6 Hz, 1H), 1.37 (s, 12H). ¹¹**B NMR** (160 MHz, Chloroform-*d*) δ 30.18. ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 136.90, 136.89, 132.86, 123.03, 122.23, 120.83, 109.42, 82.98, 77.33, 74.13, 36.13, 25.06. **HRMS** (ES⁺) m/z calculated for [C₁₇H₂₀BNO₂]: 282.1660, found: 282.1663

1-(pent-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8j)

Compound **8j** was synthesized according to general procedure D using 1-(pent-2-yn-1-yl)-1*H*-indole (73.3 mg, 0.4 mmol). R_f-value: 0.21 (Pet. Ether: Et₂O 10:1). Yield: 79.3 mg, 0.312 mmol, 64%

¹**H NMR** (500 MHz, Benzene-*d*₆) δ 8.62 – 8.59 (m, 1H), 7.80 (s, 1H), 7.31 (ddd, *J* = 8.0, 6.8, 1.3 Hz, 1H), 7.27 – 7.19 (m, 2H), 4.19 (t, *J* = 2.3 Hz, 2H), 1.75 (qt, *J* = 7.5, 2.3 Hz, 2H), 1.21 (s, 12H), 0.78 (t, *J* = 7.5 Hz, 3H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.68. ¹³**C NMR** (126 MHz, Benzene-*d*₆) δ 137.12, 137.02, 133.47, 123.27, 121.86, 120.64, 109.51, 87.15, 82.40, 73.14, 35.80, 24.73, 13.27, 12.03. **HRMS** (ES⁺) m/z calculated for [C₁₉H₂₄BNO₂]: 310.1976, found: 310.1993

6-iodo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8k)

Compound **8k** was synthesized according to general procedure D using 6-iodo-1-methyl-1*H*-indole (102.83 mg, 0.4 mmol). R_f -value: 0.09 (Pet. Et₂O 10:1). Yield: 121.6 mg, 0.317 mmol, 79%

¹H NMR (500 MHz, Benzene-*d*₆) δ 9.03 – 8.99 (m, 1H), 7.56 – 7.52 (m, 1H), 7.18 (s, 1H), 6.54 – 6.50 (m, 1H), 2.65 (s, 3H), 1.17 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.36. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 139.44, 137.36, 135.96, 132.14, 130.45, 111.64, 84.96, 82.95, 32.02, 25.00. HRMS (ES⁺) m/z calculated for [C_{14} ¹³ C_{1} H₂₀BINO₂]: 385.0661, found: 385.0679.

5-bromo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (81)

Compound **8I** was synthesized according to general procedure D using 5-bromo-1-methyl-1*H*-indole (84.0 mg, 0.4 mmol). R_f-value: 0.09 (Pet. Ether: Et₂O 10:1). Yield: 89.2 mg, 0.266 mmol, 66%

¹H NMR (500 MHz, Benzene-*d*₆) δ 8.85 – 8.80 (m, 1H), 7.44 – 7.34 (m, 1H), 7.23 (s, 1H), 6.63 – 6.58 (m, 1H), 2.66 (d, *J* = 1.2 Hz, 3H), 1.18 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.35. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 139.78, 136.92, 128.59, 125.87, 124.93, 114.57, 111.10, 82.95, 32.09, 25.01. HRMS (ES⁺) m/z calculated for [C₁₅H₂₀BBrNO₂]: 336.0765, found: 336.0753

6-chloro-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8m)

Compound **8m** was synthesized according to general procedure D using 6-chloro-1-methyl-1*H*-indole (66.3 mg, 0.4 mmol). R_f -value: 0.18 (Pet. Et₂O 10:1). Yield: 112.6 mg, 0.386 mmol, 97%. The spectroscopic data agrees with literature established values.¹³

¹**H** NMR (500 MHz, Benzene-*d*₆) δ 8.36 – 8.32 (m, 1H), 7.29 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.15 – 7.12 (m, 1H), 7.06 – 7.03 (m, 1H), 2.59 (s, 3H), 1.17 (s, 12H). ¹¹**B** NMR (160 MHz, Benzene-*d*₆) δ 30.71. ¹³**C** NMR (126 MHz, Benzene-*d*₆) δ 139.61, 138.74, 131.91, 128.16, 124.30, 121.26, 109.95, 82.90, 32.00, 25.09. HRMS (ES⁺) m/z calculated for [C₁₅H₂₀BCINO₂]: 292.1270, found: 292.1273

6-fluoro-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8n)

Compound **8n** was synthesized according to general procedure D using 6-fluoro-1-methyl-1*H*-indole (59.7 mg, 0.4 mmol). R_f -value: 0.15 (Pet. Ether: Et₂O 10:1). Yield: 85.3 mg, 0.312 mmol, 78%. The spectroscopic data agrees with literature established values.¹³

¹**H NMR** (500 MHz, Benzene-*d*₆) δ 8.39 (dd, *J* = 8.6, 5.5 Hz, 1H), 7.28 (s, 1H), 7.07 (ddd, *J* = 9.7, 8.6, 2.3 Hz, 1H), 6.72 (ddd, *J* = 9.7, 2.4, 0.5 Hz, 1H), 2.65 (s, 3H), 1.21 (s, 12H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.59. ¹⁹F NMR (470 MHz, Benzene-*d*₆) δ -120.98 (m). ¹³**C NMR** (126 MHz, Benzene-*d*₆) δ 160.14 (d, *J* = 236.9 Hz), 139.00 (d, *J* = 3.2 Hz), 129.36, 127.97, 127.59, 123.84 (d, *J* = 9.9 Hz), 108.72 (d, *J* = 23.9 Hz), 95.81 (d, *J* = 25.9 Hz), 82.47, 31.66, 24.72. **HRMS** (ES⁺) m/z calculated for [C₁₅H₂₀BFNO₂]: 276.1568, found: 276.1570

1-methyl-2,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (80)

Compound **80** was synthesized according to general procedure D using 1-methyl-1*H*-pyrrole (32.5 mg, 0.4 mmol). R_f-value: 0.17 (Pet. Ether: Et₂O 10:1). Yield: 29.4 mg, 0.140 mmol, 35%. The spectroscopic data agrees with literature established values.¹³

¹**H NMR** (500 MHz, Benzene-*d*₆) δ 7.91 (d, *J* = 1.6 Hz, 1H), 7.26 (d, *J* = 1.5 Hz, 1H), 3.44 (s, 3H), 1.16 (s, 12H), 1.06 (s, 12H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.33, 28.77. **HRMS** (ES⁺) m/z calculated for [C₁₇H₂₉B₂NO₄]: 334.2361, found: 334.2370

1-benzyl-2,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (8p)

Compound **8p** was synthesized according to general procedure D using 1-benzyl-1*H*-pyrrole (62.9 mg, 0.4 mmol). R_f -value: 0.17 (Pet. Ether: Et₂O 10:1). Yield: 30.1 mg, 0.073 mmol, 18%. The spectroscopic data agrees with literature established values.¹⁴

¹H NMR (500 MHz, Benzene-*d*₆) δ 7.93 (d, *J* = 1.5 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 1H), 7.01 – 6.89 (m, 5H), 5.13 (s, 2H), 1.11 (s, 12H), 0.94 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 30.10, 28.94. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 139.93, 136.58, 130.88, 128.55, 127.18, 127.13, 83.06, 82.76, 52.90, 25.08, 24.66. HRMS (ES⁺) m/z calculated for [C₂₃H₃₄B₂NO₄]: 410.2668 , found: 410.2646

1-(tert-butyldimethylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (8q)

Compound **8q** was synthesized according to general procedure D using 1-(*tert*-butyldimethylsilyl)-1*H*-pyrrole (72.5 mg, 0.4 mmol). R_f-value: 0.47 (Pet. Ether: Et₂O 10:1). Yield: 75.6 mg, 0.246 mmol, 62%

¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.54 – 7.51 (m, 1H), 7.11 – 7.07 (m, 1H), 6.76 – 6.63 (m, 1H), 1.20 (s, 12H), 0.68 (s, 9H), 0.05 (s, 6H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.94. ¹³C NMR (101 MHz, Benzene-*d*₆) δ 134.26, 124.93, 117.11, 82.75, 25.85, 25.15, 18.10, -5.69. ²⁹Si NMR (99 MHz, Benzene-*d*₆) δ -110.83. **HRMS** (ES⁺) m/z calculated for [C₁₆H₃₁BNO₂Si]: 308.2215, found: 308.2203

2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8s)

Compound **8s** was synthesized according to general procedure D using 2,3-dihydrothieno[3,4-*b*][1,4]dioxine (56.9 mg, 0.4 mmol). R_f-value: 0.30 (Pet. Ether: Et₂O 2:1). Yield: 48.2 mg, 0.185 mmol, 46%. The spectroscopic data agrees with literature established values.¹⁴ ¹**H NMR** (500 MHz, Benzene-*d*₆) δ 6.68 – 6.66 (m, 1H), 3.45 – 3.42 (m, 2H), 3.34 – 3.31 (m, 2H), 1.08 (s, 12H). ¹³**C NMR** (126 MHz, Benzene-*d*₆) δ 150.2, 144.3, 108.4, 83.2, 66.3, 65.5, 23.9 **HRMS** (ES⁺) m/z calculated for [C₁₂H₁₈BO₄S]: 269.1016, found: 269.1017

2-(5-methoxythiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8t)

Compound **8t** was synthesized according to general procedure D using 2-methoxythiophene (59.7 mg, 0.4 mmol). R_f-value: 0.39 (Pet. Ether: Et₂O 10:1). Yield: 7.3 mg, 0.030 mmol, 8%. The spectroscopic data agrees with literature established values.¹³

¹H NMR (500 MHz, Benzene-*d*₆) δ 7.38 (d, *J* = 5.7 Hz, 1H), 6.25 (d, *J* = 5.7 Hz, 1H), 3.45 (s, 2H), 1.12 (s, 12H). ¹¹B NMR (160 MHz, Benzene-*d*₆) δ 29.24. ¹³C NMR (126 MHz, Benzene-*d*₆) δ 131.28, 127.97, 110.93, 82.71, 60.95, 24.61. HRMS (ES⁺) m/z calculated for [C₁₁H₁₈BO₃S]: 241.1066, found: 241.1065

Hydroboration of 8i

Compound **8i** (60.8 mg, 2.2 mmol, 1 equiv.), Cp_2ZrHCl (5.6 mg, 0.22 mmol, 10 mol%) and HBpin (33.2 mg, 2.3 mmol, 1.2 equiv.) were dissolved in dry DCM (0.5 ml) and the reaction mixture was stirred under a N_2 atmosphere for 24 h. The resulting yellow solution was filtered through a silica plug and all volatiles were removed to give a mixture of products. Yield 40.8 mg, 50 %

(E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)-1H-indole (9a)

Yield (calculated by ¹H NMR): 29.8 mg, 0.8 mmol, 36 %. ¹H NMR (500 MHz, Benzene- d_6) δ 8.60 – 8.58 (m, 1H), 7.48 (s, 1H), 7.30 – 7.23 (m, 1H), 7.07 – 7.03 (m, 1H), 6.66 (dt, *J* = 17.9, 4.8 Hz, 1H), 5.46 (dt, *J* = 17.9, 1.8 Hz, 1H), 4.05 (dd, *J* = 4.8, 1.9 Hz, 2H), 1.22 (s, 12H), 0.99 (s, 12H). ¹¹B NMR (160 MHz, Benzene- d_6) δ 30.26. HRMS (ES⁺) m/z calculated for [C₂₃H₃₄B₂NO₄]: 412.2733, found 412.2734

(E)-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)-1H-indole (9b)

9b Chemical Formula: C₁₇H₂₂BNO₂ Molecular Weight: 283.18

Yield (calculated by ¹H NMR): 11.0 mg, 0.3 mmol, 14 %.

¹**H NMR** (500 MHz, Benzene-*d*₆) δ 8.58 – 8.54 (m, 1H), 7.68 – 7.64 (m, 1H), 7.44 (s, 1H), 7.27 – 7.20 (m, 1H), 7.04 – 6.99 (m, 1H), 6.69 (dt, *J* = 17.9, 4.8 Hz, 1H), 5.45 (dt, *J* = 17.9, 1.9 Hz, 1H), 4.08 (dd, *J* = 4.8, 1.9 Hz, 2H), 0.96 (s, 12H). ¹¹**B NMR** (160 MHz, Benzene-*d*₆) δ 30.26. **HRMS** (ES⁺) m/z calculated for [C₁₇H₂₃BNO₂]: 284.1820, found 284.1806

Computational details

All the calculations were performed on the full structures of the reported compounds. Calculations were performed with the GAUSSIAN 16 suite of programs.⁸ The ωB97XD functional⁹ was qualified as promising by Grimme¹⁰ and was used to accurately describe the mechanism of FLP mediated hydrogenation of alkynes¹¹ and was thus used in combination with the Def2TZVP basis set for all atoms¹² The transition states were located and confirmed by frequency calculations (single imaginary frequency). The stationary points were characterized as minima by full vibration frequencies calculations (no imaginary frequency). All geometry optimizations were carried out without any symmetry constraints. The Cartesian coordinates of all structures are fully detailed in the .xyz file provided as supplementary materials.

Kinetics:

General procedure:

2-FurylBCat (5 equiv., 93.0 mg, 0.5 mmol), 2-mercaptopyridine (25 mol%, 2.78 mg, 0.025 mmol), mesitylene (ca. 0.33 equiv.) and the corresponding heterocycle (1 equiv., 0.1 mmol) were mixed in C_6D_6 , transferred into a J Young NMR tube and heated to 110 °C. After 30 min the reaction was allowed to cool down to room temperature for approximately 3-5 mins and a ¹H NMR spectrum was taken to determine the ratio of products in the reaction mixture. The sample was then heated to 110 °C again for an additional 30 mins and again the reaction mixture was monitored *via* ¹H NMR spectroscopy. This process was then repeated by 60 min intervals for an additional 7 hours. The measured ratios were plotted against time to give the reaction diagram.

Kinetic of N-methylindole:

Using N-methylindole (13.1 mg, 0.1 mmol) the reaction was monitored over time. The conversion was monitored by comparing the methyl signal of the starting material and of the product. (see P16 ESI)

Kinetic of N-Methylpyrrole:

Using N-methylpyrrole (8.1 mg, 0.1 mmol) the reaction was monitored over time. The conversion was monitored by the methyl signal of the starting material and the products. (see P38 ESI)

Kinetic Simulation:

Kinetics simulations were performed using the free simulation software ReactLab Kinsim (<u>http://jplusconsulting.com/products/reactlab-kinsim/</u>). The equilibrium constants for the reaction steps were calculated using equation 1 with the energy values determined *via* DFT calculations (see Scheme 2, Paper). For the activation of 2-furylBCat the transition state energy in Figure 8 (see Paper) was used:

$$K = \frac{k_B}{hT} \cdot e^{-\frac{\Delta G}{RT}} \tag{1}$$

Table K1: Determining the equilibrium constants for the borylation reactions for T=110 °C

G

F

Н

(No.) Reaction	ΔG [kcal/mol]	K	$\log_{10}(K)$
(1) A+B->C+D	26.2	$4.78 \cdot 10^{22}$	22.68
(2) C+E->F+B	21.3	$7.67 \cdot 10^{19}$	19.88
(3) C+E->G+B	24.7	$6.67 \cdot 10^{21}$	21.82
(4) C+F->H+B	26.5	$7.09 \cdot 10^{22}$	22.85

Е

(5) C+G->H+B	22.9	$6.27 \cdot 10^{20}$	20.80
(6) F+B->C+E	23.6	$1.57 \cdot 10^{21}$	21.20
(7) G+B->C+E	27.5	$2.63 \cdot 10^{23}$	23.42
(8) H+B->F+C	29.8	$5.40 \cdot 10^{24}$	24.73
(9) H+B->G+C	26.2	$4.78 \cdot 10^{22}$	22.68

				1 1			1									
Model Editor			Time Vector			Numerical calculation options										
Poactante	Reaction	Droducte	Labol	Parameters					Numerical Integration	Numerical Integration		Numerical Integ	Integration		Equil S	pociation
Reactanta	Туре	Troducta	Luber	k / log K		Select type	linear		Numerical	Light Oper			peciation			
A+B	>	C+D	1	2.268E+01												
C+E	>	F+B	2	1.988E+01		T min	0.001		Stiff Solver	T ₽ E		Conv tol	1.00E-15			
C+E	>	G+B	3	2.182E+01		T max	4.000					Max iter	9.90E+01			
C+F	>	H+B	4	2.285E+01		n points	1000.000		Abs tol	1.00E-10						
C+G	>	H+B	5	2.080E+01					Rel tol	1.00E-07						
F+B	>	C+E	6	2.120E+01												
G+B	>	C+E	7	2.342E+01								Miscel	laneous			
H+B	>	F+C	8	2.473E+01												
H+B	>	G+C	9	2.268E+01								logKw	-14.00			
Caralian	•		0		-	-	-									
Species	A	В	C	D	E	F	G	н								
init []	8.30E-01	4.15E-02	0.00E+00	0.00E+00	1.66E-01	0.00E+00	0.00E+00	0.00E+00								

Fig K1: (top) Data in KinSim (bottom) Simulation vs. Kinetic experiment

Crystallographic Data of **8i**

Table 1.	Crystal data and structure refinement for compound 8i.

Empirical formula	C ₁₇ H ₂₀ BNO ₂		
Formula weight	281.15		
Temperature	150(2) K		
Wavelength	1.34139 Å		
Crystal system	cubic		
Space group	Pna 2 /1		
Unit cell dimensions	a = 27.4401(11) Å	α = 90°.	
	b = 7.2038(3) Å	β = 90°.	
	c = 15.7216(6) Å	γ = 90°.	
Volume	3107.7(2) Å ³		
Z	8		
Density (calculated)	1.202 Mg/m ³		
F(000)	120012		
Crystal size	1.178 x 0.508 x 0.332 mm ³		
Index ranges	-12 ≤ h ≤ 16, -24 ≤ k ≤ 25, -23 ≤ l ≤ 19		
R indices (all data)	R1 = 0.0964(5623), wR2 = 0.2458(5681)		

NMR Spectra of the new products:

S1¹H NMR (500 MHz, CDCl₃, 298 K) Synthesis of 1,7-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8b)

S3 ¹³C NMR (500 MHz, CDCl₃, 298 K) Synthesis of 1,7-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8b)

S4¹³C NMR (500 MHz, CDCl₃, 298 K) 1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-5-carbonitrile (8e)

S5 ¹H NMR (500 MHz, CDCl₃, 298 K) 4-((3-(benzo[*d*][1,3,2]dioxaborol-2-yl)-1*H*-indol-1-yl)methyl)benzonitrile (8g)

S6¹H NMR (500 MHz, CDCl₃, 298 K) 1-allyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8h)

S7¹¹B NMR (500 MHz, CDCl₃, 298 K) 1-allyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (**8h**)

S8¹³C NMR (500 MHz, CDCl₃, 298 K) 1-allyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (8h)

S9¹H NMR (500 MHz, CDCl₃, 298 K) 1-(prop-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8i)

S10¹¹B NMR (500 MHz, CDCl₃, 298 K) 1-(prop-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8i)

S11¹³C NMR (500 MHz, CDCl₃, 298 K) 1-(prop-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8i)

S12¹H NMR (500 MHz, CDCl₃, 298 K) 1-(pent-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8j)

S13¹¹B NMR (500 MHz, CDCl₃, 298 K) 1-(pent-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (**8**j)

S14¹³C NMR (500 MHz, CDCl₃, 298 K) 1-(pent-2-yn-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (**8**j)

S15¹H NMR (500 MHz, CDCl₃, 298 K) 6-iodo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8k)

S16¹¹B NMR (500 MHz, CDCl₃, 298 K) 6-iodo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8k)

S17¹³C NMR (500 MHz, CDCl₃, 298 K) 6-iodo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8k)

S18¹H NMR (500 MHz, CDCl₃, 298 K) 5-bromo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (8I)

S20 ¹³C NMR (500 MHz, CDCl₃, 298 K) 5-bromo-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (81)

S21¹H NMR (500 MHz, CDCl₃, 298 K) 1-(*tert*-butyldimethylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrrole (8q)

S22¹¹B NMR (500 MHz, CDCl₃, 298 K) 1-(*tert*-butyldimethylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrrole (8q)

S23 ¹³C NMR (500 MHz, CDCl₃, 298 K) 1-(*tert*-butyldimethylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrrole (8q)

References

² Molander, G. A.; Ryu, D.; Hosseini-sarvari, M.; Devulapally, R.; Seapy, D. G. *J. Org. Chem.* **2013**, *78*, 6648.

³ Xu, X.; Liu, G.; Azuma, A.; Tokunaga, E.; Shibata, N. Org. Lett. **2011**, *13*, 4854.

⁴ Klare, H. F. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. *J. Am. Chem. Soc.* **2011**, *133*, 3312.

⁵ Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Org. Lett. **2010**, *12*, 5740.

⁶ Lane, B. S.; Sames, D. Org. Lett. **2004**, *6*, 2897.

⁷ Zhang, S.; Han, Y.; He, J.; Zhang, Y. *J. Org. Chem.* **2018**, *83*, 1377.

⁸ Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

⁹ J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., **2008**, 10, 6615–6620.

¹⁰ S. Grimme, Goerigk, Lars. *Phys. Chem. Chem. Phys.*, **2011**, *13*, 6670–6688.

¹¹ K. Chernichenko, Á. Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, *Nat. Chem.* **2013**, 718-723.

¹² a) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, 3297. b) Weigend, F. *Phys. Chem. Chem. Phys.* **2006**, *22*, 1057.

¹³ Lavergne, J. L.; Jayaraman, A.; Castro, L. C. M.; Rochette, É.; Fontaine, F.-G. *J. Am. Chem. Soc.* **2017**, *139*, 14714–14723.

¹⁴ Jayaraman, A.; Castro, L. C. M.; Fontaine, F.-G.. Org. Process Res. Dev. **2018**, 22, 1489–1499.

¹ Olguín-uribe, S.; Mijangos, M. V; Amador-sánchez, Y. A.; Sánchez-carmona, M. A.; Miranda, L. D. *European J. Org. Chem.* **2017**, 2481.

¹⁵ Li, T.; Yang, P. J. Org. Chem. **2018**, 83 (I), 14751–14757.